Open-Surface Water Bodies Dynamics Analysis in the Tarim River Basin (North-Western China), Based on Google Earth Engine Cloud Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Original Water Detection Rule
2.3.2. Arid Region Water Detection Rule
2.3.3. Water Bodies Extraction Process
2.3.4. Change Analysis of Open-surface Water Bodies
3. Results
3.1. Accuracy Comparison of Different Water Indexes
3.2. Spatial Distribution of Open-Surface Water Bodies in the TRB
3.3. Monthly Changes in Open-Surface Water Bodies in the TRB
3.4. Yearly Changes in Open-Surface Water Bodies in the TRB
3.5. Conversions of Open-Surface Water Bodies in the TRB
3.6. Relationship between the Climatic Factors and Yearly Maximum Water Bodies
4. Discussion
4.1. Comparison with JRC Yearly Water Classification History
4.2. Attribution of Open-Surface Water Bodies Changes in the TRB
4.3. Advantages and Uncertainties of This Study
5. Conclusions
- (1)
- The distribution of surface water bodies in the TRB shows obvious spatial heterogeneity. The water bodies are mainly distributed in mountainous areas and piedmont plains, and there are almost no permanent water bodies in the basin.
- (2)
- Phenological effects and snowmelt and evaporation, which are affected by temperature changes, together cause the surface water bodies of the TRB to show obvious intra-year differences, that is decreasing from January to July, and then increasing to December.
- (3)
- From 1992 to 2019, with the increase of precipitation, the implementation of ecological water transportation, and other measures, the permanent water bodies and seasonal water bodies of the TRB showed an increasing trend.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wood, E.F.; Roundy, J.K.; Troy, T.J.; van Beek, L.P.H.; Bierkens, M.F.P.; Blyth, E.; de Roo, A.; Döll, P.; Ek, M.; Famiglietti, J.; et al. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Carroll, M.; Wooten, M.; DiMiceli, C.; Sohlberg, R.; Kelly, M. Quantifying Surface Water Dynamics at 30 Meter Spatial Resolution in the North American High Northern Latitudes 1991–2011. Remote Sens. 2016, 8, 622. [Google Scholar] [CrossRef] [Green Version]
- Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens. Environ. 2016, 178, 142–157. [Google Scholar] [CrossRef]
- Ferguson, I.M.; Maxwell, R.M. Human impacts on terrestrial hydrology: Climate change versus pumping and irrigation. Environ. Res. Lett. 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Aherne, J.; Larssen, T.; Cosby, B.J.; Dillon, P.J. Climate variability and forecasting surface water recovery from acidification: Modelling drought-induced sulphate release from wetlands. Sci. Total Environ. 2006, 365, 186–199. [Google Scholar] [CrossRef]
- Mercier, F.; Cazenave, A.; Maheu, C.J.G.; Change, P. Interannual lake level fluctuations (1993–1999) in Africa from Topex/Poseidon: Connections with ocean–atmosphere interactions over the Indian Ocean. Glob. Planet. Chang. 2002, 32, 141–163. [Google Scholar] [CrossRef]
