An Assessment of Self-Purification in Streams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location, Sampling Points
2.2. Time of Research, Nitrogen and Phosphorus Concentrations
2.3. Distribution of Sediment and Used Agricultural Areas
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Riley, W.D.; Potter, E.C.E.; Biggs, J.; Collins, A.L.; Jarvie, H.P.; Jones, J.I.; Kelly-Quinn, M.; Ormerod, S.J.; Sear, D.A.; Wilby, R.L.; et al. Small water bodies in Great Britain and Ireland: Ecosystem function, human-generated degradation, and options for restorative action. Sci. Total Environ. 2018, 645, 1598–1616. [Google Scholar] [CrossRef] [PubMed]
- Groll, M. The passive river restoration approach as an efficient tool to improve the hydromorphological diversity of rivers—Case study from two river restoration projects in the German lower mountain range. Geomorphology 2017, 293, 69–83. [Google Scholar] [CrossRef]
- Campana, D.; Marchese, E.; Theule, J.I.; Comiti, F. Channel degradation and restoration of an Alpine river and related morphological changes. Geomorphology 2014, 221, 230–241. [Google Scholar] [CrossRef]
- Gregory, K.J. The human role in changing river channels. Geomorphology 2006, 79, 172–191. [Google Scholar] [CrossRef]
- Isaac, M.E.; Hinsingerc, P.; Harmanda, J.M. Nitrogen and phosphorus economy of a legume tree-cereal intercropping system under controlled conditions. Sci. Total Environ. 2012, 434, 71–78. [Google Scholar] [CrossRef]
- Bączyk, A.; Wagner, M.; Okruszko, T.; Grygoruk, M. Influence of technical maintenance measures on ecological status of agricultural lowland rivers—Systematic review and implications for river management. Sci. Total Environ. 2018, 627, 189–199. [Google Scholar] [CrossRef]
- Lithuanian Hydrometeorological Service. Available online: http://www.meteo.lt/en/precipitation (accessed on 12 April 2019).
- Šaulys, V. Open Channel Hydraulics, 2nd ed.; Technika: Vilnius, Lithuania, 2016; p. 272. [Google Scholar] [CrossRef]
- Povilaitis, A.; Taminskas, J.; Gulbinas, Z.; Linkevičienė, R.; Pileckas, M. Lithuanian Wetlands and Their Water Protective Importance, 4th ed.; Apyaušris: Vilnius, Lithuania, 2011; p. 368. [Google Scholar]
- Hickey, M.B.C.; Bruce, D. A review of the efficiency of buffer strips for the maintenance and enhancement of riparian ecosystems. Water Qual. Res. J. Can. 2004, 39, 311–317. [Google Scholar] [CrossRef]
- Søvik, A.K.; Syversen, N. Retention of particles and nutrients in the root zone of a vegetative buffer zone—Effect of vegetation and season. Boreal Environ. Res. 2008, 13, 223–230. [Google Scholar]
- Dosskey, M.G.; Vidon, P.; Gurwick, N.P.; Allan, C.J.; Duval, T.P.; Lowrance, R. The role of riparian vegetation in protecting and improving chemical water quality in streams. J. Am. Water Resour. Assoc. 2010, 46, 261–277. [Google Scholar] [CrossRef]
- Rosa, D.J.; Clausen, J.C.; Kuzovkina, Y. Water quality changes in a short-rotation woody crop riparian buffer. Biomass Bioenergy 2017, 107, 370–375. [Google Scholar] [CrossRef]
- Mayer, P.M.; Reynolds, S.K.; McCutchen, M.D.; Canfield, T.J. Meta-Analysis of Nitrogen Removal in Riparian Buffers. J. Environ. Qual. 2007, 36, 1172–1180. [Google Scholar] [CrossRef] [PubMed]
- Dorioz, J.M.; Wang, D.; Poulenard, J.; Trévisan, D. The effect of grass buffer strips on phosphorus dynamics—A critical review and synthesis as a basis for application in agricultural landscapes in France. Agric. Ecosyst. Environ. 2006, 117, 4–21. [Google Scholar] [CrossRef]
- Aguiar, T.R.; Rasera, K.; Parron, L.M.; Brito, A.G.; Ferreira, M.T. Nutrient removal effectiveness by riparian buffer zones in rural temperate watersheds: The impact of no-till crops practices. Agric. Water Manag. 2015, 149, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Elliott, K.J.; Vose, J.M. Effects of riparian zone buffer widths on vegetation diversity in southern Appalachian headwater catchments. For. Ecol. Manag. 2016, 376, 9–23. [Google Scholar] [CrossRef] [Green Version]
