Urban Groundwater Processes and Anthropogenic Interactions (Porto Region, NW Portugal)
Abstract
:1. Introduction
- To develop an integrated geoenvironmental assessment of groundwater resources in urban environments using geotechnological capabilities, particularly GIS mapping and geovisualization techniques, and also extensive field and laboratory work;
- To evaluate groundwater quality and groundwater flow paths, by combining hydrogeochemical and environmental isotopic data and to identify the leading processes responsible for groundwater disrepair;
- To assess groundwater quantity, by means of pumping test data;
- To delineate groundwater infiltration potential zones at a regional scale, using the innovative infiltration potential index for urban areas (IPI-Urban) that integrates several layers of information properly weighted and overlaid in a GIS platform; a tool which should improve our understanding of complex urban groundwater recharge processes in future investigations;
- To refine the regional hydrogeological conceptual model, merging all the data, to improve the understanding of urban groundwater systems in the Porto urban region.
2. Study Area: Land Cover and Hydrogeological Background
3. Materials and Methods
4. Results and Discussion
4.1. Hydrogeochemical Approach
- The strongest linear correlations were obtained in the water samples belonging to the shallow groundwater systems, represented by dug wells, fountains and springs.
- Cl and Mg seem to have the same source for the shallow and deep groundwater systems, while the relation Cl and Na seems to point to a unique source only for the shallow systems; however, the common source of Cl and Mg is not marine, and the sea spray seems to be partially responsible for the Cl and Na; moreover, the proximity of several data to the Mg/Na seawater line outlines a partially common marine origin for these parameters.
- The isotopic signatures of the groundwaters characterize a meteoric origin, since most of the water samples are positioned very close to the Global Meteoric Water Line (GMWL), defined by [89] and later improved by [90,91,92], and similar to the isotopic composition of the precipitation water samples, from the Portuguese Isotopes in Precipitation Network [93]. From the isotopic point of view, the following two main groundwater clusters have been identified: Group I stands for groundwaters collected from dug wells and boreholes, which presents a more enriched isotopic composition, similar to the Porto precipitation [93], corresponding to normal deviations related with seasonal variations of δ18O and δ2H on precipitation; Group II is composed of the spring samples and presents more depleted δ18O and δ2H values, which may be attributed to the fact that they could be ascribed to random precipitation events, resulting into a direct infiltration of meteoric waters along the fractured granitic rocks;
- The meteoric origin of the shallow groundwaters seems to be reinforced by the SO4-Ca facies, concerning the relationship with the precipitation data; therefore, the partial origin of SO4 should be atmospheric pollution, enriched in SO2 gases.
- The common source of Cl and Mg must be anthropogenic, related to organic fertilizers, including sewage and livestock residues (liquid and semiliquid manure), and animal waste (e.g., bovines), in areas with a higher agricultural and/or livestock production activity, especially in the Vila do Conde, Trofa, and Northern Maia municipalities. Moreover, the good relationship between NO3 and Cl for the shallow groundwater systems shows their partially common source; in fact, NO3 is also an important constituent of fertilizers, either organic or synthetic, sewage, and animal and human wastes (e.g., [94]). The studied groundwaters do not present such a trend, indicating different sources for Cl and NO3. Several studies developed in this region have reached similar conclusions (e.g., [20,62,95,96,97]).
- The relations among Cl and Mg, and Cl and NO3, may be ascribed to the urban and industrial sectors, particularly in the Porto, Matosinhos, and Vila Nova de Gaia municipalities, due to numerous groundwater potential contamination activities and their high density in some areas (cf. [17] for Porto and Vila Nova de Gaia urban areas), i.e., wastewater leakages, cesspools, and solid waste tanks contamination, hydrocarbons present from vehicle fuels and industrial processes, such as solvents and degreasing agents, namely trichloroethylene, which is one of the most common.
- HCO3 and Ca have a reasonable correlation among the borehole water samples, and the correlation between HCO3 + NO3 and Na + Ca is good for the same water samples. This trend seems to indicate that these parameters have partially the same origin that probably should be ascribed to water–rock interaction, namely the hydrolysis of plagioclases presented in granitic rocks.
4.2. Hydrodynamical Assessment
4.3. Urban Infiltration Potential Index (IPI-Urban)
5. Hydrogeological Conceptual Ground Models
- A superficial unit corresponds essentially to the sedimentary cover and the weathered/fractured zones of metasedimentary and granitic rocks that constitute a porous medium with hydraulic connection to the drainage system. The water table is close to the surface (<5 m). The more suitable exploitation structures are dug wells and springs associated, or not, to galleries, and the long-term well capacities are low (1 < Q < 2 L/s). Sedimentary cover can reach thicknesses of almost 30 m. In crystalline rocks, the weathering thickness is variable, and can reach values of 20–40 m locally (e.g., [116]), affecting transmissivity, which is generally low (<5 m2/day), and storage coefficient. The sedimentary cover constitutes an unconfined aquifer, while, in crystalline rocks, it corresponds to a semi-confined one. The hydrochemical facies is mostly Cl-Na. The infiltration potential is moderate to high and the groundwater recharge is direct, through infiltration of precipitation.
