A Stepwise Approach to Beach Restoration at Calabaia Beach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Costal Erosion Management: A Time Dependent Approach
- do nothing: no changes with respect to the existing situation;
- managed realignment: land-use planning, recovering areas from sea flooding;
- hold the line: sea defence measures supporting the former defence line;
- move seaward: sea defence measures promoting an advancement toward the sea of the defence line;
- limited intervention: non-invasive measures to support natural processes in reducing flood hazards and erosion processes.
2.2. Calabaia Beach
2.2.1. Bathymetric and Topographic Surveys
2.2.2. Granulometric Surveys
2.2.3. Wave Climate
3. Coastal Management at Calabaia Beach: Experiences and Planning
3.1. Emergency Measures
3.2. Perched Nourishment
- a submerged breakwater located 250 m seaward, 2.5 m below the mean sea level and 700 m long. The structure consists of natural boulders and re-used concrete boulders taken from former emerged breakwaters;
- semi-submerged groynes made of natural boulders and re-used concrete boulders taken from former emerged breakwaters, connecting the heads of the submerged breakwater to the shoreline;
- a beach nourishment using 600,000 m3 of quarried quartz sand with d50 = 3 mm, which is a material showing similar characteristics to the in-situ soil (Figure 13).
3.3. NBS Example: The Further Use of Posidonia Oceanica at Calabaia Beach
3.3.1. Laboratory Experiments
3.3.2. Sea Bottom Installation
3.3.3. Monitoring Campaigns
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Patterson, M.; Glavovic, B. From frontier economics to an ecological economics of the oceans and coasts. Sustain. Sci. 2013, 8, 11–24. [Google Scholar] [CrossRef]
- Folke, C.; Biggs, R.; Norström, A.V.; Reyers, B.; Rockström, J. Social-ecological resilience and sustainability. Ecol. Soc. 2016, 21, 41. [Google Scholar] [CrossRef]
- Turner, R.K. Integrating natural and socio-economic science in coastal management. J. Mar. Syst. 2000, 25, 447–460. [Google Scholar] [CrossRef]
- Leslie, H.M.; Basurto, X.; Nenadovic, M.; Sievanen, L.; Cavanaugh, K.C.; Cota-Nieto, J.J.; Erisman, B.E.; Finkbeiner, E.; Hinojosa-Arango, G.; Moreno-Báez, M.; et al. Operationalizing the social-ecological systems framework to assess sustainability. Proc. Natl. Acad. Sci. USA 2015, 112, 5979–5984. [Google Scholar] [CrossRef] [Green Version]
- Ye, G.; Chou, L.M.; Yang, S.; Wu, J.; Liu, P.; Jin, C. Is integrated coastal management an effective framework for promoting coastal sustainability in China’s coastal cities? Mar. Policy 2015, 56, 48–55. [Google Scholar] [CrossRef]
- Mele, B.H.; Russo, L.; D’Alelio, D. Combining marine ecology and economy to roadmap the integrated coastal management: A systematic literature review. Sustainability 2019, 11, 4393. [Google Scholar] [CrossRef] [Green Version]
- Fedorov, G.M.; Kuznetsova, T.Y.; Razumovskii, V.M. How the proximity of the sea affects development of economy and the settlement pattern in Kaliningrad oblast. Reg. Res. Russ. 2017, 7, 352–362. [Google Scholar] [CrossRef]
- Ertör, I.; Hadjimichael, M. Editorial: Blue degrowth and the politics of the sea: Rethinking the blue economy. Sustain. Sci. 2020, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Capobianco, M.; De Vriend, H.J.; Nicholls, R.J.; Stive, M.J.F. Coastal Area Impact and Vulnerability Assessment: The Point of View of a Morphodynamic Modeller. J. Coast. Res. 1999, 15, 701–716. [Google Scholar]
- De Zolt, S.; Lionello, P.; Nuhu, A.; Tomasin, A. The disastrous storm of 4 November 1966 on Italy. Nat. Hazards Earth Syst. Sci. 2006, 6, 861–879. [Google Scholar] [CrossRef] [Green Version]
- Gedan, K.B.; Silliman, B.R.; Bertness, M.D. Centuries of human-driven change in saltmarsh ecosystems. Annu. Rev. Mar. Sci. 2009, 1, 117–141. [Google Scholar]
