Anthropogenic Modifications and River Ecosystem Services: A Landscape Perspective
Abstract
:1. Introduction
2. Review Approach
2.1. Literature Search
2.2. Assessment Criteria
3. Linking Ecosystem Services with River Landscape Features
4. Impact on Ecosystem Services
4.1. Inter-Basin Water Transfer
4.2. Changes in Land-Use Patterns
4.3. Subsurface Modification and Tunneling Work
4.4. Groundwater Abstraction
4.5. Damming
4.6. Stream Channelization
4.7. Sand Mining
5. The Ecological and Socio-Cultural aspect of Ecosystem Services and Human Well Being
6. Emergent Challenges for Ecosystem Service Valuation
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hand, B.K.; Flint, C.G.; Frissell, C.A.; Muhlfeld, C.C.; Devlin, S.P.; Kennedy, B.P.; Crabtree, R.L.; McKee, W.A.; Luikart, G.; Stanford, J.A. A social–ecological perspective for riverscape management in the Columbia River Basin. Front. Ecol. Environ. 2018, 16, S23–S33. [Google Scholar] [CrossRef] [Green Version]
- Dunham, J.B.; Angermeier, P.L.; Crausbay, S.D.; Cravens, A.E.; Gosnell, H.; McEvoy, J.; Moritz, M.A.; Raheem, N.; Sanford, T. Rivers are social–ecological systems: Time to integrate human dimensions into riverscape ecology and management. Wiley Interdiscip. Rev. Water 2018, 5, e1291. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555. [Google Scholar] [CrossRef] [PubMed]
- Stewardson, M.; Acreman, M.; Costelloe, J.; Fletcher, T.; Fowler, K.J.; Horne, A.; Liu, G.; McClain, M.; Peel, M. Understanding hydrological alteration. In Water for the Environment: From Policy and Science to Implementation and Management; Horne, A.C., Webb, J.A., Stewardson, M.J., Richter, B., Acre-man, M., Eds.; Elsevier: Cambridge, MA, USA, 2017; pp. 37–64. [Google Scholar]
- Bridgewater, P.; Guarino, E.; Thompson, R. Hydrology in the Anthropocene. Encycl. Anthr. 2017, 2, 87. [Google Scholar]
- Postel, S.; Richter, B. Rivers for Life: Managing Water for People and Nature; Island Press: Washington, DC, USA, 2012. [Google Scholar]
- Datry, T.; Boulton, A.J.; Bonada, N.; Fritz, K.; Leigh, C.; Sauquet, E.; Tockner, K.; Hugueny, B.; Dahm, C.N. Flow intermittence and ecosystem services in rivers of the Anthropocene. J. Appl. Ecol. 2018, 55, 353–364. [Google Scholar] [CrossRef] [Green Version]
- Grizzetti, B.; Lanzanova, D.; Liquete, C.; Reynaud, A.; Cardoso, A. Assessing water ecosystem services for water resource management. Environ. Sci. Policy 2016, 61, 194–203. [Google Scholar] [CrossRef]
- Roobavannan, M.; Kandasamy, J.; Pande, S.; Vigneswaran, S.; Sivapalan, M. Allocating environmental water and impact on basin unemployment: Role of a diversified economy. Ecol. Econ. 2017, 136, 178–188. [Google Scholar] [CrossRef] [Green Version]
- Poff, N.; Allan, J.; Bain, M.; Karr, J.; Prestegaard, K.; Richter, B.; Sparks, R.; Stromberg, J. The natural flow regime: A paradigm for conservation of riverine ecosystems. Bioscience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Rosenberg, D.M.; McCully, P.; Pringle, C.M. Global-scale environmental effects of hydrological alterations: Introduction. BioScience 2000, 50, 746–751. [Google Scholar] [CrossRef] [Green Version]
- McCully, P. Silenced Rivers: The Ecology and Politics of Large Dams; Zed Books: New York, NY, USA, 1996. [Google Scholar]
- RenÖFÄLt, B.M.; Jansson, R.; Nilsson, C. Effects of hydropower generation and opportunities for environmental flow management in Swedish riverine ecosystems. Freshw. Biol. 2010, 55, 49–67. [Google Scholar] [CrossRef]
- Kanade, R.; John, R. Topographical influence on recent deforestation and degradation in the Sikkim Himalaya in India; Implications for conservation of East Himalayan broadleaf forest. Appl. Geogr. 2018, 92, 85–93. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, R.; Sharma, K. Water resources of India. Curr. Sci. 2005, 89, 794–811. [Google Scholar]
- Dang, T.D.; Cochrane, T.A.; Arias, M.E.; Van, P.D.T.; de Vries, T.T. Hydrological alterations from water infrastructure development in the Mekong floodplains. Hydrol. Process. 2016, 30, 3824–3838. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Z.; Shi, P.; Singh, V.P.; Gu, X. Evaluation of ecological instream flow considering hydrological alterations in the Yellow River basin, China. Glob. Planet. Chang. 2018, 160, 61–74. [Google Scholar] [CrossRef]
- De Girolamo, A.; Lo Porto, A.; Pappagallo, G.; Tzoraki, O.; Gallart, F. The hydrological status concept: Application at a temporary river (Candelaro, Italy). River Res. Appl. 2015, 31, 892–903. [Google Scholar] [CrossRef]
- Gandhi, A. Developing compliance and resistance: The state, transnational social movements and tribal peoples contesting India’s Narmada project. Glob. Netw. 2003, 3, 481–495. [Google Scholar] [CrossRef]
- Gunton, R.M.; van Asperen, E.N.; Basden, A.; Bookless, D.; Araya, Y.; Hanson, D.R.; Goddard, M.A.; Otieno, G.; Jones, G.O. Beyond ecosystem services: Valuing the invaluable. Trends Ecol. Evol. 2017, 32, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Rockström, J.; Gordon, L.; Folke, C.; Falkenmark, M.; Engwall, M. Linkages among water vapor flows, food production, and terrestrial ecosystem services. Conserv. Ecol. 1999, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Guswa, A.J.; Brauman, K.A.; Brown, C.; Hamel, P.; Keeler, B.L.; Sayre, S.S. Ecosystem services: Challenges and opportunities for hydrologic modeling to support decision making. Water Resour. Res. 2014, 50, 4535–4544. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Maes, J.; Liquete, C.; Teller, A.; Erhard, M.; Paracchini, M.L.; Barredo, J.I.; Grizzetti, B.; Cardoso, A.; Somma, F.; Petersen, J.E.; et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 2016, 17, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Hynes, H. The stream and its valley: With 4 figures and 2 tables in the text. Int. Ver. Theor. Und Angew. Limnol. Verhandlungen 1975, 19, 1–15. [Google Scholar] [CrossRef]