- Intermediate aquifers constitute a fractured media, which may have a hydraulic connection to the drainage system. The more suitable exploitation structures are boreholes and the long-term well capacities are mostly very low (Q < 1 L/s). Transmissivity values are low (<5 m2/day) and these aquifers are semi-confined to confined. Groundwater has a short and shallow circuit with a Cl-Na to Cl-SO4-Na hydrochemical facies. The infiltration potential is moderate to low and the groundwater recharge occurs by leakage of the overlain levels or directly from the surface, namely by geological structures (e.g., geological contacts, faults, and veins), with favorable geo-hydraulic characteristics for the groundwater flow (e.g., major deep, open and not filled fractures, and intersections between tectonic lineaments).
- Deep aquifers correspond to unweathered and massive crystalline bedrock, with closed fractures. They constitute a fissured media, where groundwater flow tends to have a weak regime with very low transmissivities and the hydraulic characteristics are confined.
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Foster, S.D.; Tyson, G. Resilient Cities & Groundwater; Strategic Overview Series; International Association of Hydrogeologists: Goring/Reading, UK, 2015. [Google Scholar]
- Howard, K.W.F.; Israfilov, R.G. Current Problems of Hydrogeology in Urban Areas, Urban. Agglomerates, and Industrial Centres; Kluwer: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Howard, K.W.F. (Ed.) Urban. Groundwater. In Proceedings of the Meeting the Challenge: Selected Papers from the 32nd International Geological Congress (IGC), Florence, Italy, 20–28 August 2004; Taylor & Francis: London, UK, 2007. [Google Scholar]
- Massing, H.; Packman, J.; Zuidema, F.C. Hydrological Processes and Water Management in Urban Areas; IAHS Publication No. 198; IAHS: Wallingford, UK, 1990; p. 362. [Google Scholar]
- Johnson, S.P. The Earth Summit: The United Nations Conference on Environment and Development (UNCED); Graham & Trotman/Martinus Nijhoff: London, UK, 1993. [Google Scholar]
- Wilkinson, W.B. (Ed.) Groundwater Problems in Urban Areas; T. Telford: London, UK, 1994; p. 453. [Google Scholar]
- Chilton, J. (Ed.) Groundwater in the Urban Environment: Problems, Processes and Management. In Proceedings of the 27th Congress, International Association of Hydrogeologists, Nottingham, UK, 21–27 September 1997. [Google Scholar]
- Chilton, J. Groundwater in the Urban Environment: Selected City Profiles; A. A. Balkema: Rottterdam, The Netherlands, 1999; p. 342. [Google Scholar]
- Howard, K.W.F. Groundwater for Socio-Economic Development—The Role of Science; UNESCO IHP-VI Series on Groundwater, 9, Published as CD.; UNESCO: Paris, France, 2004; ISBN 92-9220-029-1. [Google Scholar]
- Tellam, J.H.; Rivett, M.O.; Israfilov, R.G. Urban. Groundwater Management and Sustainability; NATO Science Series, IV Earth and Environmental Sciences; Springer: Dordrecht, The Netherlands, 2006; Volume 74, p. 491. [Google Scholar]
- Afonso, M.J.; Chaminé, H.I.; Marques, J.M.; Carreira, P.M.; Guimarães, L.; Guilhermino, L.; Gomes, A.; Fonseca, P.E.; Pires, A.; Rocha, F. Environmental issues in urban groundwater systems: A multidisciplinary study of the Paranhos and Salgueiros spring waters, Porto (NW Portugal). Environ. Earth Sci. 2010, 61, 379–392. [Google Scholar] [CrossRef]
- Afonso, M.J.; Freitas, L.; Pereira, A.J.S.C.; Neves, L.J.P.F.; Guimarães, L.; Guilhermino, L.; Mayer, B.; Rocha, F.; Marques, J.M.; Chaminé, H.I. Environmental groundwater vulnerability assessment in urban water mines (Porto, NW Portugal). Water 2016, 8, 499. [Google Scholar] [CrossRef] [Green Version]
- Afonso, M.J.; Freitas, L.; Chaminé, H.I. Groundwater recharge in urban areas (Porto, NW Portugal): The role of GIS hydrogeology mapping. Sustain. Water Resour. Manag. 2019, 5, 203–216. [Google Scholar] [CrossRef]
- Sharp, J.M.; Hibbs, B.J. Special Issue on Hydrogeological Impacts of Urbanization. Environ. Eng. Geosci. 2012, 18, 111. [Google Scholar]
- Schirmer, M.; Leschik, S.; Musolff, A. Current research in urban hydrogeology—A review. Adv. Water Resour. 2013, 51, 280–291. [Google Scholar] [CrossRef]