- Hall, J.W.; Grey, D.; Garrick, D.; Fung, F.; Brown, C.; Dadson, S.J.; Sadoff, C.W.J.S. Coping with the curse of freshwater variability. Science 2014, 346. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S.J.N. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Sharma, K.D.; Singh, S.; Singh, N.; Kalla, A.K. Role of satellite remote sensing for monitoring of surface water resources in an arid environment. Hydrol. Sci. J. 1989, 34, 531–537. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Vrieling, A.; Skidmore, A.; Wang, T.; Turak, E. Monitoring the dynamics of surface water fraction from MODIS time series in a Mediterranean environment. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 135–145. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, K.; Zhou, Y.; Liu, X.; Qin, B. Monitoring the river plume induced by heavy rainfall events in large, shallow, Lake Taihu using MODIS 250 m imagery. Remote Sens. Environ. 2016, 173, 109–121. [Google Scholar] [CrossRef]
- Ranghetti, L.; Busetto, L.; Crema, A.; Fasola, M.; Cardarelli, E.; Boschetti, M. Testing estimation of water surface in Italian rice district from MODIS satellite data. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 284–295. [Google Scholar] [CrossRef]
- Lu, S.; Jia, L.; Zhang, L.; Wei, Y.; Baig, M.H.A.; Zhai, Z.; Meng, J.; Li, X.; Zhang, G. Lake water surface mapping in the Tibetan Plateau using the MODIS MOD09Q1 product. Remote Sens. Lett. 2016, 8, 224–233. [Google Scholar] [CrossRef]
- Khandelwal, A.; Karpatne, A.; Marlier, M.E.; Kim, J.; Lettenmaier, D.P.; Kumar, V. An approach for global monitoring of surface water extent variations in reservoirs using MODIS data. Remote Sens. Environ. 2017, 202, 113–128. [Google Scholar] [CrossRef]
- Wang, X.; Xie, S.; Zhang, X.; Chen, C.; Guo, H.; Du, J.; Duan, Z. A robust Multi-Band Water Index (MBWI) for automated extraction of surface water from Landsat 8 OLI imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 73–91. [Google Scholar] [CrossRef]
- Tulbure, M.G.; Broich, M. Spatiotemporal patterns and effects of climate and land use on surface water extent dynamics in a dryland region with three decades of Landsat satellite data. Sci. Total Environ. 2019, 658, 1574–1585. [Google Scholar] [CrossRef]
- Li, L.; Chen, Y.; Xu, T.; Liu, R.; Shi, K.; Huang, C. Super-resolution mapping of wetland inundation from remote sensing imagery based on integration of back-propagation neural network and genetic algorithm. Remote Sens. Environ. 2015, 164, 142–154. [Google Scholar] [CrossRef]
- Jia, K.; Jiang, W.; Li, J.; Tang, Z. Spectral matching based on discrete particle swarm optimization: A new method for terrestrial water body extraction using multi-temporal Landsat 8 images. Remote Sens. Environ. 2018, 209, 1–18. [Google Scholar] [CrossRef]
- Che, X.; Feng, M.; Sexton, J.; Channan, S.; Sun, Q.; Ying, Q.; Liu, J.; Wang, Y. Landsat-Based Estimation of Seasonal Water Cover and Change in Arid and Semi-Arid Central Asia (2000–2015). Remote Sens. 2019, 11, 1323. [Google Scholar] [CrossRef] [Green Version]
- Steinhausen, M.J.; Wagner, P.D.; Narasimhan, B.; Waske, B. Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 595–604. [Google Scholar] [CrossRef]
- Hardy, A.; Ettritch, G.; Cross, D.; Bunting, P.; Liywalii, F.; Sakala, J.; Silumesii, A.; Singini, D.; Smith, M.; Willis, T.; et al. Automatic Detection of Open and Vegetated Water Bodies Using Sentinel 1 to Map African Malaria Vector Mosquito Breeding Habitats. Remote Sens. 2019, 11, 593. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Jia, M.; Chen, N.; Wang, W. Long-Term Surface Water Dynamics Analysis Based on Landsat Imagery and the Google Earth Engine Platform: A Case Study in the Middle Yangtze River Basin. Remote Sens. 2018, 10, 1635. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Dong, J.; Metternicht, G.; Hostert, P.; Fensholt, R.; Chowdhury, R.R. Remote sensing and geospatial technologies in support of a normative land system science: Status and prospects. Curr. Opin. Environ. Sustain. 2019, 38, 44–52. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Rembold, F.; Meroni, M.; Urbano, F.; Csak, G.; Kerdiles, H.; Perez-Hoyos, A.; Lemoine, G.; Leo, O.; Negre, T. ASAP: A new global early warning system to detect anomaly hot spots of agricultural production for food security analysis. Agric. Syst. 2019, 168, 247–257. [Google Scholar] [CrossRef]
