Glacial Lake Outburst Floods (GLOFs) in the Cordillera Huayhuash, Peru: Historic Events and Current Susceptibility
Abstract
:1. Introduction
1.1. Study Area
2. Materials and Methods
2.1. Lake Inventory
2.2. Inventory of Past GLOFs
- Documentary data sources from the archive of the Autoridad Nacional del Agua (ANA) located in Huaráz, Peru, and the archive of the University of Salzburg, Austria;
- The analysis of high-resolution, remotely-sensed images available via Google Earth Digital Globe (Maxar technologies, CNES/Airbus images) for the period 2003/2010–2019 [35], and Landsat images (15 m/30 m/90 m resolution) for the period 1972–2020, which were accessed through Google Earth Engine [36];
- Field survey in June 2018 and July 2019 (reconnaissance, geomorphological mapping).
2.3. Assessment of the Susceptibility of Glacial Lakes to Outburst Floods
- Characteristics of the dam (type, width and height, dam freeboard, maximum slope of the distal face of the dam, presence of piping, piping gradient, remedial works),
- Characteristics of the lake (area, perimeter, maximum width), and
- Characteristics of lake surroundings (width of calving front, distance and mean slope between lake and glacier, mean slope of the lowermost 500 m of the glacier tongue, maximum slope angle of the moraine surrounding the lake, mean slope of the lake surroundings).
3. Results
3.1. Lake Inventory
3.2. Past GLOFs
3.3. GLOF Susceptibility Assessment
4. Discussion
4.1. Comparison with Existing Peru-Wide Lake Inventories and Future Perspectives
4.2. Timing of GLOF Occurrence and GLOF Hazard Implications
4.3. Uncertainties and Limitations of the GLOF Susceptibility Assessment Method
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zemp, M.; Huss, M.; Thibert, E.; Eckert, N.; McNabb, R.; Huber, J.; Barandun, M.; Machguth, H.; Nussbaumer, S.U.; Gärtner-Roer, I.; et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 2019, 568, 382–386. [Google Scholar] [CrossRef]
- Mancini, D.; Lane, S.N. Changes in sediment connectivity following glacial debuttressing in an Alpine valley system. Geomorphology 2020, 352, 106987. [Google Scholar] [CrossRef]
- Bulege-Gutiérrez, W.; Custodio, M. Climate change and glacier retreat in the Huaytapallana Mountain Range, Peru. Tecnol. Cienc. Agua 2020, 11, 229–261. [Google Scholar] [CrossRef] [Green Version]
- Cook, S.J.; Quincey, D.J. Estimating the volume of Alpine glacial lakes. Earth Surf. Dyn. 2015, 3, 559–575. [Google Scholar] [CrossRef] [Green Version]
- King, O.; Dehecq, A.; Quincey, D.; Carrivick, J. Contrasting geometric and dynamic evolution of lake and land-terminating glaciers in the central Himalaya. Glob. Planet. Chang. 2018, 167, 46–60. [Google Scholar] [CrossRef]
- Evans, S.G.; Clague, J.J. Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphology 1994, 10, 107–128. [Google Scholar] [CrossRef]
- Harrison, S.; Kargel, J.S.; Huggel, C.; Reynolds, J.; Shugar, D.H.; Betts, R.A.; Emmer, A.; Glasser, N.; Haritashya, U.K.; Klimeš, J.; et al. Climate change and the global pattern of moraine-dammed glacial lake outburst floods. Cryosphere 2018, 12, 1195–1209. [Google Scholar] [CrossRef] [Green Version]
- Emmer, A. GLOFs in the WOS: Bibliometrics, geographies and global trends of research on glacial lake outburst floods (Web of Science, 1979–2016). Nat. Hazards Earth Syst. Sci. 2018, 18, 813–827. [Google Scholar] [CrossRef] [Green Version]
- Kinzl, H.; Schneider, E.; Awerzger, A. Cordillera Huayhuash, Perú—Ein Bildwerk über ein Tropisches Hochgebirge; Verlag Tiroler Graphik: Innsbruck, Austria, 1954; p. 42. [Google Scholar]
- Vuille, M.; Francou, B.; Wagon, P.; Juen, I.; Kaser, G.; Mark, B.G.; Bradley, R.S. Climate change and tropical Andean glaciers: Past, present and future. Earth-Sci. Rev. 2008, 89, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Rodbell, D.T.; Seltzer, G.O.; Mark, B.G.; Smith, J.A.; Abbott, M.A. Clastic sediment flux to tropical Andean lakes: Records of glaciation and soil erosion. Quat. Sci. Rev. 2008, 27, 1612–1626. [Google Scholar] [CrossRef]