- Freitas, L.; Afonso, M.J.; Devy-Vareta, N.; Marques, J.M.; Gomes, A.; Chaminé, H.I. Coupling hydrotoponymy and GIS cartography: A case study of hydrohistorical issues in urban groundwater systems, Porto NW Portugal. Geogr. Res. 2014, 52, 182–197. [Google Scholar] [CrossRef]
- Freitas, L.; Afonso, M.J.; Pereira, A.J.S.C.; Deleru-Matos, C.; Chaminé, H.I. Assessment of sustainability of groundwater in urban areas (Porto, NW Portugal): A GIS mapping approach to evaluate vulnerability, infiltration and recharge. Environ. Earth Sci. 2019, 78, 140. [Google Scholar] [CrossRef]
- Freitas, L.; Chaminé, H.I.; Pereira, A.J.S.C. Coupling groundwater GIS mapping and geovisualisation techniques in urban hydrogeomorphology: Focus on methodology. SN Appl. Sci. 2019, 1, 490. [Google Scholar] [CrossRef] [Green Version]
- Freitas, L.; Chaminé, H.I.; Afonso, M.J.; Meerkhan, H.; Abreu, T.; Trigo, J.F.; Pereira, A.J.S.C. Integrative groundwater studies in a small-scale urban area: Case study from the municipality of Penafiel (NW Portugal). Geosciences 2020, 10, 54. [Google Scholar] [CrossRef] [Green Version]
- Barroso, M.F.; Ramalhosa, M.J.; Olhero, A.; Antão, M.C.; Pina, M.F.; Guimarães, L.; Teixeira, J.; Afonso, M.J.; Delerue-Matos, C.; Chaminé, H.I. Assessment of groundwater contamination in an agricultural peri-urban area (NW Portugal): An integrated approach. Environ. Earth Sci. 2015, 73, 2881–2894. [Google Scholar] [CrossRef] [Green Version]
- Hibbs, B.J. Groundwater in urban areas. J. Contemp. Water Res. Educ. 2016, 159, 143. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, L.; Guilhermino, L.; Afonso, M.J.; Marques, J.M.; Chaminé, H.I. Assessment of urban groundwater: Towards integrated hydrogeological and effects-based monitoring. Sustain. Water Resour. Manag. 2019, 5, 217–233. [Google Scholar] [CrossRef]
- Sherlock, R.L. Man as a Geological Agent; H.F. & G. Witherby: London, UK, 1922; p. 372. [Google Scholar]
- Legget, R.F. Cities and Geology; McGraw-Hill: New York, NY, USA, 1973; p. 579. [Google Scholar]
- Dunne, T.; Leopold, L.B. Water in Environmental Planning; W.H. Freeman Co.: San Francisco, CA, USA, 1978; p. 818. [Google Scholar]
- Utgard, R.O.; McKenzie, G.D.; Foley, D. Geology in the Urban. Environment; Burgess Publishing Company: Minneapolis, MI, USA, 1978; p. 355. [Google Scholar]
- Leveson, D. Geology and the Urban. Environment; Oxford University Press: Oxford, UK, 1980; p. 386. [Google Scholar]
- Zaporozec, A. (Ed.) Cities and water. Geo J. 1985, 11, 203–283. [Google Scholar]
- McCall, G.J.; Demulder, E.; Marker, B.R. Urban. Geoscience; AGID Special Publication Series; Taylor & Francis: Rotterdam, The Netherlands, 1996; Volume 20, p. 279. [Google Scholar]
- Gehrels, H.; Peters, N.E.; Hoehn, E.; Jensen, K.; Leibundgut, C.; Griffioen, J.; Webb, B.; Zaadnoordijk, W.J. Impact of Human Activity on Groundwater Dynamics; International Association of Hydrological Sciences, Publication no. 269; IAHS Press: Wallingford, UK, 2001; p. 369. [Google Scholar]
- Pokrajac, D. (Ed.) Groundwater in urban areas. Urban. Water 2001, 3, 171–237. [Google Scholar] [CrossRef]
- Bocanegra, E.; Hernández, M.; Usunoff, E. Groundwater and Human Development. International Association of Hydrogeologists Selected Papers; Taylor & Francis: London, UK, 2005; Volume 6, p. 262. [Google Scholar]
- Ehlen, J.; Haneberg, W.C.; Larson, R.A. Humans as Geologic Agents. Reviews in Engineering Geology; The Geological Society of America: Boulder, CO, USA, 2005; Volume 16, p. 158. [Google Scholar]
- Culshaw, M.G.; Reeves, H.J.; Jefferson, I.; Spink, T.W. Engineering Geology for Tomorrow’s Cities; Engineering Geology Special Publications; Geological Society: London, UK, 2009; Volume 22, p. 315. [Google Scholar]
- Chaminé, H.I.; Afonso, M.J.; Freitas, L. From historical hydrogeological inventory through GIS mapping to problem solving in urban groundwater systems. Eur. Geol. J. 2014, 38, 33–39. [Google Scholar]
- Chaminé, H.I.; Teixeira, J.; Freitas, L.; Pires, A.; Silva, R.S.; Pinho, T.; Mon- teiro, R.; Costa, A.L.; Abreu, T.; Trigo, J.F. From engineering geosciences mapping towards sustainable urban planning. Eur. Geol. J. 2016, 41, 16–25. [Google Scholar]
- UN-Habitat [United Nations Human Settlements Programme]. Urbanization and Development: Emerging Futures—World Cities Report 2016; United Nations Human Settlements Programme, World Urban Forum edition: Nairobi, Kenya, 2016; p. 264. [Google Scholar]
