Contemporary Snow Changes in the Karakoram Region Attributed to Improved MODIS Data between 2003 and 2018
Abstract
:1. Introduction
2. Study Area
3. Data
3.1. MODIS 8-Day Maximum Snow Cover Product
3.2. Improved MODIS 8-Day Maximum Snow Cover Product
3.3. Elevation Data
4. Methods
4.1. Snow Cover Area Calculation
4.2. Snowline Altitude Estimation
4.3. Snow Cover and Snowline Trend Analysis
5. Results
5.1. Interannual Variability in SCA
5.2. Intra-Annual SCA Variability
5.3. Interannual Variability in Snowline Altitude
5.4. Intra-Annual Variability in Snowline Altitude
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shean, D.E.; Bhushan, S.; Montesano, P.M.; Rounce, D.; Arendt, A.; Osmanoglu, B. A systematic, regional assessment of High-Mountain Asia glacier mass balance. Front. Earth Sci. 2019, 7, 363. [Google Scholar] [CrossRef] [Green Version]
- Scott, C.A.; Zhang, F.; Mukherji, A.; Immerzeel, W.; Mustafa, D.; Bharati, L. Water in the Hindu Kush Himalaya. In The Hindu Kush Himalaya Assessment; Springer: Cham, Switzerland, 2019; pp. 257–299. [Google Scholar]
- Immerzeel, W.W.; Droogers, P.; De Jong, S.M.; Bierkens, M.F.P. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ. 2009, 113, 40–49. [Google Scholar] [CrossRef]
- Smith, T.; Bookhagen, B. Changes in Seasonal Snow Water Equivalent Distribution in High Mountain Asia (1987 to 2009). Available online: https://advances.sciencemag.org/content/4/1/e1701550 (accessed on 14 September 2020).
- Saloranta, T.M.; Thapa, A.; Kirkham, J.; Koch, I.; Melvold, K.; Stigter, E.; Litt, M.; Møen, K. A model setup for mapping snow conditions in High-Mountain Himalaya. Front. Earth Sci. 2019, 7, 129. [Google Scholar] [CrossRef] [Green Version]
- Dietz, A.J.; Kuenzer, C.; Gessner, U.; Dech, S. Remote sensing of snow—A review of available methods. Int. J. Remote Sens. 2012, 33, 4094–4134. [Google Scholar] [CrossRef]
- Shrestha, M.; Koike, T.; Hirabayashi, Y.; Xue, Y.; Wang, L.; Rasul, G.; Ahmad, B. Integrated simulation of snow and glacier melt in water and energy balance-based, distributed hydrological modeling framework at Hunza River Basin of Pakistan Karakoram region. J. Geophys. Res. Atmos. 2015, 120, 4889–4919. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, S.; Tian, L. Changes in the ablation zones of glaciers in the western Himalaya and the Karakoram between 1972 and 2015. Remote Sens. Environ. 2016, 187, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, S.; Tian, L.; Nüsser, M. No significant mass loss in the glaciers of Astore Basin (North-Western Himalaya), between 1999 and 2016. J. Glaciol. 2019, 65, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Menzel, L. Improving the accuracy of MODIS 8-day snow products with in situ temperature and precipitation data. J. Hydrol. 2016, 534, 466–477. [Google Scholar] [CrossRef]
- Muhammad, S.; Thapa, A. An improved Terra–Aqua MODIS snow cover and Randolph Glacier Inventory 6.0 combined product (MOYDGL06*) for high-mountain Asia between 2002 and 2018. Earth Syst. Sci. Data 2020, 12, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Parajka, J.; Blöschl, G. Spatio-temporal combination of MODIS images–potential for snow cover mapping. Water Resour. Res. 2008, 44, 1–13. [Google Scholar] [CrossRef]
- Krajčí, P.; Holko, L.; Perdigão, R.A.; Parajka, J. Estimation of regional snowline elevation (RSLE) from MODIS images for seasonally snow covered mountain basins. J. Hydrol. 2014, 519, 1769–1778. [Google Scholar] [CrossRef]
- Li, X.; Jing, Y.; Shen, H.; Zhang, L. The recent developments in cloud removal approaches of MODIS snow cover product. Hydrol. Earth Syst. Sci. 2019, 23, 2401–2416. [Google Scholar] [CrossRef] [Green Version]
- Consortium, R.G.I.; Inventory, R.G. A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space, Colorado, USA. Digit. Media 2017, 10. [Google Scholar] [CrossRef]