- Mark, B.G.; Seltzer, G.O. Evaluation of recent glacier recession in the Cordillera Blanca, Peru (AD 1962–1999): Spatial distribution of mass loss and climatic forcing. Quat. Sci. Rev. 2005, 24, 2265–2280. [Google Scholar] [CrossRef]
- Juřicová, A.; Fratianni, S. Climate change and its relation to the fluctuation in glacier mass balance in the Cordillera Blanca, Peru: A review. AUC Geogr. 2018, 53, 106–118. [Google Scholar] [CrossRef] [Green Version]
- Zapata, M.L. La dinamica glaciar en lagunas de la Cordillera Blanca. Acta Mont. Ser. A Geodyn. 2002, 123, 37–60. [Google Scholar]
- Evans, S.G.; Bishop, N.F.; Fidel Smoll, L.; Valderrama Murillo, P.; Delaney, K.B.; Oliver-Smith, A. A re-examination of the mechanism and human impact of catastrophic mass flows originating on Nevado Huascarán, Cordillera Blanca, Peru in 1962 and 1970. Eng. Geol. 2009, 108, 96–118. [Google Scholar] [CrossRef]
- Mergili, M.; Frank, B.; Fischer, J.-T.; Huggel, C.; Pudasaini, S.P. Computational experiments on the 1962 and 1970 landslide events at Huascarán (Peru) with r.avaflow: Lessons learned for predictive mass flow simulations. Geomorphology 2018, 322, 15–28. [Google Scholar] [CrossRef]
- Vilímek, V.; Zapata, M.L.; Klimeš, J.; Patzelt, Z.; Santillán, N. Influence of glacial retreat on natural hazards of the Palcacocha Lake area, Peru. Landslides 2005, 2, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Carey, M. In the Shadow of Melting Glaciers: Climate Change and Andean Society; Oxford University Press: Oxford, UK, 2010; p. 273. [Google Scholar] [CrossRef]
- Carrivick, J.L.; Tweed, F.S. A global assessment of the societal impacts of glacier outburst floods. Glob. Planet. Chang. 2016, 144, 1–16. [Google Scholar] [CrossRef]
- Huggel, C.; Carey, M.; Emmer, A.; Frey, H.; Walker-Crawford, N.; Walliman-Helmer, I. Anthropogenic climate change and glacier lake outburst flood risk: Local and global drivers and responsibilities for the case of lake Palcacocha, Peru. Nat. Hazards Earth Syst. Sci. 2020, in press. [Google Scholar] [CrossRef] [Green Version]
- Mergili, M.; Pudasaini, S.P.; Emmer, A.; Fischer, J.-T.; Cochachin, A.; Frey, H. Reconstruction of the 1941 GLOF process chain at Lake Palcacocha (Cordillera Blanca, Peru). Hydrol. Earth Syst. Sci. 2020, 24, 93–114. [Google Scholar] [CrossRef] [Green Version]
- Carey, M.; Huggel, C.; Bury, J.; Portocarrero, C.; Haeberli, W. An integrated socio-environmental framework for glacier hazard management and climate change adaptation: Lessons from Lake 513, Cordillera Blanca, Peru. Clim. Chang. 2012, 112, 733–767. [Google Scholar] [CrossRef]
- Vilímek, V.; Klimeš, J.; Emmer, A.; Benešová, M. Geomorphologic impacts of the glacial lake outburst flood from Lake No. 513 (Peru). Environ. Earth Sci. 2015, 73, 5233–5244. [Google Scholar] [CrossRef]
- Schaub, Y.; Huggel, C.; Cochachin, A. Ice-avalanche scenario elaboration and uncertainty propagation in numerical simulation of rock-/ice-avalanche- induced impact waves at Mount Hualcán and Lake 513, Peru. Landslides 2016, 13, 1445–1459. [Google Scholar] [CrossRef]
- Emmer, A. Geomorphologically effective floods from moraine-dammed lakes in the Cordillera Blanca, Peru. Quat. Sci. Rev. 2017, 177, 220–234. [Google Scholar] [CrossRef]
- Hall, S.R.; Farber, D.L.; Ramage, J.M.; Rodbell, D.T.; Finkel, R.C.; Smith, J.A.; Mark, B.G.; Kassel, C. Geochronology of Quaternary glaciations from the tropical Cordillera Huayhuash, Peru. Quat. Sci. Rev. 2009, 28, 2991–3009. [Google Scholar] [CrossRef]
- Engel, Z.; Česák, J.; Rios Escobar, V. Rainfall-related debris flows in Carhuacocha Valley, Cordillera Huayhuash, Peru. Landslides 2011, 8, 269–278. [Google Scholar] [CrossRef]
- Garver, J.I.; Reiners, P.W.; Walker, L.J.; Ramage, J.M.; Perry, S.E. Implications for Timing of Andean Uplift from Thermal Resetting of Radiation-Damaged Zircon in the Cordillera Huayhuash, Northern Peru. J. Geol. 2005, 113, 117–138. [Google Scholar] [CrossRef] [Green Version]
- Bookhagen, B.; Strecker, M.R. Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes. Geophys. Res. Lett. 2008, 35, L06403. [Google Scholar] [CrossRef] [Green Version]
- Hidrandina, S.A. Inventario de Glaciares del Perú; CONCYTEC: Huaraz, Peru, 1989; p. 105.