- Underwood, J.R. Anthropic rocks as a fourth basic class. Environ. Eng. Geosci. 2001, 7, 104–110. [Google Scholar] [CrossRef]
- Baker, L.A. (Ed.) The Water Environment of Cities; Springer Science & Business Media: London, UK, 2009; p. 307. [Google Scholar]
- Sharp, J.M. The impacts of urbanization on groundwater systems and recharge: Aqua Mundi. Aqua Mundi 2010, 1, 51–56. [Google Scholar] [CrossRef]
- Gogu, C.R.; Campbell, D.; de Beer, J. The Urban Subsurface—From Geoscience and Engineering to Spatial Planning and Management. Procedia Eng. 2017, 209, 224. [Google Scholar] [CrossRef]
- Hibbs, B.J.; Sharp, J.M. Hydrogeological impacts of urbanization. Environ. Eng. Geosci. 2012, 18, 3–24. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Foster, S.D.; Tyson, G. Global Change & Groundwater; Strategic Overview Series; International Association of Hydrogeologists: Goring/Reading, UK, 2016. [Google Scholar]
- Wiles, T.J.; Sharp, J.M. The secondary permeability of impervious cover. Environ. Eng. Geosci. 2008, 14, 251–265. [Google Scholar] [CrossRef]
- Pujades, E.; De Simone, S.; Carrera, J.; Vázquez-Suñé, E.; Jurado, A. Settlements around pumping wells: Analysis of influential factors and a simple calculation procedure. J. Hydrol. 2017, 548, 225–236. [Google Scholar] [CrossRef]
- Lyu, H.M.; Shen, S.-L.; Yang, J.; Yin, Z.-Y. Inundation analysis of metro systems with the storm water management model incorporated into a geographical information system: A case study in Shanghai. Hydrol. Earth Syst. Sci. 2019, 23, 4293–4307. [Google Scholar] [CrossRef] [Green Version]
- IAEA [International Atomic Energy Agency]. Stable Isotope Hydrology. In Deuterium and Oxygen-18 in the Water Cycle; Technical Reports Series 210; IAEA: Vienna, Austria, 1981. [Google Scholar]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology; CRC Press: Boca Raton, FL, USA; Lewis Publishers: Boca Raton, FL, USA, 1997; p. 328. [Google Scholar]
- Hoefs, J. Stable Isotope Geochemistry; Completely Revised. Updated and Enlarged Edition; Springer: Berlin, Germany, 1997. [Google Scholar]
- Şener, E.; Davraz, A.; Ozcelik, M. An integration of GIS and remote sensing in groundwater investigations: A case study in Burdur, Turkey. Hydrogeol. J. 2005, 13, 826–834. [Google Scholar] [CrossRef]
- Thapa, R.; Gupta, S.; Gupta, A.; Reddy, D.V.; Kaur, H. Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India. Hydrogeol. J. 2018, 26, 899–922. [Google Scholar] [CrossRef]
- Morris, B.L.; Litvak, R.G.; Ahmed, K.M. Urban groundwater protection and management: Lessons from developing cities in Bangladesh and Kyrghyztan. In Current Problems of Hydrogeology in Urban Areas, Urban Agglomerates and Industrial Centres; NATO Science Series, IV Earth and Environmental Sciences; Howard, K.W.F., Israfilov, R.G., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; Volume 8, pp. 77–102. [Google Scholar]
- Sharp, J.M. Ground-water supply issues in urban and urbanizing areas. In Groundwater in the Urban Environment: Problems, Process and Management; Chilton, J., Ed.; A. A. Balkema: Rotterdam, The Netherlands, 1997; pp. 67–74. [Google Scholar]
- Barrett, M.H.; Howard, A.G. Urban groundwater and sanitation: Developed and developing countries. In Current Problems of Hydrogeology in Urban Areas, Urban Agglomerates and Industrial Centres; NATO Science Series, IV Earth and Environmental Sciences; Howard, K.W.F., Israfilov, R.G., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; Volume 8, pp. 39–56. [Google Scholar]
- Foster, S.D.; Hirata, R.; Howard, K.W.F. Groundwater use in developing cities: Policy issues arising from current trends. Hydrogeol. J. 2011, 19, 271–274. [Google Scholar] [CrossRef]
- Elshall, A.S.; Arik, A.D.; El-Kadi, A.I.; Pierce, S.; Ye, M.; Burnett, K.M.; Wada, C.A.; Bremer, L.L.; Chun, G. Groundwater sustainability: A review of the interactions between science and policy. Environ. Res. Lett 2020, 15, 093004. [Google Scholar] [CrossRef]
- INE—Instituto Nacional de Estatística. Statistical Information about Portuguese Population: Porto City. 2011. Available online: http://www.ine.pt/ (accessed on 30 January 2019).