- Muhammad, S.; Thapa, A. Improved MODIS TERRA/AQUA composite Snow and glacier (RGI6.0) data for High Mountain Asia (2002–2018). PANGAEA 2019. [Google Scholar] [CrossRef]
- Tahir, A.A.; Chevallier, P.; Arnaud, Y.; Neppel, L.; Ahmad, B. Modeling snowmelt-runoff under climate scenarios in the Hunza River basin, Karakoram Range, Northern Pakistan. J. Hydrol. 2011, 409, 104–117. [Google Scholar] [CrossRef]
- Tahir, A.A.; Chevallier, P.; Arnaud, Y.; Ashraf, M.; Bhatti, M.T. Snow cover trend and hydrological characteristics of the Astore River basin (Western Himalayas) and its comparison to the Hunza basin (Karakoram region). Sci. Total Environ. 2015, 505, 748–761. [Google Scholar] [CrossRef]
- Bibi, L.; Khan, A.A.; Khan, G.; Ali, K.; ul Hassan, S.N.; Qureshi, J.; Jan, I.U. Snow cover trend analysis using modis snow products: A case of Shayok river basin in Northern Pakistan. J. Himal. Earth Sci. 2019, 52, 145. [Google Scholar]
- Hussain, D.; Kuo, C.Y.; Hameed, A.; Tseng, K.H.; Jan, B.; Abbas, N.; Kao, H.C.; Lan, W.H.; Imani, M. Spaceborne satellite for snow cover and hydrological characteristic of the Gilgit river basin, Hindukush–Karakoram mountains, Pakistan. Sensors 2019, 19, 531. [Google Scholar] [CrossRef] [Green Version]
- Racoviteanu, A.E.; Rittger, K.; Armstrong, R. An automated approach for estimating snowline altitudes in the Karakoram and eastern Himalaya from remote sensing. Front. Earth Sci. 2019, 7, 220. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Naz, B.S.; Bowling, L.C. Separating snow, clean and debris covered ice in the Upper Indus Basin, Hindukush-Karakoram-Himalayas, using Landsat images between 1998 and 2002. J. Hydrol. 2015, 521, 46–64. [Google Scholar] [CrossRef] [Green Version]
- Tahir, A.A.; Adamowski, J.F.; Chevallier, P.; Haq, A.U.; Terzago, S. Comparative assessment of spatiotemporal snow cover changes and hydrological behavior of the Gilgit, Astore and Hunza River basins (Hindukush–Karakoram–Himalaya region, Pakistan). Meteorol. Atmos. Phys. 2016, 128, 793–811. [Google Scholar] [CrossRef]
- Shrestha, S.; Nepal, S. Water Balance Assessment under Different Glacier Coverage Scenarios in the Hunza Basin. Water 2019, 11, 1124. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. MODIS/Terra Snow Cover Daily L3 Global 500m Grid; Version 6; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2016.
- Muhammad, S.; Tian, L.; Khan, A. Early twenty-first century glacier mass losses in the Indus Basin constrained by density assumptions. J. Hydrol. 2019, 574, 467–475. [Google Scholar] [CrossRef]
- Hakeem, S.A. Remote sensing data application to monitor snow cover variation and hydrological regime in a poorly gauged river catchment—Northern Pakistan. Int. J. Geosci. 2014, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Young, G.J.; Hewitt, K. Hydrology research in the upper Indus basin, Karakoram Himalaya, Pakistan. IAHS Publ. 1990, 190, 139–152. [Google Scholar]
- Young, G.J.; Hewitt, K. Glaciohydrological features of the Karakoram Himalaya: Measurement possibilities and constraints. IAHS Publ. 1993, 218, 273–284. [Google Scholar]
- Hewitt, K. The Karakoram anomaly? Glacier expansion and the ‘elevation effect,’Karakoram Himalaya. Mt. Res. Dev. 2005, 25, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, K. Tributary glacier surges: An exceptional concentration at Panmah Glacier, Karakoram Himalaya. J. Glaciol. 2007, 53, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Tahir, A.A.; Hakeem, S.A.; Hu, T.; Hayat, H.; Yasir, M. Simulation of snowmelt-runoff under climate change scenarios in a data-scarce mountain environment. Int. J. Digit. Earth 2019, 12, 910–930. [Google Scholar] [CrossRef]
- Unesco. Seasonal Snow Cover: A Guide for Measurement, Compilation and Assemblage of Data; UNESCO/IASH/WMO, 1970. Available online: https://books.google.com.np/books?id=tMaEseiBwSIC (accessed on 14 September 2020).