- Autoridad Nacional del Agua. Inventario Nacional de Glaciares y Lagunas; Unidad de Glaciología y Recursos Hídricos: Huaraz, Peru, 2014; p. 56. Available online: http://groundwater.sdsu.edu/INVENTARIO_GLACIARES_ANA.pdf (accessed on 22 April 2020).
- McFadden, E.M.; Ramage, J.M.; Rodbell, D.T. Landsat TM and ETM+ derived snowline altitudes in the Cordillera Huayhuash and Cordillera Raura, Peru, 1986–2005. Cryosphere 2011, 5, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Portocarrero, C.R. Seminaro Desastres Naturales-Geologia-Causes, Efectos y Prevenciones; ELECTROPERU S.A.: Huaraz, Peru, 1984; p. 10. [Google Scholar]
- Emmer, A.; Klimeš, J.; Mergili, M.; Vilímek, V.; Cochachin, A. 882 lakes of the Cordillera Blanca: An inventory, classification, evolution and assessment of susceptibility to outburst floods. Catena 2016, 147, 269–279. [Google Scholar] [CrossRef]
- Google Earth Pro. Available online: https://www.google.com/intl/en/earth/versions/#download-pro (accessed on 22 April 2020).
- LandsatLook Viewer of the United States Geological Survey. Available online: https://landsatlook.usgs.gov/viewer.html (accessed on 22 April 2020).
- Robitaille, A.; Dubois, J.M.M. Identification of characteristics features associated with glacial outburst. Geogr. Phys. Quat. 1995, 49, 435–457. [Google Scholar]
- Kougkoulos, I.; Cook, S.J.; Jomelli, V.; Clarke, L.; Symeonakis, E.; Dortch, J.M.; Edwards, L.A.; Merad, M. Use of multi-criteria decision analysis to identify potentially dangerous glacial lakes. Sci. Total Environ. 2018, 621, 1453–1466. [Google Scholar] [CrossRef] [PubMed]
- Emmer, A.; Vilímek, V. New method for assessing the susceptibility of glacial lakes to outburst floods in the Cordillera Blanca, Peru. Hydrol. Earth Syst. Sci. 2014, 18, 3461–3479. [Google Scholar] [CrossRef] [Green Version]
- OpenStreetMap. Available online: https://www.openstreetmap.org/#map=15/-10.2753/-76.9110 (accessed on 1 July 2020).
- Grupo La República. La extinción de los glaciares del Perú: Infografía. 2018. Available online: https://hdl.handle.net/20.500.12543/2662 (accessed on 22 April 2020).
- Guardamino, L.; Haeberli, W.; Muñoz, R.; Drenkhan, F.; Tacsi, A.; Cochachin, A. Proyección de Lagunas Futuras en las Cordilleras Glaciares del Perú; Autoridad Nacional del Agua: Lima, Peru, 2019; p. 63.