- Saah, D.; Johnson, G.; Ashmall, B.; Tondapu, G.; Tenneson, K.; Patterson, M.; Poortinga, A.; Markert, K.; Quyen, N.H.; San Aung, K.; et al. Collect Earth: An online tool for systematic reference data collection in land cover and use applications. Environ. Model. Softw. 2019, 118, 166–171. [Google Scholar] [CrossRef]
- Parks, S.A.; Holsinger, L.M.; Koontz, M.J.; Collins, L.; Whitman, E.; Parisien, M.A.; Loehman, R.A.; Barnes, J.L.; Bourdon, J.-F.; Boucher, Y.; et al. Giving Ecological Meaning to Satellite-Derived Fire Severity Metrics across North American Forests. Remote Sens. 2019, 11, 1735. [Google Scholar] [CrossRef] [Green Version]
- Lobo, F.D.L.; Souza-Filho, P.W.M.; Novo, E.M.L.D.M.; Carlos, F.M.; Barbosa, C.C.F. Mapping Mining Areas in the Brazilian Amazon Using MSI/Sentinel-2 Imagery (2017). Remote Sens. 2018, 10, 1178. [Google Scholar] [CrossRef] [Green Version]
- Walker, E.; Venturini, V. Land surface evapotranspiration estimation combining soil texture information and global reanalysis datasets in Google Earth Engine. Remote Sens. Lett. 2019, 10, 929–938. [Google Scholar] [CrossRef]
- Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B., 3rd. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Z.; Li, Y.; Gu, Y.; Jiang, W.; Xue, Y.; Hu, Q.; LaGrange, T.; Bishop, A.; Drahota, J.; Li, R. Assessing Nebraska playa wetland inundation status during 1985-2015 using Landsat data and Google Earth Engine. Environ. Monit Assess. 2016, 188, 654. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Xiao, X.; Li, X.; Pan, L.; Doughty, R.; Ma, J.; Dong, J.; Qin, Y.; Zhao, B.; Wu, Z.; et al. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2017, 131, 104–120. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, J.; Xiao, X.; Wang, X.; Dai, S.; Zhao, B. Long-Term Dynamic of Poyang Lake Surface Water: A Mapping Work Based on the Google Earth Engine Cloud Platform. Remote Sens. 2019, 11, 313. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Jiang, W.; Tang, Z.; Ling, Z.; Wu, Z. Long-Term Changes of Open-Surface Water Bodies in the Yangtze River Basin Based on the Google Earth Engine Cloud Platform. Remote Sens. 2019, 11, 2213. [Google Scholar] [CrossRef] [Green Version]
- Frazier, P.S.; Page, K.J. Water body detection and delineation with Landsat TM data. Photogramm. Eng. Remote Sens. 2000, 66, 1461–1468. [Google Scholar] [CrossRef]
- Zhang, M. Extracting Water-Body Information with Improved Model of Spectal Relationship in a Higher Mountain Area. Geogr. Geo Inf. Sci. 2008, 24, 14–16, 22. [Google Scholar]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 2007, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2007, 27, 3025–3033. [Google Scholar] [CrossRef]
- Aung, E.M.M.; Tint, T. Ayeyarwady river regions detection and extraction system from google earth imagery. In Proceedings of the 3rd International Conference on Information Communication & Signal Processing, Shangai, China, 12–15 September 2020. [Google Scholar]