- Frissell, C.A.; Liss, W.J.; Warren, C.E.; Hurley, M.D. A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environ. Manag. 1986, 10, 199–214. [Google Scholar] [CrossRef]
- Allan, J.D.; Castillo, M.M. Stream Ecology: Structure and Function of Running Waters; Springer Science & Business Media: Berlin/Heidelberg, Germany; Chapman and Hall: London, UK, 2007. [Google Scholar]
- Tomscha, S.A.; Gergel, S.E.; Tomlinson, M.J. The spatial organization of ecosystem services in river-floodplains. Ecosphere 2017, 8, e01728. [Google Scholar] [CrossRef]
- Gopal, B. A conceptual framework for environmental flows assessment based on ecosystem services and their economic valuation. Ecosyst. Serv. 2016, 21, 53–58. [Google Scholar] [CrossRef]
- Caylor, K.K.; Manfreda, S.; Rodriguez-Iturbe, I. On the coupled geomorphological and ecohydrological organization of river basins. Adv. Water Resour. 2005, 28, 69–86. [Google Scholar] [CrossRef]
- Savenije, H. HESS Opinions “Topography driven conceptual modelling (FLEX-Topo)”. Hydrol. Earth Syst. Sci. 2010, 14, 2681–2692. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Li, F.; Gao, H.; Zhou, C.; Zhang, X. The impact of land-use change on water-related ecosystem services: A study of the Guishui River Basin, Beijing, China. J. Clean. Prod. 2017, 163, S148–S155. [Google Scholar] [CrossRef]
- Winter, T.C. The concept of hydrologic landscapes 1. J. Am. Water Resour. Assoc. 2001, 37, 335–349. [Google Scholar] [CrossRef]
- Thoms, M.; Piégay, H.; Parsons, M. What do you mean, ‘resilient geomorphic systems’? Geomorphology 2018, 305, 8–19. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; Devito, K.J.; Curry, R.A. The influence of landscape characteristics on the spatial variability of river temperatures. Catena 2019, 177, 70–83. [Google Scholar] [CrossRef]
- Grabowski, R.C.; Surian, N.; Gurnell, A.M. Characterizing geomorphological change to support sustainable river restoration and management. Wiley Interdiscip. Rev. Water 2014, 1, 483–512. [Google Scholar] [CrossRef]
- Dollar, E.; James, C.; Rogers, K.; Thoms, M. A framework for interdisciplinary understanding of rivers as ecosystems. Geomorphology 2007, 89, 147–162. [Google Scholar] [CrossRef]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The river continuum concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Ward, J. The four-dimensional nature of lotic ecosystems. J. N. Am. Benthol. Soc. 1989, 8, 2–8. [Google Scholar] [CrossRef]
- Thorp, J.H.; Thoms, M.C.; Delong, M.D. The Riverine Ecosystem Synthesis: Toward Conceptual Cohesiveness in River Science; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Thorp, J.H. Metamorphosis in river ecology: From reaches to macrosystems. Freshw. Biol. 2014, 59, 200–210. [Google Scholar] [CrossRef]
- Thorp, J.H.; Thoms, M.C.; Delong, M.D. The riverine ecosystem synthesis: Biocomplexity in river networks across space and time. River Res. Appl. 2006, 22, 123–147. [Google Scholar] [CrossRef]
- Grabowski, R.C.; Gurnell, A. Hydrogeomorphology—Ecology interactions in river systems. River Res. Appl. 2016, 32, 139–141. [Google Scholar] [CrossRef] [Green Version]
- Keele, V.; Gilvear, D.; Large, A.; Tree, A.; Boon, P. A new method for assessing river ecosystem services and its application to rivers in Scotland with and without nature conservation designations. River Res. Appl. 2019, 35, 1338–1358. [Google Scholar] [CrossRef]
- Falkenmark, M.; Lannerstad, M. Consumptive water use to feed humanity? Curing a blind spot. Hydrol. Earth Syst. Sci. Discuss. 2004, 1, 7–40. [Google Scholar] [CrossRef]
- Rockström, J.; Karlberg, L.; Wani, S.P.; Barron, J.; Hatibu, N.; Oweis, T.; Bruggeman, A.; Farahani, J.; Qiang, Z. Managing water in rainfed agriculture—The need for a paradigm shift. Agric. Water Manag. 2010, 97, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; He, D.; Wang, H. Environmental consequences of damming the mainstream Lancang-Mekong River: A review. Earth Sci. Rev. 2015, 146, 77–91. [Google Scholar] [CrossRef]
- Nilsson, C.; Berggren, K. Alterations of riparian ecosystems caused by river regulation: Dam operations have caused global-scale ecological changes in riparian ecosystems. How to protect river environments and human needs of rivers remains one of the most important questions of our time. BioScience 2000, 50, 783–792. [Google Scholar]
- Kirchherr, J.; Pohlner, H.; Charles, K.J. Cleaning up the big muddy: A meta-synthesis of the research on the social impact of dams. Environ. Impact Assess. Rev. 2016, 60, 115–125. [Google Scholar] [CrossRef]
- Ghassemi, F.; White, I. Inter-Basin Water Transfer: Case Studies from Australia, United States, Canada, China and India; Cambridge University Press: New York, NY, USA, 2007; p. 462. [Google Scholar]
- Iyer, R.R. Interlinking of Rivers A Plea to the Govern-ment. Econ. Political Wkly. 2014, 49, 16–18. [Google Scholar]
- Muller, M. Interbasin water sharing: A South African perspective. In Proceedings of the International Workshop on Interbasin Water Transfer, Unesco, Paris, France, 25–27 April 1999; pp. 61–70. [Google Scholar]