- Caetano, M.; Igreja, C.; Marcelino, F.; Costa, H. Estatísticas e Dinâmicas Territoriais Multiescala de Portugal Continental 1995–2007–2010 com Base na Carta de Uso e Ocupação do Solo (COS). Relatório Técnico. Direção-Geral do Território (DGT). 2017. Available online: http://www.dgterritorio.pt/ (accessed on 28 February 2019).
- Afonso, M.J. Hidrogeologia de rochas graníticas da região do Porto (NW de Portugal). Cad. Lab. Xeol. Laxe 2003, 28, 173–192. [Google Scholar]
- Afonso, M.J. Hidrogeologia e Hidrogeoquímica da Região Litoral Urbana do Porto, entre Vila do Conde e Vila Nova de Gaia (NW de Portugal): Implicações Geoambientais. Ph.D. Thesis, Instituto Superior Técnico da Universidade Técnica de Lisboa, Lisboa, Portugal, 2011. [Google Scholar]
- Afonso, M.J.; Chaminé, H.I.; Carvalho, J.M.; Marques, J.M.; Gomes, A.; Araújo, M.A.; Fonseca, P.E.; Teixeira, J.; Marques da Silva, M.A.; Rocha, F.T. Urban groundwater resources: A case study of Porto City in northwest Portugal. In Urban Groundwater: Meeting the Challenge. International Association of Hydrogeologists Selected Papers; Howard, K.W.F., Ed.; Taylor & Francis Group: London, UK, 2007; Volume 8, pp. 271–287. [Google Scholar]
- Pereira, E.; Ribeiro, A.; Carvalho, G.S.; Noronha, F.; Ferreira, N.; Monteiro, J.H. Carta Geológica de Portugal, escala 1/200000. Folha 1; Serviços Geológicos de Portugal: Lisboa, Portugal, 1989. [Google Scholar]
- Chaminé, H.I.; Gama Pereira, L.C.; Fonseca, P.E.; Noronha, F.; Lemos de Sousa, M.J. Tectonoestratigrafia da faixa de cisalhamento de Porto–Albergaria-a-Velha–Coimbra–Tomar, entre as Zonas Centro-Ibérica e de Ossa-Morena (Maciço Ibérico, W de Portugal). Cad. Lab. Xeol. Laxe 2003, 28, 37–78. [Google Scholar]
- Chaminé, H.I.; Afonso, M.J.; Robalo, P.M.; Rodrigues, P.; Cortez, C.; Mon- teiro Santos, F.A.; Plancha, J.P.; Fonseca, P.E.; Gomes, A.; Devy-Vareta, N.F.; et al. Urban speleology applied to groundwater and geo-engineering studies: Underground topographic surveying of the ancient Arca D’Água galleries catchworks (Porto, NW Portugal). Int. J. Speleol. 2010, 39, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Araújo, M.A.; Gomes, A.; Chaminé, H.I.; Fonseca, P.E.; Gama Pereira, L.C.; Pinto de Jesus, A. Geomorfologia e geologia regional do sector de Porto-Espinho (W de Portugal): Implicações morfoestruturais na cobertura sedimentar Cenozóica. Cad. Lab. Xeol. Laxe 2003, 28, 79–105. [Google Scholar]
- Struckmeier, W.F.; Margat, J. Hydrogeological Maps: A Guide and a Standard Legend; International Association of Hydrogeologists: Hannover, Germany, 1995; p. 177. [Google Scholar]
- Assaad, F.A.; LaMoreaux, P.E.; Hughes, T.H.; Wangfang, Z.; Jordan, H. Field Methods for Geologists and Hydrogeologist; Springer: Berlin, Germany, 2004; p. 420. [Google Scholar]
- Carríngton da Costa, J.; Teixeira, C. Carta Geológica de Portugal na escala de 1/50000. Notícia Explicativa da Folha 9-C (Porto); Serviços Geológicos de Portugal: Lisboa, Portugal, 1957; p. 38. [Google Scholar]
- Teixeira, C.; Medeiros, A.C. Carta geológica de Portugal na escala 1:50000. Notícia explicativa da folha 9A-Póvoa de Varzim; Serviços Geológicos de Portugal: Lisboa, Portugal, 1965. [Google Scholar]
- Pedrosa, M.Y. Notícia explicativa da Carta Hidrogeológica de Portugal, à escala 1/200000. Folha 1; Instituto Geológico e Mineiro: Lisboa, Portugal, 1999; p. 70. [Google Scholar]
- Carvalho, J.M. Prospecção e Pesquisa de Recursos Hídricos Subterrâneos no Maciço Antigo Português: Linhas Metodológicas. Ph.D. Thesis, Universidade de Aveiro, Aveiro, Portugal, 2006; p. 292. [Google Scholar]
- Epstein, S.; Mayeda, T. Variations of 18O content of waters from natural sources. Geochim. Cosmochim. Acta 1953, 4, 213–224. [Google Scholar] [CrossRef]
- Friedman, I. Deuterium content of natural waters and other substances. Geochim. Cosmochim. Acta 1953, 4, 89–103. [Google Scholar] [CrossRef]
- IAEA [International Atomic Energy Agency]. Procedure and Technique Critique for Tritium Enrichment by Electrolysis at IAEA Laboratory; Technical Procedure No. 19; IAEA: Vienna, Austria, 1976. [Google Scholar]
- Lucas, L.L.; Unterweger, M.P. Comprehensive review and critical evaluation of the half-life of tritium. J. Res. Natl. Inst. Stand. Technol. 2000, 105, 541–549. [Google Scholar] [CrossRef]