- Crist, E.P.; Cicone, R.C.; Sensing, R. A physically-based transformation of Thematic Mapper data—The TM Tasseled Cap. IEEE Trans. Geosci. Remote Sens. 1984, 256–263. [Google Scholar] [CrossRef]
- Cao, R.; Li, C.; Liu, L.; Wang, J.; Yan, G. Extracting Miyun reservoir’s water area and monitoring its change based on a revised normalized different water index. Sci. Surv. Mapp. 2008, 33. [Google Scholar] [CrossRef]
- Yan, P.; Zhang, Y.; Zhang, Y. A Study on Information Extraction of Water System in Semi-arid Regions with the Enhanced Water Index (EWI) and GIS Based Noise Remove Techniques. Remote Sens. Inf. 2007, 6. [Google Scholar] [CrossRef]
- Beeri, O.; Phillips, R.L. Tracking palustrine water seasonal and annual variability in agricultural wetland landscapes using Landsat from 1997 to 2005. Glob. Chang. Biol. 2007, 13, 897–912. [Google Scholar] [CrossRef]
- Al-Khudhairy, D.H.A.; Leemhuis, C.; Hoffmann, V.; Shepherd, I.M.; Calaon, R.; Thompson, J.R.; Gavin, H.; Gasca-Tucker, D.L.; Zalldls, Q.; Bilas, G.; et al. Monitoring wetland ditch water levels using LANDSAT TM and ground-based measurements. Photogramm. Eng. Remote Sens. 2002, 68. [Google Scholar] [CrossRef]
- Menarguez, M.A. Global Water Body Mapping from 1984 to 2015 Using Global High Resolution Multispectral Satellite Imagery; University of Oklahoma: Norman, OK, USA, 2015. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Zou, Z.; Dong, J.; Menarguez, M.A.; Xiao, X.; Qin, Y.; Doughty, R.B.; Hooker, K.V.; Hambright, K.D. Continued decrease of open surface water body area in Oklahoma during 1984–2015. Sci. Total Environ. 2017, 595, 451–460. [Google Scholar] [CrossRef]
- Zou, Z.; Xiao, X.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Zhang, G.; Wang, J. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl. Acad. Sci. USA 2018, 115, 3810–3815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Dong, J.; Xiao, X.; Liu, R.; Zou, Z.; Zhao, G.; Ge, Q. Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine. Sci. Total Environ. 2019, 689, 366–380. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, W.; Xu, H.; Liu, J.; Zhang, H.; Chen, Y. The influence of Groundwater on Vegetation in the Lower Reaches of Traim River, China. Acta Geogr. Sin. 2003, 4. [Google Scholar] [CrossRef]
- Ablekim, A.; Kasimu, A.; Kurban, A.; Tursun, M. Evolution of small lakes in lower reaches of Tarim River based on multi-source spatial data. Geogr. Res. 2016, 35. [Google Scholar] [CrossRef]
- Arkin, A.; Liu, G.; Alishib, K.; Abdimijit, A. Ecologic water transfusion in the lower reaches of the Traim river based on CBERS/CCD image. Resour. Environ. Yangtze Basin 2012, 21, 624–632. [Google Scholar]
- Zhu, C.; Li, J.; Shen, Z.; Shen, Q. Time series monitoring and comparative analysis on eco-environment change in the lower reaches of the Tarim River. J. Geoinf. Sci. 2019, 21, 437–444. [Google Scholar] [CrossRef]
- Zhou, H.; Shen, M.; Chen, J.; Xia, J.; Hong, S. Trends of natural runoffs in the Tarim River Basin during the last 60 years. Arid Land Geogr. 2018, 41, 221–229. [Google Scholar] [CrossRef]
- Chen, Y.; Cui, W.; Li, W.; Chen, Y.; Zhang, H. Utilization of water resources and ecological protection in the Traim River. Acta Geogr. Sin. 2003, 58, 215–222. [Google Scholar]