- Lei, L.; Zeng, Z.; Zhang, B. Method for Detecting Snow Lines From MODIS Data and Assessment of Changes in the Nianqingtanglha Mountains of the Tibet Plateau. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 769–776. [Google Scholar] [CrossRef]
- Ghadimi, M.; Moghbel, M.; Gholamnia, M.; Pellikka, P. Snow line elevation variability under the effect of climate variations in the Zagros Mountains: Case study of Oshtorankooh. Environ. Earth Sci. 2019, 78, 348. [Google Scholar] [CrossRef]
- Parajka, J.; Bezak, N.; Burkhart, J.; Hauksson, B.; Holko, L.; Hundecha, Y.; Jenicek, M.; Krajčí, P.; Mangini, W.; Molnar, P.; et al. Modis Snowline Elevation Changes During Snowmelt Runoff Events in Europe. J. Hydrol. Hydromech. 2019, 67, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Wang, X.; Wang, J.; Wang, X.; Wei, J. Investigating Spatiotemporal Patterns of Snowline Altitude at the end of Melting Season in High Mountain Asia, Using Cloud-Free MODIS Snow Cover Product, 2001–2016. Available online: https://d-nb.info/1188823310/34 (accessed on 14 September 2020).
- Hüsler, F.; Jonas, T.; Riffler, M.; Musial, J.P.; Wunderle, S. A satellite-based snow cover climatology (1985–2011) for the European Alps derived from AVHRR data. Cryosphere 2014, 8, 73–90. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Dietz, A.J.; Kuenzer, C. Deriving Regional Snow Line Dynamics during the Ablation Seasons 1984–2018 in European Mountains. Remote Sens. 2019, 11, 933. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.K.; Thayyen, R.J.; Jain, S.K. Snow cover change assessment in the upper Bhagirathi basin using an enhanced cloud removal algorithm. Geocarto Int. 2019, 1–24. [Google Scholar] [CrossRef]
- Redpath, T.A.N.; Sirguey, P.; Cullen, N.J. Characterising spatio-temporal variability in seasonal snow cover at a regional scale from MODIS data: The Clutha Catchment, New Zealand. Hydrol. Earth Syst. Sci. 2019, 23, 3189–3217. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, S.; Edwards, D.R. Long-term trend analysis of precipitation and air temperature for Kentucky, United States. Climate 2016, 4, 10. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, H.B. Non-Parametric Tests against Trend. Econmetrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin Book Series; Oxford University Press: London, UK, 1975; p. 202. [Google Scholar]
- Gurung, D.R.; Maharjan, S.B.; Shrestha, A.B.; Shrestha, M.S.; Bajracharya, S.R.; Murthy, M.S.R. Climate and topographic controls on snow cover dynamics in the Hindu Kush Himalaya. Int. J. Climatol. 2017, 37, 3873–3882. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Pieczonka, T.; Mukherjee, K.; Shea, J.M. Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. Cryosphere 2017, 11, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, X.; Xiao, P. Impact of sensor zenith angle on MOD10A1 data reliability and modification of snow cover data for the Tarim River Basin. Remote Sens. 2016, 8, 750. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.; Parol, F.; Riedi, J.; Cornet, C.; Thieuleux, F. Examination of POLDER/PARASOL and MODIS/Aqua cloud fractions and properties representativeness. J. Clim. 2011, 24, 4435–4450. [Google Scholar] [CrossRef]
- Zhang, T.; Wooster, M.J.; Xu, W. Approaches for synergistically exploiting VIIRS I-and M-Band data in regional active fire detection and FRP assessment: A demonstration with respect to agricultural residue burning in Eastern China. Remote Sens. Environ. 2017, 198, 407–424. [Google Scholar] [CrossRef] [Green Version]
- Hasson, S.; Lucarini, V.; Khan, M.R.; Petitta, M.; Bolch, T.; Gioli, G. Early 21st century snow cover state over the western river basins of the Indus River system. Hydrol. Earth Syst. Sci. 2014, 18, 4077–4100. [Google Scholar] [CrossRef] [Green Version]
- Fowler, H.J.; Archer, D.R. Conflicting Signals of Climatic Change in the Upper Indus Basin. J. Clim. 2006, 19, 4276–4293. [Google Scholar] [CrossRef] [Green Version]