- Davies, B.R.; Thoms, M.; Meador, M. An assessment of the ecological impacts of inter-basin water transfers, and their threats to river basin integrity and conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 1992, 2, 325–349. [Google Scholar] [CrossRef]
- Gupta, J.; van der Zaag, P. Interbasin water transfers and integrated water resources management: Where engineering, science and politics interlock. Phys. Chem. Earth Parts A/B/C 2008, 33, 28–40. [Google Scholar] [CrossRef]
- Kibiiy, J.; Ndambuki, J. New criteria to assess interbasin water transfers and a case for Nzoia-Suam/Turkwel in Kenya. Phys. Chem. Earth Parts A/B/C 2015, 89, 121–126. [Google Scholar] [CrossRef]
- Hey, R. River response to inter-basin water transfers: Craig Goch feasibility study. J. Hydrol. 1986, 85, 407–421. [Google Scholar] [CrossRef]
- Joshi, K.; Alam, M.A.; Jha, D.; Srivastava, K.; Srivastava, S.; Kumar, V.; Sharma, A. Studies on ecology, fish diversity and fisheries of Ken–Betwa rivers (India): Proposed for inter-linking. Aquat. Ecosyst. Health Manag. 2017, 20, 71–85. [Google Scholar] [CrossRef]
- Lakra, W.; Sarkar, U.; Dubey, V.; Sani, R.; Pandey, A. River inter linking in India: Status, issues, prospects and implications on aquatic ecosystems and freshwater fish diversity. Rev. Fish Biol. Fish. 2011, 21, 463–479. [Google Scholar] [CrossRef]
- Gallardo, B.; Aldridge, D.C. Inter-basin water transfers and the expansion of aquatic invasive species. Water Res. 2018, 143, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Hoth, N.; Drebenstedt, C.; Sun, Y.; Xu, Z. Hydro-geochemical paths of multi-layer groundwater system in coal mining regions—Using multivariate statistics and geochemical modeling approaches. Sci. Total. Environ. 2017, 601, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Gwenzi, W.; Nyamadzawo, G. Hydrological impacts of urbanization and urban roof water harvesting in water-limited catchments: A review. Environ. Process. 2014, 1, 573–593. [Google Scholar] [CrossRef] [Green Version]
- Crowther, T.W.; Glick, H.B.; Covey, K.R.; Bettigole, C.; Maynard, D.S.; Thomas, S.M.; Smith, J.R.; Hintler, G.; Duguid, M.C.; Amatulli, G.; et al. Mapping tree density at a global scale. Nature 2015, 525, 201. [Google Scholar] [CrossRef]
- Melland, A.; Fenton, O.; Jordan, P. Effects of agricultural land management changes on surface water quality: A review of meso-scale catchment research. Environ. Sci. Policy 2018, 84, 19–25. [Google Scholar] [CrossRef]
- Tolessa, T.; Gessese, H.; Tolera, M.; Kidane, M. Changes in ecosystem service values in response to changes in landscape composition in the Central Highlands of Ethiopia. Environ. Process. 2018, 5, 483–501. [Google Scholar] [CrossRef]
- Pujades, E.; Vázquez-Suñé, E.; Culí, L.; Carrera, J.; Ledesma, A.; Jurado, A. Hydrogeological impact assessment by tunnelling at sites of high sensitivity. Eng. Geol. 2015, 193, 421–434. [Google Scholar] [CrossRef] [Green Version]
- Lilly, R.; Ravikumar, G. A Comprehensive Environment Modeling for Groundwater Flow for Assessing the Impact of Tunneling Works on Metro Rail Corridor in the Area of Chennai (India). Ekoloji Dergisi 2018, 27, 47–53. [Google Scholar]
- Wang, X.; Yang, T.; Wortmann, M.; Shi, P.; Hattermann, F.; Lobanova, A.; Aich, V. Analysis of multi-dimensional hydrological alterations under climate change for four major river basins in different climate zones. Clim. Chang. 2017, 141, 483–498. [Google Scholar] [CrossRef]
- Bernagozzi, G.; Benedetti, G.; Continelli, F.; Guerra, C.; Briganti, R.; Polimeni, S.; Riggi, G.; Romano, F. Impacts on Groundwater Flow Due to the Excavation of Artificial Railway Tunnels in Soils. In Engineering Geology for Society and Territory-Volume 6; Springer: Cham, Switzerland, 2015; pp. 967–970. [Google Scholar]
- Zheng, G.; Diao, Y. Environmental impact of ground deformation caused by underground construction in China. Jpn. Geotech. Soc. Spec. Publ. 2016, 2, 10–24. [Google Scholar] [CrossRef] [Green Version]
- Kaushal, S.S.; Belt, K.T. The urban watershed continuum: Evolving spatial and temporal dimensions. Urban Ecosyst. 2012, 15, 409–435. [Google Scholar] [CrossRef]
- Bonneau, J.; Fletcher, T.D.; Costelloe, J.F.; Burns, M.J. Stormwater infiltration and the ‘urban karst’—A review. J. Hydrol. 2017, 552, 141–150. [Google Scholar] [CrossRef]
- Casey, R.E.; Lev, S.M.; Snodgrass, J.W. Stormwater ponds as a source of long-term surface and ground water salinisation. Urban Water J. 2013, 10, 145–153. [Google Scholar] [CrossRef]
- Li, H.; Sharkey, L.J.; Hunt, W.F.; Davis, A.P. Mitigation of impervious surface hydrology using bioretention in North Carolina and Maryland. J. Hydrol. Eng. 2009, 14, 407–415. [Google Scholar] [CrossRef] [Green Version]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, R.; Fruneau, B.; Rudant, J.; Roy, P.; Frison, P.L.; Lakhera, R.; Dadhwal, V.; Saha, R. Subsidence of Kolkata (Calcutta) City, India during the 1990s as observed from space by differential synthetic aperture radar interferometry (D-InSAR) technique. Remote. Sens. Environ. 2006, 102, 176–185. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, Y.; Wenninger, J.; Uhlenbrook, S.; Wang, X.; Wan, L. Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, northwest China. Hydrogeol. J. 2017, 25, 1341–1355. [Google Scholar] [CrossRef]