- Wang, X.; Dong, Z.; Chen, G. Characteristics of Blown Sand Environment in Middle Taklimakan Desert. J. Desert Res. 2001, 21, 56–61. [Google Scholar]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Santoro, M.; Wegmüller, U.; Lamarche, C.; Bontemps, S.; Defourny, P.; Arino, O. Strengths and weaknesses of multi-year Envisat ASAR backscatter measurements to map permanent open water bodies at global scale. Remote Sens. Environ. 2015, 171, 185–201. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Nitze, I.; Grosse, G.; Jones, B.; Arp, C.; Ulrich, M.; Fedorov, A.; Veremeeva, A. Landsat-Based Trend Analysis of Lake Dynamics across Northern Permafrost Regions. Remote Sens. 2017, 9, 640. [Google Scholar] [CrossRef] [Green Version]
- Xue, S. A comparative study of approximate entropy and sample entropy in the diagnosis of variation of runoff series: A case study in Yarkant River in Xinjiang, China. J. Water Resour. Water Eng. 2019, 30, 24–30. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, X.; He, Q. Analysis of Temperature Elements Affecting Per Unit Area Output of Cotton in Akesu Cotton Region. Chin. J. Agrometeorol. 2001, 22, 34–38. [Google Scholar]
- Zhou, C.; Luo, G.; Li, C.; Tang, Q.; Li, H.; Wang, Q.; Fukui, H. Environmental change in Bosten Lake and its relation with the oasis reclamation in Yanqi Basin. Geogr. Res. 2001, 20, 14–23. [Google Scholar]
- Sun, B.; Mao, W.; Feng, Y.; Chang, T.; Zhang, L.; Zhao, L. Study on the Change of Air Temperature, Precipitation and Runoff Volume in the Yarkant River Basin. Arid Zone Res. 2006, 23, 203–209. [Google Scholar] [CrossRef]
- Li, L.Z.; Zeng, Q.; Zhou, H.; Wang, A.; Liu, C.; Chi, Y.; Wang, Z. Change and Causes of the River-lake Marshes along the Green Corridor at the Lower Reaches of the Qarqan River. Arid Zone Res. 2012, 29, 233–237. [Google Scholar] [CrossRef]
- Huo, T.; Yan, W.; Ma, X. A study of the variation and driving factors of the water area of the terminal lake of inland river: A case study of Tetema Lake region. Remote Sens. Land Resour. 2020, 32, 149–156. [Google Scholar]
- Han, C. The Background, Present Situation and Development of Lop Nor Potash Green Industry. J. Salt Sci. Chem. Ind. 2020, 49, 9–12. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Y.; Wang, M.; Wang, F.; Tang, Z.; He, H. Spatial and temporal distribution characteristics of drought and its relationship with meteorological factors in Xinjiang in last 17 years. Acta Ecol. Sin. 2020, 40. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.; Cai, C. Research on Winter Wheat Phenology and Climate in Xinjiang. Chin. J. Agrometeorol. 2000, 21, 14–19. [Google Scholar]
- Ran, Q. Spatio-Temporal Change Characteristics and Analysis of Surface Water Resources in the Tarim River Basin; Chongqing Jiaotong University: Norman, OK, USA, 2017. [Google Scholar]
- Xu, A.; Yang, T.; Wang, C.; Ji, Q. Variation of glaciers in the Shaksgam River Basin, Karakoram Mountains during 1978–2015. Prog. Geogr. 2016, 35, 878–888. [Google Scholar] [CrossRef] [Green Version]
- Xu, A.; Yang, T.; He, Y.; Ji, Q. Research for Glaciers and Climate Change of K2 on the Northern Slope in the Past 40 Years. Res. Soil Water Conserv. 2016, 23, 77–82. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.; Li, H.; Wu, L.; Jin, S.; Zhou, P. Changes of Ice-thickness and Volume for Representative Glaciers in Tianshan Mountains in the Past 50 Years. Acta Geogr. Sin. 2012, 67, 929–940. [Google Scholar]
- Li, C.; Yang, T.; Tian, H. Variation of West Kunlun Mountains glacier during 1990–2011. Prog. Geogr. 2013, 32, 548–559. [Google Scholar] [CrossRef]