- Schilling, K.E.; Jacobson, P. Effectiveness of natural riparian buffers to reduce subsurface nutrient losses to incised streams. Catena 2014, 114, 140–148. [Google Scholar] [CrossRef]
- O’Toole, P.; Chambers, J.M.; Bell, R.W. Understanding the characteristics of riparian zones in low relief, sandy catchments that affect their nutrient removal potential. Agric. Ecosyst. Environ. 2018, 258, 182–196. [Google Scholar] [CrossRef]
- Neilen, A.D.; Chen, C.R.; Parker, B.M.; Faggotter, S.J.; Burford, M.A. Differences in nitrate and phosphorus export between wooded and grassed riparian zones from farmland to receiving waterways under varying rainfall conditions. Sci. Total Environ. 2017, 598, 188–197. [Google Scholar] [CrossRef]
- Bastienė, N.; Kirstukas, J. Principles and priorities of riparian strips rehabilitation. Water Environ. Eng. 2010, 37, 71–83. [Google Scholar]
- Lamsodis, R.; Morkūnas, V.; Poškus, V.; Povilaitis, A. Ecological approach to management of open drains. Irrig. Drain. 2006, 55, 479–490. [Google Scholar] [CrossRef]
- Maziliauskas, A.; Morkūnas, V.; Rimkus, Z.; Šaulys, V. Economic incentives in land reclamation sector in Lithuania. J. Water Land Dev. 2007, 11, 17–30. [Google Scholar] [CrossRef]
- England, J.; Wilkes, M.A. Does river restoration work? Taxonomic and functional trajectories at two restoration schemes. Sci. Total Environ. 2018, 618, 961–970. [Google Scholar] [CrossRef] [PubMed]
- Paillex, A.; Schuwirth, N.; Lorenz, A.W.; Januschke, K.; Peter, A.; Reichert, P. Integrating and extending ecological river assessment: Concept and test with two restoration projects. Ecol. Indic. 2017, 72, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Kail, J.; Brabec, K.; Poppe, M.; Januschke, K. The effect of river restoration on fish, macroinvertebrates and aquatic macrophytes: A meta-analysis. Ecol. Indic. 2015, 58, 311–321. [Google Scholar] [CrossRef]
- Kim, J.J.; Atique, U.; An, K.G. Long-term ecological health assessment of a restored urban stream based on chemical water quality, physical habitat conditions and biological integrity. Water 2019, 11, 114. [Google Scholar] [CrossRef] [Green Version]
- Sundemann, A.; Stoll, S.; Haase, P. River restoration success depends on the species pool of the immediate surroundings. Ecol. Appl. 2011, 21, 1962–1971. [Google Scholar] [CrossRef]
- Tian, S.; Wang, Z.; Shang, H. Study on the Self-purification of Juma River. Procedia Environ. Sci. 2011, 11, 1328–1333. [Google Scholar] [CrossRef] [Green Version]
- Ifabiyi, I.P. Self-purification of a freshwater stream in Ile-Ife: Lessons for water management. J. Hum. Ecol. 2008, 24, 131–137. [Google Scholar] [CrossRef]
- Bakar, A.A.A.; Khalil, M.K. Study on stream ability for self-purification process in receiving domestic wastewater. Adv. Sci. Lett. 2016, 22, 1252–1255. [Google Scholar] [CrossRef]
- Water Quality—Sampling—Part 1: Guidance on the Design of Sampling Programmes and Sampling Techniques; International Standardisation Organisation: Geneva, Switzerland, 2007; LST EN ISO 5667-1:2007/AC:2007.
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Communities 2000, 327, 1–73. Available online: https://www.eea.europa.eu/policy-documents/directive-2000-60-ec-of (accessed on 5 April 2019).
- Grizzetti, B.; Pistocchi, A.; Liquete, C.; Udias, A.; Bouraoui, F.; van de Bund, W. Human pressures and ecological status of European rivers. Sci. Rep. 2017, 6941. [Google Scholar] [CrossRef] [Green Version]
- Environmental Protection Department under the Ministry of Environment. Available online: https://aad.lrv.lt/en/ (accessed on 25 May 2019).
- Tumas, R. Water Ecology; Naujasis Lankas: Kaunas, Lithuania, 2003; p. 352. [Google Scholar]
- The Manager of the Spatial Information Portal of Lithuania. Available online: https://www.geoportal.lt/geoportal/en/web/en (accessed on 10 April 2019).