- Shinde, V.; Tiwari, K.; Singh, M.; Uniyal, B. Impact of Abandoned Opencast Mines on Hydrological Processes of the Olidih Watershed in Jharia Coalfield, India. Environ. Process. 2017, 4, 697–710. [Google Scholar] [CrossRef]
- Steyn, M.; Oberholster, P.; Botha, A.; Genthe, B.; van den Heever-Kriek, P.; Weyers, C. Treated acid mine drainage and stream recovery: Downstream impacts on benthic macroinvertebrate communities in relation to multispecies toxicity bioassays. J. Environ. Manag. 2019, 235, 377–388. [Google Scholar] [CrossRef]
- Snaddon, C.; Davies, B. A preliminary assessment of the effects of a small South African inter-basin water transfer on discharge and invertebrate community structure. Regul. Rivers Res. Manag. Int. J. Devoted River Res. Manag. 1998, 14, 421–441. [Google Scholar] [CrossRef]
- Mehta, D.; Mehta, N.K. Interlinking of Rivers in India: Issues & Challenges. Geo-Eco-Marina 2018, 19, 137–144. [Google Scholar]
- Daga, V.S.; Azevedo-Santos, V.M.; Pelicice, F.M.; Fearnside, P.M.; Perbiche-Neves, G.; Paschoal, L.R.; Cavallari, D.C.; Erickson, J.; Ruocco, A.M.; Oliveira, I.; et al. Water diversion in Brazil threatens biodiversity. Ambio 2020, 49, 165–172. [Google Scholar] [CrossRef]
- Behera, M.; Tripathi, P.; Das, P.; Srivastava, S.; Roy, P.; Joshi, C.; Behera, P.; Deka, J.; Kumar, P.; Khan, M.; et al. Remote sensing based deforestation analysis in Mahanadi and Brahmaputra river basin in India since 1985. J. Environ. Manag. 2018, 206, 1192–1203. [Google Scholar] [CrossRef]
- Boongaling, C.G.K.; Faustino-Eslava, D.V.; Lansigan, F.P. Modeling land use change impacts on hydrology and the use of landscape metrics as tools for watershed management: The case of an ungauged catchment in the Philippines. Land Use Policy 2018, 72, 116–128. [Google Scholar] [CrossRef]
- Zhu, C.; Li, Y. Long-term hydrological impacts of land use/land cover change from 1984 to 2010 in the Little River Watershed, Tennessee. Int. Soil Water Conserv. Res. 2014, 2, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, L.; Xu, J.; Gu, B. Initial response of fish trophic niche to hydrological alteration in the upstream of Three Gorges Dam. Ecol. Process. 2016, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Price, K. Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: A review. Prog. Phys. Geogr. 2011, 35, 465–492. [Google Scholar] [CrossRef]
- Breitburg, D.; Levin, L.A.; Oschlies, A.; Grégoire, M.; Chavez, F.P.; Conley, D.J.; Garçon, V.; Gilbert, D.; Gutiérrez, D.; Isensee, K.; et al. Declining oxygen in the global ocean and coastal waters. Science 2018, 359, eaam7240. [Google Scholar] [CrossRef] [Green Version]
- Mohapatra, A.; Mohanty, R.K.; Mohanty, S.; Bhatta, K.; Das, N. Fisheries enhancement and biodiversity assessment of fish, prawn and mud crab in Chilika lagoon through hydrological intervention. Wetl. Ecol. Manag. 2007, 15, 229–251. [Google Scholar] [CrossRef]
- Bassi, N.; Kumar, M.D.; Sharma, A.; Pardha-Saradhi, P. Status of wetlands in India: A review of extent, ecosystem benefits, threats and management strategies. J. Hydrol. Reg. Stud. 2014, 2, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Li, H.; Xu, X.; Yang, G.; Liu, G.; Li, X.; Chen, D. Changing land use and its impact on the habitat suitability for wintering Anseriformes in China’s Poyang Lake region. Sci. Total. Environ. 2016, 557, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Boruah, S.; Biswas, S. Ecohydrology and fisheries of the upper Brahmaputra basin. Environmentalist 2002, 22, 119–131. [Google Scholar] [CrossRef]
- Bradley, D.; Streetly, M.; Cadman, D.; Dunscombe, M.; Farren, E.; Banham, A. A hydroecological model to assess the relative effects of groundwater abstraction and fine sediment pressures on riverine macro-invertebrates. River Res. Appl. 2017, 33, 1630–1641. [Google Scholar] [CrossRef]
- Pfautsch, S.; Dodson, W.; Madden, S.; Adams, M.A. Assessing the impact of large-scale water table modifications on riparian trees: A case study from Australia. Ecohydrology 2015, 8, 642–651. [Google Scholar] [CrossRef]
- Sahu, P.; Sikdar, P. Threat of land subsidence in and around Kolkata City and East Kolkata Wetlands, West Bengal, India. J. Earth Syst. Sci. 2011, 120, 435–446. [Google Scholar] [CrossRef] [Green Version]
- Purwoarminta, A.; Moosdorf, N.; Delinom, R.M. Investigation of groundwater-seawater interactions: A review. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Da Nang, Vietnam, 25–27 February 2018; Volume 118, p. 012017. [Google Scholar]
- Johansen, O.M.; Jensen, J.B.; Pedersen, M.L. From groundwater abstraction to vegetative response in fen ecosystems. Hydrol. Process. 2014, 28, 2396–2410. [Google Scholar] [CrossRef]
- Benejam Vidal, L.; Angermeier, P.L.; Munné, A.; García-Berthou, E. Assessing effects of water abstraction on fish assemblages in Mediterranean streams. Freshw. Biol. 2010, 55, 628–642. [Google Scholar] [CrossRef]
- Waco, K.E.; Taylor, W.W. The influence of groundwater withdrawal and land use changes on brook charr (Salvelinus fontinalis) thermal habitat in two coldwater tributaries in Michigan, USA. Hydrobiologia 2010, 650, 101–116. [Google Scholar] [CrossRef]
- Strevens, A. Impacts of groundwater abstraction on the trout fishery of the River Piddle, Dorset; and an approach to their alleviation. Hydrol. Process. 1999, 13, 487–496. [Google Scholar] [CrossRef]
- Kunz, J.V.; Annable, M.D.; Rao, S.; Rode, M.; Borchardt, D. Hyporheic passive flux meters reveal inverse vertical zonation and high seasonality of nitrogen processing in an anthropogenically modified stream (Holtemme, Germany). Water Resour. Res. 2017, 53, 10155–10172. [Google Scholar] [CrossRef]