- Han, Y. Research on Glacier Change in the West Kunlun Mountains and Flow Velocity Estimation Based on Landsat Images (1977–2013); Nanjing University: Nanjing, China, 2015. [Google Scholar]
- Jian, D.; Li, X.; Tao, H.; Huang, J.; Su, B. Spatio-temporal variation of actual evapotranspiration and its influence factors in the Tarim River basin based on the complementary relationship approach. J. Glaciol. Geocryol. 2016, 38, 750–760. [Google Scholar]
- Zhai, P.; Yu, R.; Guo, Y.; Li, Q.; Ren, X.; Wang, Y.; Xu, W.; Liu, Y.; Ding, Y. The strong El Nino in 2015/2016 and its dominanant immpacts on global and China climate. Acta Meteorol. Sin. 2016, 74. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Jiang, W.; Jia, K.; Rao, P.; Lv, J. Analysis of the Dynamic Changes of the Baiyangdian Lake Surface Based on a Complex Water Extraction Method. Water 2018, 10, 1616. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Zhang, L.; Wylie, B.; Sensing, R. Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Feng, M.; Sexton, J.O.; Channan, S.; Townshend, J.R. A global, high-resolution (30-m) inland water body dataset for 2000: First results of a topographic–spectral classification algorithm. Int. J. Digit. Earth 2015, 9, 113–133. [Google Scholar] [CrossRef] [Green Version]
Method | Index | Threshold |
---|---|---|
MNDWI [42] | MNDWI = (Bgreen − BSWIR-1)/(Bgreen + BSWIR-1) | MNDWI > 0 |
WI2015 [40] | WI2015 = 1.7204 + 171Bgreen + 3Bred − 70BNir − 44BSWIR-1 − 71BSWIR-2 | WI2015 > 0 |
AWEInsh [39] | AWEInsh = 4 × (Bgreen − BSWIR-1) − (0.25 × BNir + 2.75 × BSWIR-1) | AWEInsh > 0 |
RNDWI [45] | RNDWI = (BSir − Bred)/(BSir + Bred) | RNDWI > 0 |
EWI [46] | EWI = (Bgreen − BNir − BMir)/(Bgreen + BNir + BMir) | EWI > 0 |
SNN [47] | Sum457 = BNir + BSWIR-1 + BSWIR-2 ND5723 = [(BSWIR-1 + BSWIR-2) − (Bgreen + Bred)]/[(BSWIR-1 + BSWIR-2) + (Bgreen + Bred)] ND571 = [(BSWIR-1 + BSWIR-2) − Bblue]/ [(BSWIR-1 + BSWIR-2) + Bblue] | (Sum457 < 0.188) or (ND5723 < −0.457) or (ND571 < 0.04) or (Sum457 < 0.269 and ND5723 < −0.234 and ND571 < 0.40) |
NDWI+ VI [49] | EVI = 2.5 × (BNir − Bred)/(BNir + 6.0 × Bred − 7.5 × Bblue + 1) NDVI = (BNir − Bred)/(BNir + Bred) NDWI = (Bgreen − BNir)/(Bgreen + BNir) | EVI < 0.1 and (NDWI > NDVI or NDWI > EVI) |
MNDWI + VI [52] | EVI = 2.5 × (BNir − Bred)/(BNir + 6.0 × Bred − 7.5 × Bblue + 1) NDVI = (BNir − Bred)/(BNir + Bred) MNDWI = (Bgreen − BSWIR-1)/(Bgreen + BSWIR-1) | EVI < 0.1 and (MNDWI > NDVI or MNDWI > EVI) |
LSWI + VI [49] | EVI = 2.5 × (BNir − Bred)/(BNir + 6.0 × Bred − 7.5 × Bblue + 1) NDVI = (BNir − Bred)/(BNir + Bred) LSWI = (BNir − BSWIR-1)/(BNir + BSWIR-1) | EVI < 0.1 and (LSWI > NDVI or LSWI > EVI) |
AWEI + VI [36] | EVI = 2.5 × (BNir − Bred)/(BNir + 6.0 × Bred − 7.5 × Bblue + 1) NDVI = (BNir − Bred)/(BNir + Bred) AWEIsh = Bblue + 2.5 × Bgreen − 1.5 × (BNir + BSWIR-1) − 0.25 × BSWIR-2 AWEInsh = 4 × (Bgreen − BSWIR-1) − (0.25 × BNir + 2.75 × BSWIR-1) | (AWEInsh − AWEIsh > −0.1) and ((MNDWI > EVI) or (MNDWI > NDVI)) |
ARWDR | EVI = 2.5 × (BNir − Bred)/(BNir + 6.0 × Bred − 7.5 × Bblue + 1) NDVI = (BNir − Bred)/(BNir + Bred) MNDWI = (Bgreen − BSWIR-1)/(Bgreen + BSWIR-1) NDWI = (Bgreen − BNir)/(Bgreen + BNir) | (NDWI > −0.1) and (MNDWI > 0.1) and (EVI < 0.1) and ((MNDWI > EVI) or (MNDWI > NDVI)) |
Zone | Permanent Water Bodies (km2) | Seasonal Water Bodies (km2) | Max Water Bodies (km2) |
---|---|---|---|
HT | 128.05 | 4162.69 | 6609.00 |
YK | 436.92 | 6048.67 | 12,041.59 |
