Water Balance Assessment in Schools and Households of Rural Areas of Coquimbo Region, North-Central Chile: Potential for Greywater Reuse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and General Context
2.2. Data Collection in Schools
2.3. Data Collection in Households
2.4. Preliminary Economic Analysis
3. Results and Discussion
3.1. Consumption Habits in Schools
3.2. Consumption Habits in Households
3.3. Preliminary Economic Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B. Survey Applied to Schools (Translation from Spanish to English)
Male | Female | Total | |
Number of teachers | |||
Number of education assistants | |||
Number of students | |||
Number of non-teaching staff | |||
Administration | |||
Maintenance | |||
Cleaning staff | |||
Kitchen | |||
Gardening | |||
Others | |||
Total |
Bathroom | Kitchen | Cleaning | Gardening | Others | |
Public water system | |||||
Rural potable water | |||||
Water well | |||||
Cistern truck | |||||
Recycled or treated water | |||||
Water channel | |||||
Other | |||||
Unknown |
Age: | ___ years | |
Gender: | ☐ Male | ☐ Female |
- How many times a day do you use the washbasin at the establishment?_________________
- How long do you leave the faucet open each time you use it?________________
- How many times a day do you use the toilet in the establishment?______________
- How many times a day do you use the urinal at the establishment?_______________
- How many times a week do you shower in the establishment?____________
- How long does a shower take approximately?_____________
What Areas Do You Clean? | How Many Times a Week Do You Clean This Area? | How Many Liters of Water Do You Use for Cleaning? |
☐ Bathrooms | ||
☐ Hallways | ||
☐ Classrooms | ||
☐ Common areas | ||
☐ Teachers room | ||
☐ Casino | ||
☐ Kitchen | ||
☐ Others:________________ |
Appendix C. Survey Applied to Households (Translation from Spanish to English)
Age: | ___ years | |
Gender: | ☐ Male | ☐ Female |
Educational level: | ☐ Complete higher education | ☐ Incomplete higher education |
☐ Complete secondary education | ☐ Incomplete secondary education | |
☐ Complete basic education | ☐ Incomplete basic education | |
☐ None |
- Consumption habits
- Number of people in your household: ________________
- Origin and uses of water: (mark with an X)
Bathroom | Kitchen | Cleaning | Gardening | Others | |
Public water system | |||||
Rural potable water | |||||
Water well | |||||
Cistern truck | |||||
Recycled or treated water | |||||
Water channel | |||||
Other | |||||
Unknown |
How many times a week do you shower? _________________ |
How many minutes does a shower take approximately? __________________________ |
How many times a day do you wash your face? ________________ |
How many minutes do you leave the sink open? _________________________________ |
How many times a day do you wash your hands? ______________ |
How many minutes do you leave the sink open?_________________________ |
How many times do you brush your teeth a day? ____________ |
How many minutes do you leave the sink open?__________________________________ |
How many times a day do you use the toilet (WC)? ___________ |
Do you consume bottled water or tap water? ☐Bottle ☐ Tap water |
If you consume tap water, how many liters a day do you use to drink at home?__________________ |
If you consume bottled water, how many liters is your container (siphon, bottle, jerrycan)?________ |
How many packages do they consume per month?___________________________________________ |
How many times a day do you wash food?__________________________________________________ |
How long do you leave the faucet open each time you wash the food? __________________________ |
How many liters a day do you consume at home to cook? _____________________________________ |
How many times a day do you wash the dishes?_____________________________________________ |