- Carreira, P.M.; Marques, J.M.; Graça, R.C.; Aires-Barros, L. Radiocarbon application in dating “complex” hot and cold CO2-rich mineral water systems: A review of case studies ascribed to the northern Portugal. Appl. Geochem. 2008, 23, 2817–2828. [Google Scholar] [CrossRef]
- Carreira, P.M.; Marques, J.M.; Carvalho, M.R.; Capasso, G.; Grassa, F. Mantle-derived carbon in Hercynian granites Stable isotopes signatures C/He associations in the thermomineral waters N-Portugal. J. Volcanol. Geotherm. Res. 2010, 189, 49–56. [Google Scholar] [CrossRef]
- Theis, C.V. The relation between lowering of the piezometric surface and rate and duration of discharge of a well using ground-water storage. Trans. Am. Geophys. Union 1935, 16, 519–524. [Google Scholar] [CrossRef]
- Cooper, H.H.J.R.; Jacob, C.E. A generalized graphical method for evaluating formation constants and summarizing well-field history. Trans. Am. Geophys. Union 1946, 27, 526–534. [Google Scholar] [CrossRef]
- Kruseman, G.P.; de Ridder, N.A. Analysis and Evaluation of Pumping Test. Data, 2nd ed.; International Institute for Land Reclamation and Improvement: Wageningen, The Netherlands, 1990; Volume 47, p. 377. [Google Scholar]
- Sterrett, R.J. Groundwater and Wells, 3rd ed.; Johnson Screens, A Weatherford Company: New Brighton, MN, USA, 2007; p. 812. [Google Scholar]
- Logan, J. Estimating transmissibility from routine production tests of water wells. Ground Water 1964, 2, 35–37. [Google Scholar] [CrossRef]
- Malczewski, J.; Rinner, C. Multicriteria Decision Analysis in Geographic Information Science; Springer: New York, NY, USA, 2015. [Google Scholar]
- Custodio, E.; Llamas, M.R. Hidrología Subterránea; Segunda Edición Corregida; Ediciones Omega: Barcelona, Spain, 2001; p. 2350. [Google Scholar]
- Younger, P.L. Groundwater in the Environment: An Introduction; Blackwell Publishing: Hoboken, NJ, USA, 2007; p. 318. [Google Scholar]
- MA—Ministério do Ambiente. Decreto-Lei nº 236/98, de 1 de Agosto. Diário da República—I Série-A, Nº 176; Ministério do Ambiente: Lisbon, Portugal, 1998.
- Pedrosa, M.Y. Carta Hidrogeológica de Portugal, à escala 1/200000. Folha 1; Instituto Geológico e Mineiro: Lisboa, Portugal, 1998. [Google Scholar]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic patterns in modern global precipitation. In Climate Change in Continental Isotopic Records, Geoph. Monog. Series; Swart, P.K., Ed.; AGU: Washington, DC, USA, 1993; pp. 1–36. [Google Scholar]
- Bowen, G.J.; Wilkinson, B. Spatial distribution of δ18O in meteoric precipitation. Geology 2002, 30, 315–318. [Google Scholar] [CrossRef]
- Terzer, S.; Wassenaar, L.I.; Araguás-Araguás, L.J.; Aggarwal, P.K. Global isoscapes for δ18O and δ2H in precipitation: Improved prediction using regionalized climatic regression models. Hydrol. Earth. Syst. Sci. 2013, 17, 4713–4728. [Google Scholar] [CrossRef]
- Carreira, P.M.; Araújo, M.F.; Nunes, D. Isotopic composition of rain and water vapour samples from Lisbon region: Characterization of monthly and daily events. In IAEA-TECDOC-1453 Isotopic Composition of Precipitation in the Mediterranean Basin in Relation to Air Circulation Patterns and Climate; IAEA: Vienna, Austria, 2005; pp. 141–155. [Google Scholar]
- Wakida, F.; Lerner, D. Non-agricultural sources of groundwater nitrate: A review and case study. Water Res. 2005, 39, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Heitor, A.M.F. Contaminação das águas subterrâneas no Norte de Portugal. In Las Aguas Subterráneas en el Noroeste de la Península Ibérica; Textos de las Jornadas, Mesa Redonda y Comunicaciones; Samper, J., Leitão, T., Fernández, L., Ribeiro, L., Eds.; A Coruña. AIH-Grupo Español & APRH. ITGE: Madrid, Spain, 2000; pp. 295–308. [Google Scholar]
- Pedrosa, M.Y.; Brites, J.A.; Pereira, A.P. Carta das Fontes e do Risco de Contaminação da Região de Entre-Douro-e-Minho. Folha Sul, Escala 1/100000, Nota Explicativa; Instituto Geológico e Mineiro: Lisboa, Portugal, 2002. [Google Scholar]
- Correia, M.; Barroso, A.; Barroso, M.F.; Soares, D.; Oliveira, M.B.P.P.; Delerue-Matos, C. Contribution of different vegetable types to exogenous nitrate and nitrite exposure. Food Chem. 2010, 120, 960–966. [Google Scholar] [CrossRef] [Green Version]
- Begonha, A.; Sequeira Braga, M.A.; Gomes da Silva, F. A acção da água da chuva na meteorização de monumentos graníticos. In IV Congresso Nacional de Geologia. Memórias do Museu e Laboratório Mineralógico e Geológico da Faculdade de Ciências da Universidade do Porto; Borges, F.S., Marques, M., Eds.; MLMGFCUP: Porto, Portugal, 1995; Volume 4, pp. 177–181. [Google Scholar]