- Liquete, C.; Zulian, G.; Delgado, I.; Stips, A.; Maes, J. Assessment of coastal protection as an ecosystem service in Europe. Ecol. Indic. 2013, 30, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Mel, R.; Viero, D.P.; Carniello, L.; Defina, A.; D’Alpaos, L. Simplified methods for real-time prediction of storm surge uncertainty: The city of Venice case study. Adv. Water Resour. 2014, 71, 177–185. [Google Scholar]
- Mel, R.; Lionello, P. Storm surge ensemble prediction for the city of Venice. Weather Forecast. 2014, 29, 1044–1057. [Google Scholar]
- Mel, R.; Lionello, P. Verification of an ensemble prediction system for storm surge forecast in the Adriatic Sea. Ocean Dyn. 2014, 64, 1803–1814. [Google Scholar]
- Mel, R.; Lionello, P. Probabilistic dressing of a storm surge prediction in the Adriatic Sea. Adv. Meteorol. 2016, 2016, 3764519. [Google Scholar] [CrossRef] [Green Version]
- Marcos, M.; Tsimplis, M. Forcing of coastal sea level rise patterns in the North Atlantic and the Mediterranean Sea. Geophys. Res. Lett. 2007, 34, L01604. [Google Scholar] [CrossRef]
- Prather, M.; Flato, G.; Friedlingstein, P.; Jones, C.; Lamarque, J.-F.; Liao, H.; Rasch, P. Annex II: Climate System Scenario Tables. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Mel, R.; Sterl, A.; Lionello, P. High resolution climate projection of storm surge at the Venetian coast. Nat. Hazards Earth Syst. Sci. 2013, 13, 1135–1142. [Google Scholar] [CrossRef] [Green Version]
- Scarascia, L.; Lionello, P. Global and regional factors contributing to the past and future sea level rise in the northern Adriatic Sea. Glob. Planet. Chang. 2013, 106, 51–63. [Google Scholar] [CrossRef]
- Pranzini, E.; Wetzel, A.; Williams, A. Aspects of coastal erosion and protection in Europe. J. Coast. Conserv. 2015, 19, 445–459. [Google Scholar] [CrossRef]
- Bendoni, M.; Mel, R.; Solari, L.; Lanzoni, S.; Francalanci, S.; Oumeraci, H. Insights into lateral marsh retreat mechanism through localized field measurements. Water Resour. Res. 2016, 52, 1446–1464. [Google Scholar] [CrossRef] [Green Version]
- Mel, R.; Carniello, L.; D’Alpaos, L. Addressing the effect of the Mo.S.E. barriers closure on wind setup within the Venice lagoon. Estuar. Coast. Shelf Sci. 2019, 225, 106249. [Google Scholar] [CrossRef]
- Finotello, A.; Marani, M.; Carniello, L.; Pivato, M.; Roner, M.; Tommasini, L.; D’alpaos, A. Control of wind-wave power on morphological shape of salt marsh margins. Water Sci. Eng. 2020, 13, 45–56. [Google Scholar] [CrossRef]
- Nuzula, N.I.; Armono, H.D.; Rosyid, D.M. The Impact of Coastal Tourism Activities on Water Quality at Baluran National Park. IPTEK J. Technol. Sci. 2017, 28, 59–62. [Google Scholar]
- Huang, W. The Influence of Cruise Tourism Dining Waste on the Process of Self-recovery of Natural Ecological Environment. Ekoloji 2019, 28, 49–54. [Google Scholar]
- Lamine, I.; Alla, A.A.; Bourouache, M.; Moukrim, A. Monitoring of physicochemical and microbiological quality of Taghazout seawater (Southwest of Morocco): Impact of the new tourist resort “Taghazout bay”. J. Ecol. Eng. 2019, 20, 79–89. [Google Scholar] [CrossRef]
- U.S.A.C.E (U.S. Army Corps of Engineers). Coastal Engineering Manual (CEM); U.S. Army Engineer Research and Development Center (ERDC): Vicksburg, MS, USA, 2003. [Google Scholar]
- Coelho, C.; Narra, P.; Marinho, B.; Lima, M. Coastal Management Software to Support the Decision-Makers to Mitigate Coastal Erosion. J. Mar. Sci. Eng. 2020, 8, 37. [Google Scholar] [CrossRef] [Green Version]
- Post, J.C.; Lundin, C.G. Guidelines for Integrated Coastal Zone Management; The World Bank: Washington, DC, USA, 1996; Volume 9, ISBN 0821337351. [Google Scholar]
- EUROSION. Living with Coastal Erosion in Europe: Sediment and Space for Sustainability—Part I—Major Findings and Policy Recommendations of the EUROSION Project. 2004. Available online: http://www.eurosion.org/reports-online/part1.pdf (accessed on 18 September 2020).