- Survilė, O.; Šaulys, V.; Stanionytė, A. An assessment of self-purification of regulated and natural streams. In Proceedings of the 10th International Conference Environmental Engineering, Vilnius, Lithuania, 27–28 April 2017. [Google Scholar]
- Lithuanian Official Statistics Portal. Available online: https://osp.stat.gov.lt/statistiniu-rodikliu-analize?theme=all#/ (accessed on 12 December 2019).
- Burneika, A.; Barvidiene, O. The influence of naturalization processes on water quality in regulated part of Terpine stream. In Proceedings of the 17th Conference for Junior Researchers, Vilnius, Lithuania, 10 April 2014. [Google Scholar]
- Montreuil, O.; Merot, P.; Marmonier, P. Estimation of nitrate removal by riparian wetlands and streams in agricultural catchments: Effect of discharge and stream order. Freshw. Biol. 2010, 55, 2305–2318. [Google Scholar] [CrossRef]
- Survilė, O.; Šaulys, V.; Bagdžiūnaitė-Litvinaitienė, L.; Stankevičienė, R.; Litvinaitis, A.; Stankevičius, M. Assessment and research of river restoration processes in regulated streams of Southeastern Lithuania. Pol. J. Environ. Stud. 2016, 25, 1245–1251. [Google Scholar] [CrossRef]
- Winton, R.S.; Calamita, E.; Wehrli, B. Reviews and syntheses: Dams, water quality and tropical reservoir stratification. Biogeosciences 2019, 16, 1657–1671. [Google Scholar] [CrossRef] [Green Version]
- Šaulys, V.; Barvidienė, O. Substantiation of the expediency of drainage systems renovation in Lithuania. In Proceedings of the 9th International Conference Environmental Engineering, Vilnius, Lithuania, 22–23 May 2014. [Google Scholar]
- Soils of Lithuania, 2nd ed.; Lithuanian Science: Vilnius, Lithuania, 2001; Book 32; p. 1244.
- Gailiušis, B.; Jablonskis, J.; Kovalenkovienė, M. Lithuanian Rivers: Hydrography and Runoff, 2nd ed.; Lithuanian Energy Institute: Kaunas, Lithuania, 2001; p. 792. [Google Scholar]
- The Environmental Protection Agency. Available online: http://vanduo.gamta.lt. (accessed on 22 May 2019).
- Friberg, N.; Bonada, N.; Bradley, D.C.; Dunbar, M.J.; Edwards, F.K.; Grey, J.; Hayes, R.B.; Hildrew, A.G.; Lamouroux, N.; Trimmer, M.; et al. Biomonitoring of human impacts in natural ecosystems: The good, the bad and the ugly. Adv. Ecol. Res. 2011, 44, 1–68. [Google Scholar] [CrossRef]
- Logar, I.; Brouwer, R.; Paillex, A. Do the societal benefits of river restoration outweigh their costs? A cost-benefit analysis. J. Environ. Manag. 2019, 323, 1075–1085. [Google Scholar] [CrossRef]
Streams | Hydrological Regions | It Is Regulated | Length of Stream | The Basin Area | Sampling Points |
---|---|---|---|---|---|
Terpinė | South-Eastern Highlands | from sources to 7.4 km; from 3.0 km to the estuary | 9.0 km | 12.2 km2 | TNs; TNe; TRs; TRe |
Žalesa | South-Eastern Highlands | from the sources to 7.6 km. | 18.8 km | 97.1 km2 | ZRs; ZRe; ZNs; ZNe |
Kuosinė | South-Eastern Highlands | from the sources to 16.0 km; from 11.0 to 7.0 km. | 20.1 km | 45.3 km2 | KRs; KRe; KNs; KNe |
Mėkla | Middle Plains | from the sources to 20.0 km; | 26.9 km | 93.3 km2 | MRs; MRe; MNs; MNe |
Durbinis | Western (Samogitian) Highlands | from the sources to 7.8 km, from 7.4 to 7.2 km and from 4.8 to 3.0 km. | 9.1 km | 15.5 km2 | DRs; DRe; DNs; DNe |