- Colonia, D.; Torres, J.; Haeberli, W.; Schauwecker, S.; Braendle, E.; Giraldez, C.; Cochachin, A. Compiling an Inventory of Glacier–Bed Overdeepenings and Potential New Lakes in De-Glaciating Areas of the Peruvian Andes: Approach, First Results, and Perspectives for Adaptation to Climate Change. Water 2017, 9, 336. [Google Scholar] [CrossRef] [Green Version]
- Emmer, A.; Harrison, S.; Mergili, M.; Allen, S.; Frey, H.; Huggel, C. 70 years of lake evolution and glacial lake outburst floods in the Cordillera Blanca (Peru) and implications for the future. Geomorphology 2020, 365, 107178. [Google Scholar] [CrossRef]
- Veh, G.; Korup, O.; von Specht, S.; Roessner, S.; Walz, A. Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya. Nat. Clim. Chang. 2019, 9, 379–383. [Google Scholar] [CrossRef]
GLOF Mechanism | |||
---|---|---|---|
Dam Overtopping | Dam Failure | ||
Both Bedrock and Moraine-Dammed Lakes | Moraine-Dammed Lakes Only | ||
Triggering event | Slope movement into the lake | Scenario 1 | Scenario 3 |
Zero to negligible: <0.200 | Zero to negligible: <0.100 | ||
Low: 0.200 to 0.499 | Low: 0.100 to 0.199 | ||
Medium: 0.500 to 0.899 | Medium: 0.200 to 0.599 | ||
High: >0.899 | High: >0.500 | ||
Flood wave from an upstream lake | Scenario 2 | Scenario 4 | |
Zero to negligible: * | Zero to negligible: * | ||
Low: * | Low: * | ||
Medium: * | Medium: * | ||
High: * | High: * | ||
Strong earthquake | Not applicable | Scenario 5 | |
Zero to negligible: <0.050 | |||
Low: 0.050 to 0.149 | |||
Medium: 0.150 to 0.199 | |||
High: >0.200 |
Area [km2] | Lake Type | Sum | ||||||
---|---|---|---|---|---|---|---|---|
M | B | Relict | M + B | L + M | ||||
Mountain range divide | West | 3.16 | 85 | 62 | 18 | 2 | 0 | 167 |
East | 3.15 | 52 | 30 | 19 | 1 | 1 | 103 | |
Sum | 6.31 | 137 | 92 | 37 | 3 | 1 | 270 |
Characteristics | Mountain Side | Entire Range | Lake Type | ||||||
---|---|---|---|---|---|---|---|---|---|
West | East | M | B | Relict | M + B | L + M | |||
Number of lakes | 167 | 103 | 270 | 137 | 92 | 37 | 3 | 1 | |
Average lake area [m2] | 18,907 | 30,589 | 23,363 | 34,700 | 14,650 | 1543 | 71,550 | 5500 | |
Area classes [1000 m2] | 100–700 | 7 | 8 | 15 | 11 | 4 | 0 | 0 | 0 |
50–99.9 | 5 | 6 | 11 | 6 | 4 | 0 | 1 | 0 | |
20–49.9 | 17 | 3 | 20 | 14 | 5 | 0 | 1 | 0 | |
10–19.9 | 10 | 10 | 20 | 12 | 6 | 2 | 0 | 0 | |
5–9.9 | 25 | 5 | 30 | 20 | 9 | 0 | 0 | 1 | |
2–4.9 | 29 | 12 | 41 | 16 | 23 | 2 | 0 | 0 | |
1–1.9 | 17 | 15 | 32 | 13 | 12 | 7 | 0 | 0 | |
0.5–0.9 | 23 | 24 | 47 | 23 | 13 | 10 | 1 | 0 | |
0.2–0.4 | 34 | 20 | 54 | 22 | 16 | 16 | 0 | 0 | |
Elevation [m a.s.l.] | Minimum | 4061 | 4161 | 4061 | 4061 | 4198 | 4437 | 4812 | 4293 |
Maximum | 5064 | 4963 | 5064 | 5040 | 5064 | 4973 | 4893 | 4300 | |
Average | 4776 | 4609 | 4706 | 4684 | 4754 | 4669 | 4857 | 4297 | |
Surface | yes | 74 | 33 | 107 | 58 | 33 | 13 | 3 | 0 |
no | 93 | 70 | 163 | 79 | 59 | 24 | 0 | 1 | |
Glaciated | no | 75 | 57 | 132 | 41 | 56 | 34 | 1 | 0 |
Catchment | yes | 92 | 46 | 138 | 96 | 36 | 3 | 2 | 1 |
Pro glacial | yes | 6 | 4 | 10 | 2 | 7 | 0 | 1 | 0 |
no | 161 | 99 | 260 | 135 | 85 | 37 | 2 | 1 |
Lake Name (ID) | Location | Catchment | Dam Type | Water Release | Magnitude | Timing | Damage and Additional Info | References |