- OECD. The Ocean Economy in 2030; OECD Publishing: Paris, France, 2016. [Google Scholar]
- Board, M. Beach Nourishment and Protection; Press, N.A., Ed.; National Academies Press: Washington, DC, USA, 1995; Volume 63. [Google Scholar]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef]
- Sutherland, J. Guidelines on Beach Monitoring for Coastal Erosion in Concepts and Science for Coastal Erosion Management (Conscience) Project. Deliverable D15. 2010. Available online: http://www.conscience-eu.net/documents/deliverable15-guidelines-on-beach-monitoring-for-coastal-erosion.pdf (accessed on 18 September 2020).
- Loinenak, F.A.; Hartoko, A.; Muskananfola, M.R. Mapping of coastal vulnerability using the coastal vulnerability index and geographic information system. Int. J. Technol. 2015, 6, 819–827. [Google Scholar] [CrossRef]
- Sinay, L.; Carter, R.W. Climate Change Adaptation Options for Coastal Communities and Local Governments. Climate 2020, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Cantasano, N.; Pellicone, G.; Ietto, F. Integrated coastal zone management in Italy: A gap between science and policy. J. Coast. Conserv. 2017, 21, 317–325. [Google Scholar] [CrossRef]
- Antonioli, F.; Anzidei, M.; Amorosi, A.; Presti, V.L.; Mastronuzzi, G.; Deiana, G.; De Falco, G.; Fontana, A.; Fontolan, G.; Lisco, S.; et al. Sea-level rise and potential drowning of the Italian coastal plains: Flooding risk scenarios for 2100. Quat. Sci. Rev. 2017, 158, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.; Bertasi, F.; Colangelo, M.A.; de Vries, M.; Frost, M.; Hawkins, S.J.; Macpherson, E.; Moschella, P.S.; Satta, M.P.; Thompson, R.C.; et al. Ecological impact of coastal defence structures on sediment and mobile fauna: Evaluating and forecasting consequences of unavoidable modifications of native habitats. Coast. Eng. 2005, 52, 1027–1051. [Google Scholar] [CrossRef] [Green Version]
- Martins, G.M.; Amaral, A.F.; Wallenstein, F.M.; Neto, A.I. Influence of a breakwater on nearby rocky intertidal community structure. Mar. Environ. Res. 2009, 67, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Bulleri, F.; Chapman, M.G. The introduction of coastal infrastructure as a driver of change in marine environments. J. Appl. Ecol. 2010, 47, 26–35. [Google Scholar] [CrossRef]
- Ružić, I.; Jovančević, S.D.; Benac, Č.; Krvavica, N. Assessment of the coastal vulnerability index in an area of complex geological conditions on the krk island, northeast adriatic sea. Geosciences 2019, 9, 219. [Google Scholar] [CrossRef] [Green Version]
- Maiolo, M.; Pantusa, D. Sustainable Water Management Index, SWaM_Index. Cogent Eng. 2019, 6, 1603817. [Google Scholar] [CrossRef]
- Speybroeck, J.; Bonte, D.; Courtens, W.; Gheskiere, T.; Grootaert, P.; Maelfait, J.P.; Mathys, M.; Provoost, S.; Sabbe, K.; Stienen, E.W.M.; et al. Beach nourishment: An ecologically sound coastal defence alternative? A review. Aquat. Conserv. Mar. Freshw. Ecosyst. 2006, 16, 419–435. [Google Scholar] [CrossRef]
- Rakocinski, C.F.; Heard, R.W.; LeCroy, S.E.; McLelland, J.A.; Simons, T. Responses by macrobenthic assemblages to extensive beach restoration at Perdido Key, Florida, U.S.A. J. Coast. Res. 1996, 12, 326–353. [Google Scholar]
- Guidetti, P.; Fabiano, M. The use of lepidochronology to assess the impact of terrigenous discharges on the primary leaf production of the Mediterranean seagrass Posidonia oceanica. Mar. Pollut. Bull. 2000, 40, 449–453. [Google Scholar] [CrossRef]
- Warnken, J.; Mosadeghi, R. Challenges of implementing integrated coastal zone management into local planning policies, a case study of Queensland, Australia. Mar. Policy 2018, 91, 75–84. [Google Scholar]