Uogis | Western (Samogitian) Highlands | from the sources to 13.0 km. | 27.6 km | 68.2 km2 | URs; URe; UNs; UNe |
Index | Ecological Status of Rivers | ||||
---|---|---|---|---|---|
High | Good | Moderate | Poor | Bad | |
mg L−1 | <5.75 | 5.75–10.18 | 10.19–19.92 | 19.93–44.27 | >44.27 |
mg L−1 | <0.15 | 0.15–0.28 | 0.28–0.55 | 0.55–1.23 | >1.23 |
Terpinė (T) | Žalesa (Z) | Kuosinė (K) | Mėkla (M) | Durbinis (D) | Uogis (U) |
---|---|---|---|---|---|
Surface Gradation According to Fere | |||||
80% of sandy loam; other: | 40% of sandy loam; other: | 80% of sandy loam; other: | 60% of light loam; other: | 50% of sandy loam; other: | 60% of sandy loam; other: |
1. light loam, | 1. light loam, | 1. sand, | 1. sandy loam, | 1. loam, | 1. light loam, |
2. medium–heavy loam, | 2. peat, | 2. loam, | 2. peat, | 2. clay, | 2. peat, |
3. peat | 3. humus | 3. peat | 3. medium–heavy loam | 3. peat | 3. sand |
Used Agricultural Area in a Regulated Stream Stretch (Rs–Re) | |||||
forest, urbanized territory | grassland, forest | arable, grassland | arable, grassland, urbanized territory | arable, grassland | arable |
Used Agricultural Area in a Natural Stream Stretch (Ns–Ne) | |||||
grassland | grassland, forest | forest | arable | urbanized territory | arable, grassland |
Average Soil Productivity Index in a River Basin | |||||
32 | 30 | 30 | 47 | 34 | 43 |
Stream | Decrease in Nitrate Concentrations, mg | Nitrate Self-Purification Coefficient α, km−1 | Decrease in Phosphate Concentrations, mg | Phosphate Self-Purification Coefficient α, km−1 | ||||
---|---|---|---|---|---|---|---|---|
N | R | N | R | N | R | N | R | |
Terpinė | 2.7 ± 5.7 | 0.2 ± 4.5 | 0.13 ± 0.22 | −0.09 ± 0.28 | 0.1 ± 0.8 | −0.5 ± 0.9 | −0.03 ± 0.18 | −0.24 ± 0.53 |
Žalesa | 3.3 ± 1.7 | 0.8 ± 2.8 | 1.01 ± 0.38 | 0.26 ± 0.62 | 0.1 ± 0.3 | 0.3 ± 0.2 | 0.32 ± 0.61 | 0.25 ± 0.14 |
Kuosinė | 8.6 ± 1.7 | 5.3 ± 2.5 | 0.99 ± 0,41 | 0.08 ± 0.05 | 0.2 ± 0.1 | 0.2 ± 0.2 | 0.15 ± 0.12 | 0.18 ± 0.20 |
Mėkla | 19.1 ± 14.2 | 3.9 ± 15.0 | 0.27 ± 0.90 | 0.39 ± 0.47 | 0.1 ± 0.1 | 0.3 ± 0.6 | 0.15 ± 0.10 | 0.04 ± 0.15 |
Durbinis | 14.5 ± 24.5 | 1.2 ± 20.4 | 0.27 ± 0.38 | 0.15 ± 1.10 | 0.4 ± 0.5 | 0.4 ± 0.5 | 0.22 ± 0.22 | 0.29 ± 0.38 |
Uogis | 3.3 ± 1.4 | 3.9 ± 1.7 | 0.38 ± 0.27 | 0.11 ± 0.06 | 0.2 ± 0.2 | 0.5 ± 0.3 | 0.74 ± 0.34 | 0.24 ± 0.11 |
Total in relevant streams 1 | 8.8 ± 5.0 | 3.0 ± 2.9 | 0.50 ± 0.22 | 0.15 ± 0.21 | 0.2 ± 0.1 | 0,2 ± 0,2 | 0.28 ± 0.12 | 0.14 ± 0.12 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šaulys, V.; Survilė, O.; Stankevičienė, R. An Assessment of Self-Purification in Streams. Water 2020, 12, 87. https://doi.org/10.3390/w12010087
Šaulys V, Survilė O, Stankevičienė R. An Assessment of Self-Purification in Streams. Water. 2020; 12(1):87. https://doi.org/10.3390/w12010087
Chicago/Turabian StyleŠaulys, Valentinas, Oksana Survilė, and Rasa Stankevičienė. 2020. "An Assessment of Self-Purification in Streams" Water 12, no. 1: 87. https://doi.org/10.3390/w12010087
APA StyleŠaulys, V., Survilė, O., & Stankevičienė, R. (2020). An Assessment of Self-Purification in Streams. Water, 12(1), 87. https://doi.org/10.3390/w12010087