---|---|---|---|---|---|---|---|---|
Solteracocha (W002) | 10.2333° S, 76.9379° W 4126 m a.s.l. | P | M | DB | extreme | 14th March 1932 | Considerable damage reported | [7,9,14,33] |
Sarapococha (W018) | 10.3122° S, 76.9134° W 4492 m a.s.l. | P | M | DB | major to extreme | 1940s or earlier | Minor damage reported | [9] |
Sarapococha (W018) | 10.3122° S, 76.9134° W 4492 m a.s.l. | P | M | DB/DO (?) | major | February 1981 | Roads and bridge damaged in Cajatambo area | [7] |
Juraucocha (W021) | 10.3358° S, 76.8967° W 4371 m a.s.l. | P | M | DB | major | 1940s or earlier | Minor damage reported | [9] |
Rurigallay (W019) | 10.3171° S, 76.9063° W 4480 m a.s.l. | P | M | DB | extreme | 20th April 1941 | Several deaths, bridges and paths destroyed | [9,14] |
Gangrajanca (E006) | 10.2665° S, 76.8767° W 4225 m a.s.l. | A | M | DB | minor | January 1999 | Flood likely absorbed by downstream Lake Carhuacocha (E005) | This study |
Jancacuta (W032) | 10.2128° S, 76.9275° W 4349 m a.s.l. | P | M | DB | minor | Before 2011 | No damage reported, likely attenuated in pampa | This study |
Unnamed (W023) | 10.3646° S, 76.8742° W 4763 m a.s.l. | P | B | DO | minor to major | Before 1984 | No damage reported, likely attenuated in pampa | This study |
Unnamed (W030) | 10.2030° S, 76.9168° W 4558 m a.s.l. | P | M | DB | minor | Before 1984 | Flood absorbed by downstream Lake Garagcocha (W001) | This study |
Unnamed (E087) | 10.3441° S, 76.8635° W 4808 m a.s.l. | A | M | DO (?) | minor | Before 2010 | No damage reported, likely attenuated in pampa | This study |
Chaclan (E004) | 10.2413° S, 76.8885° W 4505 m a.s.l. | A | M | DO (?) | minor to major | 2014 to 2017 | Ambiguous, likely minor GLOF or debris flow | This study |
Caramarca (W012) | 10.2934° S, 76.9287° W 4593 m a.s.l. | P | M | DO (?) | minor | Before 1985 | Ambiguous, likely minor GLOF | This study |
Unnamed (W085) | 10.2968° S, 76.9415° W 4882 m a.s.l. | P | CD | DO | minor | Before 1976 | Ambiguous, likely minor GLOF or debris flow | This study |
Unnamed (W097) | 10.3168° S, 76.97985° W 4952 m a.s.l. | P | M | DO (?) | minor | Before 2010 | Ambiguous, likely minor GLOF or debris flow | This study |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baťka, J.; Vilímek, V.; Štefanová, E.; Cook, S.J.; Emmer, A. Glacial Lake Outburst Floods (GLOFs) in the Cordillera Huayhuash, Peru: Historic Events and Current Susceptibility. Water 2020, 12, 2664. https://doi.org/10.3390/w12102664
Baťka J, Vilímek V, Štefanová E, Cook SJ, Emmer A. Glacial Lake Outburst Floods (GLOFs) in the Cordillera Huayhuash, Peru: Historic Events and Current Susceptibility. Water. 2020; 12(10):2664. https://doi.org/10.3390/w12102664
Chicago/Turabian StyleBaťka, Jan, Vít Vilímek, Eva Štefanová, Simon J. Cook, and Adam Emmer. 2020. "Glacial Lake Outburst Floods (GLOFs) in the Cordillera Huayhuash, Peru: Historic Events and Current Susceptibility" Water 12, no. 10: 2664. https://doi.org/10.3390/w12102664
APA StyleBaťka, J., Vilímek, V., Štefanová, E., Cook, S. J., & Emmer, A. (2020). Glacial Lake Outburst Floods (GLOFs) in the Cordillera Huayhuash, Peru: Historic Events and Current Susceptibility. Water, 12(10), 2664. https://doi.org/10.3390/w12102664