KS | 159.06 | 5418.37 | 11,455.65 |
AKS | 99.95 | 4875.39 | 9309.38 |
WKP | 1102.26 | 11,006.33 | 21,000.30 |
SR | 105.26 | 7198.40 | 12,675.96 |
TMS | 62.13 | 4663.80 | 12,183.94 |
TD | 0 | 248.05 | 1415.35 |
KD | 0 | 621.14 | 2186.54 |
Total | 2093.63 | 44,242.80 | 88,877.70 |
Zone | Water Body Type | Abrupt Point | Rate of Change (year−1) | |
---|---|---|---|---|
Area (km2) | p-Value | |||
HT | Permanent Water bodies | 2.29 * | <0.001 | |
Seasonal Water bodies | 2009 | 65.03 * | <0.001 | |
Max Water bodies | 2009 | 65.75 | <0.001 | |
YK | Permanent Water bodies | 3.07 | 0.0515 | |
Seasonal Water bodies | 46.35 * | 0.0024 | ||
Max Water bodies | 54.77 * | 0.0016 | ||
KS | Permanent Water bodies | 0.70 | 0.759 | |
Seasonal Water bodies | 2013 | 79.80 * | <0.001 | |
Max Water bodies | 2013 | 74.34 * | <0.001 | |
AKS | Permanent Water bodies | −0.17 | 0.493 | |
Seasonal Water bodies | 2011 | 99.80 * | <0.001 | |
Max Water bodies | 2011 | 100.15 * | <0.001 | |
WKP | Permanent Water bodies | 2006 | −8.16 * | <0.001 |
Seasonal Water bodies | 2003 | 147.95 * | <0.001 | |
Max Water bodies | 2003 | 143.80 * | <0.001 | |
SR | Permanent Water bodies | 2012 | 3.467 * | <0.001 |
Seasonal Water bodies | 2008 | 155.06 * | <0.001 | |
Max Water bodies | 2008 | 154.30 * | <0.001 | |
TMS | Permanent Water bodies | 0.45 | 0.412 | |
Seasonal Water bodies | 2003 | 96.98 * | <0.001 | |
Max Water bodies | 2003 | 99.35 * | <0.001 | |
TD | Permanent Water bodies | 2013 | 0.33 * | <0.001 |
Seasonal Water bodies | 7.37 * | <0.001 | ||
Max Water bodies | 7.68 * | <0.001 | ||
KD | Permanent Water bodies | 2008 | 7.47 * | <0.001 |
Seasonal Water bodies | 2001 | 12.02 * | <0.001 | |
Max Water bodies | 2001 | 21.66 * | <0.001 |
Typical Glaciers | Time Interval | Area Change (km2) | Rate of Change (%) | Annual Change (%·year−1) | Changes in Ice Reserves (km3) |
---|---|---|---|---|---|
Glacier No. 72, Qingbingtan, Tomur Peak [79] | 1964–2009 | −1.53 | −14.7 | −0.03 | −0.0141 |
Kunlun Mountains [80] | 1976–2011 | −1243.6 | −12 | −0.34 | — |
West Kunlun Peak District [80] | 1990–2011 | −16.83 | −0.62 | −0.03 | — |
West Kunlun Mountains [81] | 1977–2013 | −91.12 | −2.95 | −0.08 | −20.21 |
Qogir North Slope Glacier [78] | 1978–2014 | −53.37 | −6.81 | −0.19 | — |
Kelechin River Basin [77] | 1978–2015 | −145.78 | −8.00 | −0.22 | — |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Kang, T.; Yang, S.; Bu, J.; Cao, K.; Gao, Y. Open-Surface Water Bodies Dynamics Analysis in the Tarim River Basin (North-Western China), Based on Google Earth Engine Cloud Platform. Water 2020, 12, 2822. https://doi.org/10.3390/w12102822
Chen J, Kang T, Yang S, Bu J, Cao K, Gao Y. Open-Surface Water Bodies Dynamics Analysis in the Tarim River Basin (North-Western China), Based on Google Earth Engine Cloud Platform. Water. 2020; 12(10):2822. https://doi.org/10.3390/w12102822
Chicago/Turabian StyleChen, Jiahao, Tingting Kang, Shuai Yang, Jingyi Bu, Kexin Cao, and Yanchun Gao. 2020. "Open-Surface Water Bodies Dynamics Analysis in the Tarim River Basin (North-Western China), Based on Google Earth Engine Cloud Platform" Water 12, no. 10: 2822. https://doi.org/10.3390/w12102822
APA StyleChen, J., Kang, T., Yang, S., Bu, J., Cao, K., & Gao, Y. (2020). Open-Surface Water Bodies Dynamics Analysis in the Tarim River Basin (North-Western China), Based on Google Earth Engine Cloud Platform. Water, 12(10), 2822. https://doi.org/10.3390/w12102822