- Baattrup-Pedersen, A.; Göthe, E.; Riis, T.; O’Hare, M.T. Functional trait composition of aquatic plants can serve to disentangle multiple interacting stressors in lowland streams. Sci. Total. Environ. 2016, 543, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Hupp, C.R.; Pierce, A.R.; Noe, G.B. Floodplain geomorphic processes and environmental impacts of human alteration along coastal plain rivers, USA. Wetlands 2009, 29, 413–429. [Google Scholar] [CrossRef]
- Matthews, N.; McCartney, M. Opportunities for building resilience and lessons for navigating risks: Dams and the water energy food nexus. Environ. Prog. Sustain. Energy 2018, 37, 56–61. [Google Scholar] [CrossRef]
- Stein, E.D.; Cover, M.R.; Elizabeth Fetscher, A.; O’Reilly, C.; Guardado, R.; Solek, C.W. Reach-scale geomorphic and biological effects of localized streambank armoring. J. Am. Water Resour. Assoc. 2013, 49, 780–792. [Google Scholar] [CrossRef]
- Skalski, T.; Kędzior, R.; Wyżga, B.; Radecki-Pawlik, A.; Plesiński, K.; Zawiejska, J. Impact of Incision of Gravel-bed Rivers on Ground Beetle Assemblages. River Res. Appl. 2016, 32, 1968–1977. [Google Scholar] [CrossRef]
- Horsák, M.; Bojková, J.; Zahrádková, S.; Omesová, M.; Helešic, J. Impact of reservoirs and channelization on lowland river macroinvertebrates: A case study from Central Europe. Limnologica 2009, 39, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Lima, A.C.; Agostinho, C.S.; Soares, A.M.; Monaghan, K.A. Alternative ways to measure impacts of dam closure to the structure of fish communities of a neotropical river. Ecohydrology 2016, 9, 860–870. [Google Scholar] [CrossRef]
- Xiao, D.; Yuan, H.; Tian, K.; Yang, Y. Distribution patterns and changes of aquatic communities in Lashihai Plateau Wetland after impoundment by damming. Acta Ecol. Sin. 2012, 32, 815–822. [Google Scholar] [CrossRef]
- Głowacki, Ł.; Grzybkowska, M.; Dukowska, M.; Penczak, T. Effects of damming a large lowland river on chironomids and fish assessed with the (multiplicative partitioning of) true/Hill biodiversity measure. River Res. Appl. 2011, 27, 612–629. [Google Scholar]
- Santos, R.; Fernandes, L.S.; Cortes, R.; Varandas, S.; Jesus, J.; Pacheco, F. Integrative assessment of river damming impacts on aquatic fauna in a Portuguese reservoir. Sci. Total. Environ. 2017, 601, 1108–1118. [Google Scholar] [CrossRef] [PubMed]
- Tian, K.; Liu, G.; Xiao, D.; Sun, J.; Lu, M.; Huang, Y.; Lin, P. Ecological effects of Dam impoundment on closed and half-closed wetlands in China. Wetlands 2015, 35, 889–898. [Google Scholar] [CrossRef]
- Faragó, S.; Hangya, K. Effects of water level on waterbird abundance and diversity along the middle section of the Danube River. Hydrobiologia 2012, 697, 15–21. [Google Scholar] [CrossRef]
- Singh, G. Salinity-related desertification and management strategies: Indian experience. Land Degrad. Dev. 2009, 20, 367–385. [Google Scholar] [CrossRef]
- Tuboi, C.; Irengbam, M.; Hussain, S.A. Seasonal variations in the water quality of a tropical wetland dominated by floating meadows and its implication for conservation of Ramsar wetlands. Phys. Chem. Earth Parts A/B/C 2018, 103, 107–114. [Google Scholar] [CrossRef]
- Domingues, R.B.; Barbosa, A.B.; Sommer, U.; Galvão, H.M. Phytoplankton composition, growth and production in the Guadiana estuary (SW Iberia): Unraveling changes induced after dam construction. Sci. Total. Environ. 2012, 416, 300–313. [Google Scholar] [CrossRef]
- Simões, N.R.; Nunes, A.H.; Dias, J.D.; Lansac-Tôha, F.A.; Velho, L.F.M.; Bonecker, C.C. Impact of reservoirs on zooplankton diversity and implications for the conservation of natural aquatic environments. Hydrobiologia 2015, 758, 3–17. [Google Scholar] [CrossRef]
- Ma, N.; Song, Z.; Wang, B.; Wang, F.; Yang, X.; Zhang, X.; Hao, Q.; Wu, Y. Effects of river damming on biogenic silica turnover: Implications for biogeochemical carbon and nutrient cycles. Acta Geochim. 2017, 36, 626–637. [Google Scholar] [CrossRef]
- Van Cappellen, P.; Maavara, T. Rivers in the Anthropocene: Global scale modifications of riverine nutrient fluxes by damming. Ecohydrol. Hydrobiol. 2016, 16, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Bi, Y.; Hu, Z.; Zhu, K.; Zhao, W.; Yuan, X. Spatio-temporal variations of GHG emissions from surface water of Xiangxi River in Three Gorges Reservoir region, China. Ecol. Eng. 2015, 83, 28–32. [Google Scholar] [CrossRef]
- Tombolini, I.; Caneva, G.; Cancellieri, L.; Abati, S.; Ceschin, S. Damming effects on upstream riparian and aquatic vegetation: The case study of Nazzano (Tiber River, central Italy). Knowl. Manag. Aquat. Ecosyst. 2014, 412, 3. [Google Scholar] [CrossRef] [Green Version]
- Douglas, C.M.; Mulligan, M.; Harrison, X.A.; Henschel, J.R.; Pettorelli, N.; Cowlishaw, G. Widespread dieback of riparian trees on a dammed ephemeral river and evidence of local mitigation by tributary flows. PeerJ 2016, 4, e2622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaleta, D.; Mbilinyi, B.P.; Mahoo, H.F.; Lemenih, M. Effect of Eucalyptus expansion on surface runoff in the central highlands of Ethiopia. Ecol. Process. 2017, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Eskew, E.A.; Price, S.J.; Dorcas, M.E. Effects of river-flow regulation on anuran occupancy and abundance in riparian zones. Conserv. Biol. 2012, 26, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Liu, Z.; Lei, X.; Lin, R.; Fang, G.; Tan, Q.; Wang, C.; Tian, Y.; Quan, J. Future changes in Yuan River ecohydrology: Individual and cumulative impacts of climates change and cascade hydropower development on runoff and aquatic habitat quality. Sci. Total. Environ. 2018, 633, 1403–1417. [Google Scholar] [CrossRef]