- Maiolo, M.; Mel, R.; Sinopoli, S. A Simplified Method for an Evaluation of the Effect of Submerged Breakwaters on Wave Damping: The Case Study of Calabaia Beach. J. Mar. Sci. Eng. 2020, 8, 510. [Google Scholar] [CrossRef]
- Maiolo, M.; Versace, P.; Natale, L.; Irish, J.; Pope, J.; Frega, F. A comprehensive study of the tyrrhenian shoreline of the Province of Cosenza. In Proceedings of the Giornate Italiane di Ingegneria Costiera V Edizione (AIPCN 2000), Reggio Calabria, Italy, 11–13 October 2000. [Google Scholar]
- Bossolasco, M. L’Erosione del litorale di Belvedere Marittimo. Geofis. Pura Appl. 1939, 1, 47–51. [Google Scholar]
- Ruíz, J.M.; Marín, A.; Calvo, J.F.; Ramírez-Diaz, L. Interactions between a floodway and coastal constructions in Aguila bay (Southeastern Spain). Ocean Coast. Manag. 1993, 19, 241–262. [Google Scholar]
- Ruiz, J.M.; Romero, J. Effects of disturbances caused by coastal constructions on spatial structure, growth dynamics and photosynthesis of the seagrass Posidonia oceanica. Mar. Pollut. Bull. 2003, 46, 1523–1533. [Google Scholar]
- Bellotti, P.; Caputo, C.; Davoli, L.; Evangelista, S.; Pugliese, F. Coastal protections in Tyrrhenian Calabria (Italy): Morphological and sedimentological feedback on the vulnerable area of belvedere Marittimo. Geogr. Fis. Din. Quat. 2009, 32, 3–14. [Google Scholar]
- De Falco, G.; Molinaroli, E.; Baroli, M.; Bellacicco, S. Grain size and compositional trends of sediments from Posidonia oceanica meadows to beach shore, Sardinia, western Mediterranean. Estuar. Coast. Shelf Sci. 2003, 58, 299–309. [Google Scholar]
- Corenblit, D.; Tabacchi, E.; Steiger, J.; Gurnell, A.M. Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches. Earth Sci. Rev. 2007, 84, 56–86. [Google Scholar]
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.J.; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar]
- Arkema, K.K.; Griffin, R.; Maldonado, S.; Silver, J.; Suckale, J.; Guerry, A.D. Linking social, ecological, and physical science to advance natural and nature-based protection for coastal communities. Ann. N. Y. Acad. Sci. 2017, 1399, 5–26. [Google Scholar]
- Menéndez, P.; Losada, I.J.; Torres-Ortega, S.; Narayan, S.; Beck, M.W. The Global Flood Protection Benefits of Mangroves. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- van Rijn, L.C. Principles of Sedimentation and Erosion Engineering in Rivers, Estuaries and Coastal Seas Including Mathematical Modelling Package; Aqua Publications: Amsterdam, The Netherlands, 2005; ISBN 9080035661. [Google Scholar]
- Yasso, W.E. Plan Geometry of Headland-Bay Beaches. J. Geol. 1965, 73, 702–714. [Google Scholar] [CrossRef]
- Silvester, R. Natural headland control of beaches. Cont. Shelf Res. 1985, 4, 581–596. [Google Scholar] [CrossRef]
- Houston, J.R. Beach-fill design. In Advances in Coastal and Ocean Engineering; Philip, L., Liu, F., Eds.; World Scientific: Singapore, 1996; pp. 199–229. [Google Scholar]
- Dean, R.G. Equilibrium beach profiles: Characteristics and applications. J. Coast. Res. 1991, 7, 53–84. [Google Scholar]
- Kriebel, D.L.; Dean, R.G. Numerical Simulation of Time-Dependent Beach and Dune Erosion. Coast. Eng. 1985, 9, 221–245. [Google Scholar] [CrossRef]
- González, M.; Medina, R.; Losada, M.A. Equilibrium beach profile model for perched beaches. Coast. Eng. 1999, 36, 343–357. [Google Scholar] [CrossRef]
- Sorensen, R.M.; Beil, N.J. Perched beach profile response to wave action. In Proceedings of the 21st International Conference on Coastal Engineering, Malaga, Spain, 20–25 June 1988; pp. 1482–1492. [Google Scholar]