How long do you leave the faucet open each time you wash the dishes?_________________________ |
How do you wash clothes? ☐ Washing machine ☐ Manual |
If you wash the clothes by hand, how many liters do you use in each wash?_______________________________ |
How many times a week do you wash clothes by hand ___________________________ |
If you wash clothes with a washing machine, how many times does the washing machine run a week?________ |
Does your home have land, orchard, crop, or garden? ☐Yes ☐No |
How many times a week do you water the field, orchard, crop, or garden?__________________________ |
How long does the hose use to water?_________________________________ |
If you don’t use the hose, how do you water? ☐Channel ☐Other: |
References
- Kummu, M.; Guillaume, J.H.A.; De Moel, H.; Eisner, S.; Flörke, M.; Porkka, M.; Siebert, S.; Veldkamp, T.I.E.; Ward, P.J. The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability. Sci. Rep. 2016, 6, 38495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connor, R. The United Nations World Water Development Report 2015: Water for a Sustainable World; UNESCO Publishing: Paris, France, 2015; Volume 1, ISBN 9231000713. [Google Scholar]
- Liu, J.; Yang, H.; Gosling, S.N.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C.; et al. Water scarcity assessments in the past, present, and future. Earth’s Futur. 2017, 5, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Molinos-Senante, M.; Donoso, G. Water scarcity and affordability in urban water pricing: A case study of Chile. Util. Policy 2016, 43, 107–116. [Google Scholar] [CrossRef]
- Van Vliet, M.T.H.; Florke, M.; Wada, Y. Quality matters for water scarcity. Nat. Geosci. 2017, 10, 800–802. [Google Scholar] [CrossRef]
- Gude, V.G. Desalination and water reuse to address global water scarcity. Rev. Environ. Sci. Biotechnol. 2017, 16, 591–609. [Google Scholar] [CrossRef]
- Aitken, D.; Rivera, D.; Godoy-Faúndez, A.; Holzapfel, E.; Aitken, D.; Rivera, D.; Godoy-Faúndez, A.; Holzapfel, E. Water Scarcity and the Impact of the Mining and Agricultural Sectors in Chile. Sustainability 2016, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Valdés-Pineda, R.; Pizarro, R.; García-Chevesich, P.; Valdés, J.B.; Olivares, C.; Vera, M.; Balocchi, F.; Pérez, F.; Vallejos, C.; Fuentes, R.; et al. Water governance in Chile: Availability, management and climate change. J. Hydrol. 2014, 519, 2538–2567. [Google Scholar] [CrossRef]
- WHO/UNICEF. Progress on Drinking Water and Sanitation: 2014 Update; World Health Organization: New York, NY, USA, 2014; ISBN 9241507241. [Google Scholar]
- Fuster, R.; Donoso, G. Rural Water Management. In Global Issues in Water Policy; Springer: Berlin, Germany, 2018; Volume 21, pp. 151–163. [Google Scholar]
- Muñoz, A.A.; Klock-Barría, K.; Alvarez-Garreton, C.; Aguilera-Betti, I.; González-Reyes, Á.; Lastra, J.A.; Chávez, R.O.; Barría, P.; Christie, D.; Rojas-Badilla, M.; et al. Water Crisis in Petorca Basin, Chile: The Combined Effects of a Mega-Drought and Water Management. Water 2020, 12, 648. [Google Scholar] [CrossRef] [Green Version]
- Lavrnić, S.; Zapater-Pereyra, M.; Mancini, M.L. Water Scarcity and Wastewater Reuse Standards in Southern Europe: Focus on Agriculture. Water. Air. Soil Pollut. 2017, 228, 1–12. [Google Scholar] [CrossRef]
- Maimon, A.; Gross, A. Greywater: Limitations and perspective. Curr. Opin. Environ. Sci. Health 2018, 2, 1–6. [Google Scholar] [CrossRef]
- Boyjoo, Y.; Pareek, V.K.; Ang, M. A review of greywater characteristics and treatment processes. Water Sci. Technol. 2013, 67, 1403–1424. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.; Christian-Smith, J.; Palaniappan, M. Overview of greywater reuse: The potential of greywater systems to aid sustainable water management. Pac. Inst. 2010, 654, 19–21. [Google Scholar]