- Khattak, M.S.; Babel, M.S.; Sharif, M. Hydro-meteorological trends in the upper Indus River basin in Pakistan. Clim. Res. 2011, 46, 103–119. [Google Scholar] [CrossRef]
- Latif, Y.; Yaoming, M.; Yaseen, M.; Muhammad, S.; Wazir, M.A. Spatial analysis of temperature time series over the Upper Indus Basin (UIB) Pakistan. Theor. Appl. Climatol. 2020, 139, 741–758. [Google Scholar] [CrossRef] [Green Version]
- Huss, M.; Hock, R. A new model for global glacier change and sea-level rise. Front. Earth Sci. 2015, 3, 54. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, B.; Khan, A. Altitudinal variations of temperature, equilibrium line altitude, and accumulation-area ratio in Upper Indus Basin. Hydrol. Res. 2017, 48, 214–230. [Google Scholar] [CrossRef] [Green Version]
- Kääb, A.; Treichler, D.; Nuth, C.; Berthier, E. Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere 2015, 9, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nature Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, B.; Khan, A. Rising river flows and glacial mass balance in central Karakoram. J. Hydrol. 2014, 513, 192–203. [Google Scholar] [CrossRef]
- Muhammad, S.; Tian, L. Mass balance and a glacier surge of Guliya ice cap in the western Kunlun Shan between 2005 and 2015. Remote Sens. Environ. 2020, 244, 111832. [Google Scholar] [CrossRef]
Domain | Karakoram | Hunza | Shigar | Shyok | Source |
---|---|---|---|---|---|
Area (km2) | 104,010 | 13,745 | 7050 | 33,419 | RGI06 |
Min. elevation (m a.s.l.) | 1236 | 1405 | 2169 | 2274 | HydroSHED DEM |
Mean elevation (m a.s.l.) | 4709 | 4446 | 4504 | 5043 | HydroSHED DEM |
Max. elevation (m a.s.l.) | 7535 | 7402 | 7535 | 7464 | HydroSHED DEM |
Glaciated area (km2) | 22,862 | 4262 | 2985 | 7313 | RGI06 |
Area/Product | MYD10A2 Original | MYD10A2 20% Threshold | MOYDGL06* | MOD10A2 20% Threshold | MOD10A2 Original |
---|---|---|---|---|---|
Karakoram | 61 ± 2 | 67 ± 2 | 65 ± 3 | 64 ± 2 | 61 ± 2 |
Hunza | 69 ± 2 | 78 ± 1 | 77 ± 2 | 75 ± 2 | 70 ± 3 |
Shigar | 61 ± 4 | 76 ± 2 | 77 ± 2 | 74 ± 2 | 66 ± 3 |
Shyok | 59 ± 3 | 65 ± 2 | 64 ± 3 | 62 ± 3 | 59 ± 3 |
Area/Product | MYD10A2 Original | MYD10A2 20% Threshold | MOYDGL06* | MOD10A2 20% Threshold | MOD10A2 Original |
---|---|---|---|---|---|
Karakoram | −0.42 | −0.19 | −0.13 | −0.14 | 0.04 |
Hunza | −0.03 | −0.08 | −0.1 | −0.16 | 0.29 |
Shigar | −0.28 | −0.09 | −0.08 | −0.14 | 0.24 |
Shyok | −0.41 | −0.08 | −0.05 | −0.13 | 0.09 |
Area/Product | MYD10A2 Original | MYD10A2 20% Threshold | MOYDGL06* | MOD10A2 20% Threshold | MOD10A2 Original |
---|---|---|---|---|---|
Karakoram | 3652 ± 114 | 3807 ± 91 | 3991 ± 148 | 3968 ± 112 | 3817 ± 146 |
Hunza | 3147 ± 89 | 3260 ± 75 | 3593 ± 100 | 3511 ± 110 | 3391 ± 120 |
Shigar | 3446 ± 100 | 3632 ± 95 | 3651 ± 102 | 3692 ± 76 | 3524 ± 101 |
Shyok | 4149 ± 138 | 4335 ± 114 | 4486 ± 143 | 4513 ± 120 | 4332 ± 152 |
Area/Product | MYD10A2 Original | MYD10A2 20% Threshold | MOYDGL06* | MOD10A2 20% Threshold | MOD10A2 Original |
---|---|---|---|---|---|
Karakoram | 5.95 | −0.19 | 8.03 | 0.42 | 10.27 |
Hunza | −0.83 | −0.7 | 3.91 | 1.4 | 8.15 |
Shigar | −1.04 | −2.28 | 2.15 | 0.47 | 4.57 |
Shyok | −6 | −1.99 | 4.29 | 1.39 | 1.16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thapa, A.; Muhammad, S. Contemporary Snow Changes in the Karakoram Region Attributed to Improved MODIS Data between 2003 and 2018. Water 2020, 12, 2681. https://doi.org/10.3390/w12102681
Thapa A, Muhammad S. Contemporary Snow Changes in the Karakoram Region Attributed to Improved MODIS Data between 2003 and 2018. Water. 2020; 12(10):2681. https://doi.org/10.3390/w12102681
Chicago/Turabian StyleThapa, Amrit, and Sher Muhammad. 2020. "Contemporary Snow Changes in the Karakoram Region Attributed to Improved MODIS Data between 2003 and 2018" Water 12, no. 10: 2681. https://doi.org/10.3390/w12102681
APA StyleThapa, A., & Muhammad, S. (2020). Contemporary Snow Changes in the Karakoram Region Attributed to Improved MODIS Data between 2003 and 2018. Water, 12(10), 2681. https://doi.org/10.3390/w12102681