- Munoz-Perez, J.J.; Tejedor, L.; Medina, R. Equilibrium beach profile model for perched beaches. J. Coast. Eng. 1999, 15, 950–957. [Google Scholar]
- de Ruig, J.H.M.; Roelse, P. A feasability study of a perched beach concept in the Netherlands. In Proceedings of the 23rd International Conference on Coastal Engineering, Venice, Italy, 4–9 October 1992; pp. 2581–2598. [Google Scholar]
- Spalding, M.D.; Ruffo, S.; Lacambra, C.; Meliane, I.; Hale, L.Z.; Shepard, C.C.; Beck, M.W. The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards. Ocean Coast. Manag. 2014, 90, 50–57. [Google Scholar] [CrossRef]
- Ferrario, F.; Beck, M.W.; Storlazzi, C.D.; Micheli, F.; Shepard, C.C.; Airoldi, L. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 2014, 5, 3794. [Google Scholar] [CrossRef]
- Narayan, S.; Beck, M.W.; Reguero, B.G.; Losada, I.J.; Van, B.; Lange, M.; Burks-copes, K.A. The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature- Based Defences. PLoS ONE 2016, 11, e0154735. [Google Scholar] [CrossRef] [Green Version]
- Ondiviela, B.; Losada, I.J.; Lara, J.L.; Maza, M.; Galván, C.; Bouma, T.J.; van Belzen, J. The role of seagrasses in coastal protection in a changing climate. Coast. Eng. 2014, 87, 158–168. [Google Scholar] [CrossRef]
- Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.; Keune, H.; Kovacs, E.; et al. The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef] [PubMed]
- Dare, J.L. Alternative Shore Protection Strategies: Innovative Options and Management Issues. Master’s Thesis, College of Oceanic and Atmospheric Sciences, Corvallis, OR, USA, 2003; p. 97333. [Google Scholar]
- Morris, R.L.; Strain, E.M.A.; Konlechner, T.M.; Fest, B.J.; Kennedy, D.M.; Arndt, S.K.; Swearer, S.E. Developing a nature-based coastal defence strategy for Australia. Aust. J. Civ. Eng. 2019, 17, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Boudouresque, C.F.; Pergent, G.; Pergent-Martini, C.; Ruitton, S.; Thibaut, T.; Verlaque, M. The necromass of the Posidonia oceanica seagrass meadow: Fate, role, ecosystem services and vulnerability. Hydrobiologia 2016, 781, 25–42. [Google Scholar] [CrossRef] [Green Version]
- Gobert, S.; Cambridge, M.L.; Velimirov, B.; Pergent, G.; Lepoint, G.; Bouquegneau, J.M.; Dauby, P.; Pergent-Martini, C.; Walker, D.I. Biology of Posidonia. In Seagrasses: Biology, Ecology and Conservation; Springer: Dordrecht, The Netherlands, 2006; pp. 387–408. ISBN 1402029837. [Google Scholar]
- Cantasano, N. Posidonia oceanica per la difesa degli ambienti. In Proceedings of the SOS Dune, Roma, Italy, 23 October 2009; pp. 170–183. [Google Scholar]
- Campagne, C.S.; Salles, J.M.; Boissery, P.; Deter, J. The seagrass Posidonia oceanica: Ecosystem services identification and economic evaluation of goods and benefits. Mar. Pollut. Bull. 2014, 97, 391–400. [Google Scholar] [CrossRef]
- Anderson, M.E.; Smith, J.M. Wave attenuation by flexible, idealized salt marsh vegetation. Coast. Eng. 2014, 83, 82–92. [Google Scholar] [CrossRef]
- Boudouresque, C.F.; Meinesz, A. Découverte de l’herbier de Posidonie; Report in Parc National de Port-Cros; European Union Publ.: Brussels, Belgium, 1982. [Google Scholar]
- Costanza, R.; D’Arge, R.; Groot, R.; Farberk, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Greco, P.; Marconi, G.; Rizzo, V. L’impatto Antropico Sull’erosione Costiera-un Caso Emblematico: La Costa Dell’alto Tirreno Cosentino; CNR-IRPI: Perugia, Italy, 1994; Volume 418. [Google Scholar]