- Begonha, A. Meteorização do Granito e Deterioração da Pedra em Monumentos e Edifícios da Cidade do Porto; Colecção monografias, FEUP Edições: Porto, Portugal, 2001; p. 445. [Google Scholar]
- Carreira, P.M.; Valério, P.; Nunes, D.; Araújo, M.F. Temporal and seasonal variations of stable isotopes (2H and 18O) and tritium in precipitation over Portugal. In Proceedings of the Isotopes in Environmental Studies—Aquatic Forum, Monte Carlo, Monaco, 25–29 October 2004; IAEA: Vienna, Austria, 2006; pp. 370–373. [Google Scholar]
- Misstear, B.D.R. The value of simple equilibrium approximations for analysing pumping test data. Hydrogeol. J. 2001, 9, 125–126. [Google Scholar] [CrossRef]
- Afonso, M.J.; Carvalho, J.M.; Marques, J.M.; Chaminé, H.I. Hydrodynamic constraints of the Porto urban area crystalline bedrock (NW Portugal, Iberian Massif): Implications on groundwater resources. In Proceedings of the 7th Hellenic Hydrogeological Conference and 2nd MEM Workshop on Fissured Rocks Hydrology, Athens, Greece, 5–6 October 2005; Stournaras, G., Pavlopoulos, K., Bellos, T.h., Eds.; The Geological Society of Greece (Hellenic Committee of Hydrogeology): Athens, Greece, 2005; Volume 2, pp. 77–81. [Google Scholar]
- Carvalho, J.M.; Chaminé, H.I.; Afonso, M.J.; Espinha Marques, J.; Medeiros, A.; Garcia, S.; Gomes, A.; Teixeira, J.; Fonseca, P.E. Productivity and water cost in fissured-aquifers from the Iberian crystalline basement (Portugal): Hydrogeological constraints. In Water, Mining and Environment. Book Homage to Professor Rafael Fernández Rubio; López-Geta, J.A., et al., Eds.; Instituto Geológico y Minero de España: Madrid, Spain, 2005; pp. 193–207. [Google Scholar]
- Larsson, I. Groundwater in Hard Rocks. Studies and Reports in Hydrology; UNESCO: Paris, France, 1984; p. 234. [Google Scholar]
- Wright, E.P.; Burgess, W.G. The Hydrogeology of Crystalline Basement in Africa; Geological Society Special Publication, 68; GSL: London, UK, 1992; p. 264. [Google Scholar]
- Lloyd, J.W. Water Resources of Hard Rock Aquifers in Arid and Semi-arid Zones; Studies and Reports in Hydrology, 58; UNESCO: Paris, France, 1999; p. 284. [Google Scholar]
- Robins, N.S.; Misstear, B.D.R. Groundwater in the Celtic Regions: Studies in Hard Rock and Quaternary Hydrogeology; Geological Society of London: London, UK, 2000; p. 273. [Google Scholar]
- Stober, I.; Bucher, K. Hydrogeology of Crystalline Rocks; Water Science and Technology Library; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; Volume 34, p. 284. [Google Scholar]
- Krásný, J.; Sharp, J.M. Hydrogeology of fractured rocks from particular fractures to regional approaches: State-of-the-art and future challenges. In Groundwater in Fractured Rocks. International Association of Hydrogeologists Selected Papers; Krásný, J., Sharp, J.M., Eds.; Taylor & Francis Group: London, UK, 2007; pp. 1–30. [Google Scholar]
- Singhal, B.B.S.; Gupta, R.P. Applied Hydrogeology of Fractured Rocks, 2nd ed.; Springer: Dordrecht, The Netherlands, 2010; p. 408. [Google Scholar]
- Gustafson, G. Hydrogeology for Rock Engineers; BeFo: Stockholm, Sweden, 2012. [Google Scholar]
- Sharp, J.M. Fractured Rock Hydrogeology; CRC Press: Boca Raton, FL, USA, 2014; p. 408. [Google Scholar]
- Ofterdinger, U.; Macdonald, A.M.; Comte, J.C.; Young, M.E. (Eds.) Groundwater in Fractured Bedrock Environments: Managing Catchment and Subsurface Resources; Geological Society: London, UK, 2019. [Google Scholar]
- Freitas, L. Avaliação Integrada de Recursos Hídricos em Áreas Urbanas: Aplicações Para a Sustentabilidade e o Ordenamento Territorial. Ph.D. Thesis, Faculdade de Ciências e Tecnologia da Universidade de Coimbra, Coimbra, Portugal, 2019; p. 425. [Google Scholar]
- Carvalho, J.M.; Espinha Marques, J.; Afonso, M.J.; Chaminé, H.I. Prospecção e pesquisa de recursos hidrominerais e de água de nascente no Maciço Antigo Português. Boletim e Minas 2007, 42, 161–196. [Google Scholar]
- Begonha, A.; Sequeira Braga, M.A. Weathering of the Oporto granite: Geotechnical and physical properties. Catena 2002, 49, 57–76. [Google Scholar] [CrossRef]
- IAH [International Association of Hydrogeologists]. The UN-SDGs for 2030: Essential Indicators for Groundwater. 2017. Available online: https://iah.org/wp-content/uploads/2017/04/IAH-Groundwater-SDG-6-Mar-2017.pdf (accessed on 30 June 2020).