- Woodward, C.; Shulmeister, J.; Zawadzki, A.; Jacobsen, G. Major disturbance to aquatic ecosystems in the South Island, New Zealand, following human settlement in the Late Holocene. Holocene 2014, 24, 668–678. [Google Scholar] [CrossRef]
- Kitanishi, S.; Yamamoto, T.; Edo, K.; Higashi, S. Influences of habitat fragmentation by damming on the genetic structure of masu salmon populations in Hokkaido, Japan. Conserv. Genet. 2012, 13, 1017–1026. [Google Scholar] [CrossRef]
- Singh, O.; Kumar, A. Sand and gravel extraction from piedmont and floodplain zones of Yamunanagar district in Haryana, India: Environmental tragedy or economic gain? Int. J. Environ. Stud. 2018, 75, 267–283. [Google Scholar] [CrossRef]
- Semwal, R.; Nautiyal, S.; Sen, K.; Rana, U.; Maikhuri, R.; Rao, K.; Saxena, K. Patterns and ecological implications of agricultural land-use changes: A case study from central Himalaya, India. Agric. Ecosyst. Environ. 2004, 102, 81–92. [Google Scholar] [CrossRef]
- Khedkar, G.D.; Lutzky, S.; Rathod, S.; Kalyankar, A.; David, L. A dual role of dams in fragmentation and support of fish diversity across the Godavari River basin in India. Ecohydrology 2014, 7, 1560–1573. [Google Scholar] [CrossRef]
- Yoo, J.W.; Lee, C.W.; Lee, Y.W.; Kim, C.S.; Lee, C.G.; Choi, K.H.; Jung, S.W.; Jin, S.J.; Son, K.H. Application of a Conceptual Ecological Model to Predict the Effects of Sand Mining around Chilsan Island Group in the West Coast of Korea. Ocean. Sci. J. 2018, 53, 521–534. [Google Scholar] [CrossRef]
- Kobashi, D.; Jose, F. Potential Impacts of Sand Mining on Hydrodynamics and Fine Sediment Suspension and Deposition on an Inner-shelf Shoal. J. Coast. Res. 2018, 81, 76–85. [Google Scholar]
- De Jong, M.F.; Baptist, M.J.; van Hal, R.; De Boois, I.J.; Lindeboom, H.J.; Hoekstra, P. Impact on demersal fish of a large-scale and deep sand extraction site with ecosystem-based landscaped sandbars. Estuarine Coast. Shelf Sci. 2014, 146, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; Huang, J.; Gao, J.; Cui, Z. Modelling the Impacts of Bathymetric Changes on Water Level in China’s Largest Freshwater Lake. Water 2019, 11, 1469. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Guo, Q.; Zhang, Z.; Xu, C. Assessing Hydrological and Sedimentation Effects from Bottom Topography Change in a Complex River–Lake System of Poyang Lake, China. Water 2019, 11, 1489. [Google Scholar] [CrossRef] [Green Version]
- Freeman, M.C.; Pringle, C.M.; Jackson, C.R. Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales 1. J. Am. Water Resour. Assoc. 2007, 43, 5–14. [Google Scholar] [CrossRef]
- Pal, S. Impact of Massanjore dam on hydro-geomorphological modification of Mayurakshi river, Eastern India. Environ. Dev. Sustain. 2016, 18, 921–944. [Google Scholar] [CrossRef]
- Rhoads, B.L. The impact of stream channelization on the geomorphic stability of an arid-region river. Natl. Geogr. Res. 1990, 6, 157–177. [Google Scholar]
- Zheng, S.; Cheng, H.; Shi, S.; Xu, W.; Zhou, Q.; Jiang, Y.; Zhou, F.; Cao, M. Impact of anthropogenic drivers on subaqueous topographical change in the Datong to Xuliujing reach of the Yangtze River. Sci. China Earth Sci. 2018, 61, 940–950. [Google Scholar] [CrossRef]
- Niswonger, R.; Naranjo, R.; Smith, D.; Constantz, J.; Allander, K.; Rosenberry, D.; Neilson, B.; Rosen, M.R.; Stonestrom, D. Nutrient processes at the stream-lake interface for a channelized versus unmodified stream mouth. Water Resour. Res. 2017, 53, 237–256. [Google Scholar] [CrossRef] [Green Version]
- Torres, A.; Brandt, J.; Lear, K.; Liu, J. A looming tragedy of the sand commons. Science 2017, 357, 970–971. [Google Scholar] [CrossRef] [PubMed]
- Sreebha, S.; Padmalal, D. Environmental impact assessment of sand mining from the small catchment rivers in the southwestern coast of India: A case study. Environ. Manag. 2011, 47, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Barman, B.; Kumar, B.; Sarma, A.K. Dynamic characterization of the migration of a mining pit in an alluvial channel. Int. J. Sediment Res. 2019, 34, 155–165. [Google Scholar] [CrossRef]
- Hegde, R.; Kumar, S.R.; Kumar, K.A.; Srinivas, S.; Ramamurthy, V. Sand extraction from agricultural fields around Bangalore: Ecological disaster or economic boon? Curr. Sci. 2008, 95, 243–248. [Google Scholar]
- Kompanizare, M.; Petrone, R.M.; Shafii, M.; Robinson, D.T.; Rooney, R.C. Effect of climate change and mining on hydrological connectivity of surficial layers in the Athabasca Oil Sands Region. Hydrol. Process. 2018, 32, 3698–3716. [Google Scholar] [CrossRef] [Green Version]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef]
- Pope, K.L.; Pegg, M.A.; Cole, N.W.; Siddons, S.F.; Fedele, A.D.; Harmon, B.S.; Ruskamp, R.L.; Turner, D.R.; Uerling, C.C. Fishing for ecosystem services. J. Environ. Manag. 2016, 183, 408–417. [Google Scholar] [CrossRef] [Green Version]
- Gebremicael, T.; Mohamed, Y.; van Der Zaag, P.; Hagos, E. Quantifying longitudinal land use change from land degradation to rehabilitation in the headwaters of Tekeze-Atbara Basin, Ethiopia. Sci. Total. Environ. 2018, 622, 1581–1589. [Google Scholar] [CrossRef]