- US Army Engineer Research and Development Center Coastal and Hydraulics Laboratory, Centro Studi di Ingegneria Ambientale di Pavia. Analisi Regionale del Litorale della Provincia di Cosenza; Facoltà di Ingegneria: Cosenza, Italy, 2002. [Google Scholar]
- Regione Calabria—Autorità di Bacino. Interventi A Basso Impatto Ambientale Nella Protezione dei Litorali, Parte Terza, Rapporto Finale, 2010, Lotto Progettuale n.10, Misura 1.4, POR 2004–2006; Regione Calabria—Autorità di Bacino: Regione Calabria, Italy, 2010. [Google Scholar]
- Komen, G.J.; Hasselmann, S.; Hasselmann, K. On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr. 1984, 4, 1271–1285. [Google Scholar] [CrossRef]
- Barstow, S.F.; Athanassoulis, M.; Cavaleri, L. EUROWAVES: Integration of data from many sources in a user-friendly software package for calculation of wave statistics in European coastal waters. In Proceedings of the Oceanology International 2000 Conference, Brighton, UK, 7–10 March 2000; pp. 269–277. [Google Scholar]
- Belibassakis, K.A.; Mediterranean, E. Offshore to Nearshore Transformation of Wave Conditions for Exploitation by Nearshore/Coastal Wave Energy Systems. 2012, pp. 1–6. Available online: https://okeanos-dspace.hcmr.gr/bitstream/handle/123456789/1274/Belibassakis_Eidiki_Synedria_HCMR_2012.pdf?sequence=1 (accessed on 18 September 2020).
- Sicilian, J.M.; Hirt, C.W.; Harper, R.P. FLOW-3D: Computational Modeling Power for Scientists and Engineers; Flow Science Report, FSI-87-QO-l; Flow Science, Inc.: Santa Fe, NM, USA, 1987. [Google Scholar]
- Faraci, C.; Scandura, P.; Foti, E. Evolution of a perched nourished beach: Comparison between field data and numerical results. In Proceedings of the 34th Conference on Coastal Engineering, Seoul, Korea, 15–20 June 2014. [Google Scholar]
- Crain, C.M.; Halpern, B.S.; Beck, M.W.; Kappel, C.V. Understanding and managing human threats to the coastal marine environment. Ann. N. Y. Acad. Sci. 2009, 1162, 39–62. [Google Scholar] [CrossRef]
- Hughes, T.P.; Bellwood, D.R.; Folke, C.; Steneck, R.S.; Wilson, J. New paradigms for supporting the resilience of marine ecosystems. Trends Ecol. Evol. 2005, 20, 380–386. [Google Scholar] [CrossRef]
- Cantasano, N. Il Nostro Mare, La Flora; Doss. W.W.F. Calabr.; World Wildlife Fund: Calabria, Italy, 2008. [Google Scholar]
- Cantasano, N. Management Plan for the Beach-Cast Seagrass in Calabria. In Marine Research at CNR; CNR, Dipartimento Terra e ambiente: Roma, Italy, 2011; pp. 1173–1182. [Google Scholar]
- Larkum, A.W.D.; Orth, R.J.; Duarte, C. Seagrasses: Biology, Ecology and Conservation; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Dubi, A.M.; Torum, A. Wave damping by kelp vegetation. In Proceedings of the 24th International Conference on Coastal Engineering, Kobe, Japan, 23–28 October 1994; pp. 142–156. [Google Scholar]
- Molinier, R.; Picard, J. Recherches sur les Herbiers de Phanérogames Marines du litToral Méditerranéen Français; Masson: Paris, France, 1952. [Google Scholar]
- Den Hartog, C. Structure, function, and classification in seagrass communities. In Seagrass Ecosystems: A Scientific Perspective; McRoy, C.P., Helfferich, C., Eds.; Marcel Dekker: New York, NY, USA, 1977; pp. 89–121. [Google Scholar]
- Mazzella, L.; Scipione, M.B.; Gambi, M.C.; Buia, M.C.; Lorenti, M.; Zupo, V.; Cancemi, G. The Mediterranean seagrass Posidonia oceanica and Cymodocea nodosa. In A Comparative Overview, Proceedings of the First International Conference on the Mediterranean Coastal Environment, Antalya, Turkey, 2–5 November 1993; MEDCOAST: Wales, Australia, 1993; pp. 103–116. [Google Scholar]