Hydrogeological Groups | Sedimentary Cover | Metasedimentary Rocks | Granitic Rocks | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Regional Hydrogeological Units (RHU) | Beach and Dune Sands; Alluvia | Sandy Silts and Clays | Micaschists, Metagraywackes and Paragneisses | Two-mica Granite, Medium to Coarse Grained | Biotitic Granite, Medium to Fine Grained | Micaschists, Gneisses and Migmatites | Aplite-pegmatite and Quartz Veins | |||
HYDROGEOLOGICAL FEATURES | Thickness (m) | <12 | 10–20 | not applicable | ||||||
Weathering profile | low (m) | not applicable | 10–20 | 5–10 | <5 | |||||
high (m) | 20–40 | 20–40 | ||||||||
silty and/or clayey | X | X | X | X | ||||||
sandy | X | X | X | X | ||||||
Connectivity to the drainage system | with | X | X | |||||||
possible | X | X | X | X | X | |||||
Type of media flow | porous | X | X | |||||||
fissured | X | X | X | X | X | |||||
Hydrochemical facies | Cl-Na to NO3-Na | Cl-Na to Cl-SO4-Na | ||||||||
Environmental isotopes | δ18O (‰) | not determined | −6.5 to −3.5 | not determined | ||||||
δ2H (‰) | −40 to −20 | |||||||||
3H (TU) | < 5 | not determined | ||||||||
Hydrodynamic parameters | long-term well capacity, Q (L/s) | very low (Q ≤ 1) | X | X | X | X | X | |||
Low (1 < Q <2) | X | X | ||||||||
Transmissivity (T, m2/day) | 15–20 | < 1 | 1–3 | 0.5–2 | 1–3 | |||||
Storage coefficient (S) | 10−1–10−2 | 10−2–10−3 | 10−3–10−5 | |||||||
Aquifer confinement | unconfined | aquitard | semi-confined to confined | |||||||
More suitable exploitation structures | dug-wells, galleries, and springs | X | X | X | ||||||
boreholes | X | X | X | X | X | |||||
Direct groundwater recharge (%) | 25–30 | 20–25 | 10–15 | 5–10 | 15–20 | |||||
Urban infiltration potential index (IPI-Urban) | high | X | ||||||||
moderate | X | X | X | X | ||||||
low | X | X | X | X | X | X | ||||
very low | X | X |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afonso, M.J.; Freitas, L.; Marques, J.M.; Carreira, P.M.; Pereira, A.J.S.C.; Rocha, F.; I. Chaminé, H. Urban Groundwater Processes and Anthropogenic Interactions (Porto Region, NW Portugal). Water 2020, 12, 2797. https://doi.org/10.3390/w12102797
Afonso MJ, Freitas L, Marques JM, Carreira PM, Pereira AJSC, Rocha F, I. Chaminé H. Urban Groundwater Processes and Anthropogenic Interactions (Porto Region, NW Portugal). Water. 2020; 12(10):2797. https://doi.org/10.3390/w12102797
Chicago/Turabian StyleAfonso, Maria José, Liliana Freitas, José Manuel Marques, Paula M. Carreira, Alcides J.S.C. Pereira, Fernando Rocha, and Helder I. Chaminé. 2020. "Urban Groundwater Processes and Anthropogenic Interactions (Porto Region, NW Portugal)" Water 12, no. 10: 2797. https://doi.org/10.3390/w12102797
APA StyleAfonso, M. J., Freitas, L., Marques, J. M., Carreira, P. M., Pereira, A. J. S. C., Rocha, F., & I. Chaminé, H. (2020). Urban Groundwater Processes and Anthropogenic Interactions (Porto Region, NW Portugal). Water, 12(10), 2797. https://doi.org/10.3390/w12102797