- Kaushal, S.; Gold, A.; Mayer, P. Land use, climate, and water resources—Global stages of interaction. Water 2017, 9, 815. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Ochuodho, T.O.; Yang, J. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecol. Indic. 2019, 102, 51–64. [Google Scholar] [CrossRef]
- Hao, R.; Yu, D.; Sun, Y.; Shi, M. The features and influential factors of interactions among ecosystem services. Ecol. Indic. 2019, 101, 770–779. [Google Scholar] [CrossRef]
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.; Mooney, H.A. The nature and value of ecosystem services: An overview highlighting hydrologic services. Annu. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Jorda-Capdevila, D.; Rodríguez-Labajos, B. An ecosystem service approach to understand conflicts on river flows: Local views on the Ter River (Catalonia). Sustain. Sci. 2015, 10, 463–477. [Google Scholar] [CrossRef]
- Deng, X.; Li, Z.; Gibson, J. A review on trade-off analysis of ecosystem services for sustainable land-use management. J. Geogr. Sci. 2016, 26, 953–968. [Google Scholar] [CrossRef] [Green Version]
- Intralawan, A.; Wood, D.; Frankel, R.; Costanza, R.; Kubiszewski, I. Tradeoff analysis between electricity generation and ecosystem services in the Lower Mekong Basin. Ecosyst. Serv. 2018, 30, 27–35. [Google Scholar] [CrossRef]
- Marques, B.; McIntosh, J.; Hatton, W.; Danielle, S. Bicultural landscapes and ecological restoration in the compact city: The case of Zealandia as a sustainable ecosanctuary. J. Landsc. Archit. 2019, 14, 44–53. [Google Scholar] [CrossRef]
- Marques, B.; McIntosh, J.; Hatton, W. Haumanu ipukarea, ki uta ki tai: (Re) connecting to landscape and reviving the sense of belonging for health and wellbeing. Cities Health 2018, 2, 82–90. [Google Scholar] [CrossRef]
- Grimble, R.; Wellard, K. Stakeholder methodologies in natural resource management: A review of principles, contexts, experiences and opportunities. Agric. Syst. 1997, 55, 173–193. [Google Scholar] [CrossRef]
- Felipe-Lucia, M.R.; Martín-López, B.; Lavorel, S.; Berraquero-Díaz, L.; Escalera-Reyes, J.; Comín, F.A. Ecosystem services flows: Why stakeholders’ power relationships matter. PLoS ONE 2015, 10, e0132232. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, U. Displacement and the Law. Econ. Political Wkly. 1996, 31, 1486–1491. [Google Scholar]
- Daw, T.; Brown, K.; Rosendo, S.; Pomeroy, R. Applying the ecosystem services concept to poverty alleviation: The need to disaggregate human well-being. Environ. Conserv. 2011, 38, 370–379. [Google Scholar] [CrossRef] [Green Version]
- Keeler, B.L.; Polasky, S.; Brauman, K.A.; Johnson, K.A.; Finlay, J.C.; O’Neill, A.; Kovacs, K.; Dalzell, B. Linking water quality and well-being for improved assessment and valuation of ecosystem services. Proc. Natl. Acad. Sci. USA 2012, 109, 18619–18624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
Impact Type | Different Keyword Combinations with ’Ecosystem Services’ and ’Impact’ | No. of Papers |
---|---|---|
Dams | Dam, damming | 255 |
Stream channelization | Channelization, drying of swamps, canals, wetland drainage | 202 |
Inter-catchment water transfer | Inter-catchment water transfer or inter-basin water transfer | 16 |
Sand mining | Sand mining | 18 |
Groundwater abstraction | water abstraction | 33 |
Change in land-use pattern | urbanization, deforestation, agricultural practices | 538 |
Subsurface modifications | mining, metro rail, urban karst | 30 |
Provisioning Services | Regulating Services | Cultural Services | Supporting Services |
---|---|---|---|
Food production | Carbon sequestration | Educational values | Soil retention |
Water yield | Water purification | Cultural heritage values | Soil formation |
Genetic Resources | Flood control | Ecotourism Recreation | Primary production |
Fuel Raw materials | Disease regulation | Inspiration | Photosynthesis |
Natural medicines | Air quality regulation | Spiritual and religious values | Habitat provision |
Erosion control | Aesthetic values |
Riverscape Feature/ Land Cover | Provisioning | Regulating | Supporting Services | Cultural Services | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Water supply | Agriculture | Timber production | Flood mitigation | Climate regulation | Water quality | Soil formation | Habitat provision | Species diversity | Aesthetic | Inspirational/recreation | Educational | ||
River width | *** | ** | ** | ** | |||||||||
Waterfalls | ** | *** | * | ||||||||||
Morphology | * | *** | *** | *** | * | * | *** | ||||||
Weirs | *** | *** | *** | ||||||||||
Channelization and embankments | *** | ||||||||||||
Land cover types | |||||||||||||
Flood plain forest | * | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | ||
Riparian buffer | ** | *** | *** | *** | ** | ** | * | ||||||
Agricultural land | * | ||||||||||||
Urban areas | ** | *** | ** | ||||||||||
Dams and reservoir units | *** | ** | *** | *** | *** | ||||||||
Urban areas | * | *** | * | ** | |||||||||
Cultural heritage feature |
Modification Types | Eco-Hydro-Geomorphological Changes | Ecosystem Response | Affected ES |
---|---|---|---|
Catchment scale | |||
Inter-basin water transfer | Change in channel and width River erosion and land inundation, | Stream-flow reduction [56,57] | Water availability |
Exchange of aquatic species | Reduction of native species [51,60,80] Loss of aquatic diversity [55,58,59,81] Homogenization and bioinvasion [82] | Species diversity | |
Landscape unit scale | |||