- Bellan-Santini, D.; Lacaze, J.-C.; Poizat, C. Les Biocénoses Marine et Littorales de Méditerranée, Synthèse, Menaces et Perspectives; Muséum National d’Histoire Naturelle: Paris, France, 1994; Volume 19, ISBN 2-86515-091-7. [Google Scholar]
- Ballesteros, E. Production of seaweeds in Northwestern Mediterranean marine communities: Its relation with environmental factors. Sci. Mar. 1989, 53, 357–364. [Google Scholar]
- Alcoverro, T.; Duarte, C.M.; Romero, J. Annual growth dynamics of Posidonia oceanica: Contribution of large-scale versus local factors to seasonality. Mar. Ecol. Prog. Ser. 1995, 120, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Vidondo, B. Duarte Cm Seasonal growth of Codium bursa, a slow-growing Mediterranean macroalga: In situ experimental evidence of nutrient limitation. Mar. Ecol. Prog. Ser. 1995, 123, 185–192. [Google Scholar] [CrossRef]
- Balestri, E.; Gobert, S.; Lepoint, G.; Lardicci, C. Seed nutrient content and nutritional status of Posidonia oceanica seedlings in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 2009, 388, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Cardilio, M.; Nicastro, S.; Rende, F.; Innocenti, A.M. Nitric oxide effect in transplanted cuttings of Posidonia oceanica (L.) delile. In Proceedings of the 3rd Mediterranean Symposium on Marine Vegetation, Marseille, France, 27–29 March 2007; pp. 28–33. [Google Scholar]
- Kai, D.; Zhang, K.; Liow, S.S.; Loh, J.X. New Dual Functional PHB-Grafted Lignin Copolymer: Synthesis, Mechanical Properties, and Biocompatibility Studies. ACS Appl. Bio Mater. 2019, 2, 127–134. [Google Scholar] [CrossRef]
- Stratigaki, V.; Manca, E.; Prinos, P.; Losada, I.J.; Lara, J.L.; Sclavo, M.; Sánchez-Arcilla, A. Large-scale experiments on wave propagation over Posidonia oceanica. J. Hydraul. Res. 2011, 49, 31–43. [Google Scholar] [CrossRef]
- Vuik, V.; Jonkman, S.N.; Borsje, B.W.; Suzuki, T. Nature-based flood protection: The efficiency of vegetated foreshores for reducing wave loads on coastal dikes. Coast. Eng. 2016, 116, 42–56. [Google Scholar] [CrossRef] [Green Version]
- Vu, M.T.; Lacroix, Y.; Nguyen, V.T. Investigating the impacts of the regression of Posidonia oceanica on hydrodynamics and sediment transport in Giens Gulf. Ocean Eng. 2017, 146, 70–86. [Google Scholar] [CrossRef]
- Montefalcone, M.; Morri, C.; Peirano, A.; Albertelli, G.; Bianchi, C.N. Substitution and phase-shift in Posidonia oceanica meadows of NW Mediterranean Sea. Estuarine. Coast. Shelf Sci. 2007, 75, 63–71. [Google Scholar] [CrossRef]
- De Villèle, X.; Verlaque, M. Changes and degradation in a Posidonia oceanica bed invaded by the introduced tropical alga Caulerpa taxifolia in the north western Mediterranean. Bot. Mar. 1995, 38, 79–87. [Google Scholar]
Sample (N°) | Depth [m] | ϒs [kN/m3] | Gravel [%] | Sand [%] | Silt [%] | Clay [%] | d50 [mm] |
---|---|---|---|---|---|---|---|
2 | +1 | 25.70 | 52 | 48 | 0 | 0 | 3 |
4 | 0 | 25.69 | 23 | 77 | 0 | 0 | 1.1 |
6 | −2 | 25.59 | 58 | 42 | 0 | 0 | 7.4 |
8 | −4 | 25.65 | 0 | 100 | 0 | 0 | 0.48 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maiolo, M.; Mel, R.A.; Sinopoli, S. A Stepwise Approach to Beach Restoration at Calabaia Beach. Water 2020, 12, 2677. https://doi.org/10.3390/w12102677
Maiolo M, Mel RA, Sinopoli S. A Stepwise Approach to Beach Restoration at Calabaia Beach. Water. 2020; 12(10):2677. https://doi.org/10.3390/w12102677
Chicago/Turabian StyleMaiolo, Mario, Riccardo Alvise Mel, and Salvatore Sinopoli. 2020. "A Stepwise Approach to Beach Restoration at Calabaia Beach" Water 12, no. 10: 2677. https://doi.org/10.3390/w12102677