Land-use impact | Low evapotranspiration and precipitation | Altered runoff patterns [15,83,84] | Micro climate regulations |
Surface-soil erosion and increased surface runoff | Reduced infiltration and base flow [77,85,86,87] | Groundwater recharge | |
Discharge of agricultural contaminants | Stream-flow contamination [88] | Water quality | |
Loss of riparian zones | Reduction of wetland areas [89] | Wetland productivity | |
Loss of swamps and marshy areas | Loss of habitats [90,91] | Species diversity | |
Loss of forest areas | Altered surface runoff [61] | Soil formation | |
Subsurface modification | Hydrological barriers to natural flows | Decreased infiltration [67,68] | Groundwater recharge |
Subsurface-soil disturbance and runoff accumulation in large depressions | Altered annual surface flow [78,79] | Microclimate regulations | |
Discharge of urban-karst contaminants | Water contamination [72,73] | Water quality | |
Groundwater abstraction | Increase in saltwater intrusion | Decreased water productivity [92,93,94] | Water supply |
Land subsidence | Water unavailability [76,95,96] | Water supply | |
Flow reduction in natural springs | Impact on groundwater terrestrial ecosystems [97] | Species diversity | |
Reduced stream flow | Fish assemblage and habitat availability [98,99,100] | Species diversity | |
Segment scale | |||
Stream channelization | Bank erosion and changes in nutrient concentration | Decreased water productivity [101,102,103,104] | Water supply |
Heterogeneity of river-bed substrates | Impact on aquatic organisms [105,106,107] | Species diversity | |
Changes in flow velocity and hydropeaking | Impact on riparian micro invertebrates [79,106,107] | Species diversity | |
Damming | Changes in flow regimes | Decline in fish abundance [108,109,110] | Species diversity |
Decrease in aquatic flora and fauna [111,112,113] | Species diversity | ||
Modification Types | Eco-Hydro-Geomorphological Changes | Ecosystem Response | Affected ES |
Conversion of lotic to lentic environment | Growth of exotic species [30,114] | Species diversity | |
Salinization and water logging | Water quality [48,115] | Species diversity | |
Fragmented habitats | Phytoplankton composition [116] | Species diversity | |
Zooplankton diversity [117] | |||
Change in sediment transportation | Nutrient fluxes and biogeochemical cycle [118,119] | Microclimate regulations | |
Greenhouse gases (GHGs) [120] | |||
Loss of connectivity with deltaic and riparian zones | Loss of riparian and aquatic vegetation [121,122] | Species diversity | |
Reduction in agricultural productivity [114] | Food production | ||
Obstructed fish migration [123] | Species diversity | ||
Aquatic food webs [86,124] | Species diversity | ||
Aquatic breeding habitats [125,126,127] | |||
Reach scale | |||
Sand mining | River-bed stability and bank erosion | Loss of productive cultivation areas [92,128] | Food production |
Sediment deposition | Loss of deep pools [129,130] | Species diversity | |
Impact on food webs [131,132] | Species diversity | ||
Changes in sediment composition | Impact on benthic communities [133] | Species diversity | |
Bathymetric changes | Changes in water levels [134,135] | Water availability |
Anthropogenic Modifications | Ecosystem Services | ||
---|---|---|---|
Economic | Ecological | Socio-Cultural | |
Inter-basin water transfer | Uninterrupted water supply for irrigation (+) Navigation (+) | Species diversity (−) Habitat provision (−) | Displacement (−) Livelihood (−) Tourism (±) Aesthetics (−) |
Change in LULC | Urbanization (+) Living space (+) Agricultural use (+) | Microclimate regulation (−) Groundwater recharge (−) Floodplain connectivity (−) Habitat provision (−) Species diversity (−) | Livelihood (−) Aesthetics (−) Tourism (−) |
Subsurface modifications | Urbanization (+) Living space (+) Transportation (+) | Groundwater recharge (−) | – |
Groundwater abstraction | Water supply for industrial, domestic, and agricultural use (+) | Groundwater recharge (−) Saltwater intrusion (−) | – |
Stream channelization | Irrigation (+) | Ag. productivity (−) Water logging (−) | – |
Damming | Hydro-power (+) Irrigation (+) Water supply (+) Fisheries(±) | Fish migration (−) Sediment flow (−) Water logging (−) Water quality (−) Ag. productivity (−) Species diversity (−) Floodplain connectivity (−) | Flood control (+) Displacement (−) Livelihood (−) Tourism (±) Aesthetics (−) |
Sand mining | Input material for construction (+) | River-bed instability (−) Bank erosion (−) Soil formation (−) Groundwater recharge (−) Species diversity (−) | Aesthetic (−) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekka, A.; Pande, S.; Jiang, Y.; der Zaag, P.v. Anthropogenic Modifications and River Ecosystem Services: A Landscape Perspective. Water 2020, 12, 2706. https://doi.org/10.3390/w12102706
Ekka A, Pande S, Jiang Y, der Zaag Pv. Anthropogenic Modifications and River Ecosystem Services: A Landscape Perspective. Water. 2020; 12(10):2706. https://doi.org/10.3390/w12102706
Chicago/Turabian StyleEkka, Anjana, Saket Pande, Yong Jiang, and Pieter van der Zaag. 2020. "Anthropogenic Modifications and River Ecosystem Services: A Landscape Perspective" Water 12, no. 10: 2706. https://doi.org/10.3390/w12102706
APA StyleEkka, A., Pande, S., Jiang, Y., & der Zaag, P. v. (2020). Anthropogenic Modifications and River Ecosystem Services: A Landscape Perspective. Water, 12(10), 2706. https://doi.org/10.3390/w12102706