- Albalawneh, A.; Chang, T.-K. Review of the greywater and proposed greywater recycling scheme for agricultural irrigation reuses. Int. J. Res. 2015, 3, 16–35. [Google Scholar]
- Broschek, U.; Galleguillos, C.; Díaz, G.; Volker, K.; Vidal, C.; Jofré, S.; Papi, S.; Dourojeanni, A.; Mohando, A.; Sanchéz, F.; et al. Aguas Residuales como Nueva Fuente de Agua, Diagnóstico del Potencial Reúso de Aguas Residuales en la Región de Valparaíso; FCH: Valparaíso, Chile, 2016. [Google Scholar]
- Viera, O.; Malekpour, S. An analysis of adaptive planning capacity: The case of chilean water utilities. Util. Policy 2020, 65, 101064. [Google Scholar] [CrossRef]
- Diario Oficial de la República de Chile. Ley N° 21.075: Regula la Recolección, Reutilización y Disposición de Aguas Grises; FCH: Valparaiso, Chile, 2018. [Google Scholar]
- Oyarzún, R.; Oyarzún, J.; Fairley, J.P.; Núñez, J.; Gómez, N.; Arumí, J.L.; Maturana, H. A simple approach for the analysis of the structural-geologic control of groundwater in an arid rural, mid-mountain, granitic and volcanic-sedimentary terrain: The case of the Coquimbo Region, North-Central Chile. J. Arid Environ. 2017, 142, 31–35. [Google Scholar] [CrossRef]
- Montecinos, S.; Gutiérrez, J.R.; López-Cortés, F.; López, D. Climatic characteristics of the semi-arid Coquimbo Region in Chile. J. Arid Environ. 2016, 126, 7–11. [Google Scholar] [CrossRef]
- Explorador Climático (CR)2. Centro de Ciencias del Clima y la Resilencia. Available online: http://explorador.cr2.cl/ (accessed on 20 June 2020).
- Lajaunie, M.-L.; Scheierling, S.; Zuleta, J.; Chinarro, L.; Vazquez, V. Chile-Diagnóstico de la Gestión de los Recursos Hídricos; The World Bank: Washington, DC, WA, USA, 2011. [Google Scholar]
- MOP Estimación de la Demanda Actual, Proyecciones Futuras y Caracterización de la Calidad de los Recursos Hídricos en Chile; FCH: Santiago, Chile, 2017.
- Santibáñez Quezada, F. El cambio climático y los recursos hídricos de Chile. In Agricultura Chilena Reflexiones y Desafíos al 2030; Ministerio de Agricultura, Oficina de Estudios y Políticas Agrarias: Santiago, Chile, 2017; pp. 147–178. ISBN 978-956-7244-30-0. [Google Scholar]
- Şen, Z. Average Areal Precipitation by Percentage Weighted Polygon Method. J. Hydrol. Eng. 1998, 3, 69–72. [Google Scholar] [CrossRef]
- Marquínez, J.; Lastra, J.; García, P. Estimation models for precipitation in mountainous regions: The use of GIS and multivariate analysis. J. Hydrol. 2003, 270, 1–11. [Google Scholar] [CrossRef]
- Oyarzun, R.; Oyarzún, J.; Lillo, J.; Maturana, H.; Higueras, P. Mineral deposits and Cu-Zn-As dispersion-contamination in stream sediments from the semiarid Coquimbo Region, Chile. Environ. Geol. 2007, 53, 283–294. [Google Scholar] [CrossRef]
- Naheed, G.; Rasul, G. Investigation of rainfall variability for Pakistan. Pak. J. Meteorol 2011, 7, 25–32. [Google Scholar]
- Patil, V.V.; Toradmal, A.B. Assessment of Rainfall Variability trend in Solapur District of Maharashtra. Aegaeum J. 2020, 8, 234–241. [Google Scholar]
- Al-Ajmi, D.N. Climate aridity: The Sultanate of Oman as a case study. Int. J. Earth Sci. Geol. 2018, 1, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Adnan, S.; Ullah, K.; Gao, S.; Khosa, A.H.; Wang, Z. Shifting of agro-climatic zones, their drought vulnerability, and precipitation and temperature trends in Pakistan. Int. J. Climatol. 2017, 37, 529–543. [Google Scholar] [CrossRef]
- Salinas, C.X.; Gironás, J.; Pinto, M. Water security as a challenge for the sustainability of La Serena-Coquimbo conurbation in northern Chile: Global perspectives and adaptation. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 1235–1246. [Google Scholar] [CrossRef]
- Hurlbert, M.A. Case Study Coquimbo, Chile. In Adaptive Governance of Disaster; Springer: Berlin, Germany, 2018; pp. 143–167. [Google Scholar]
- Instituto Nacional de Estadísticas (INE). Análisis del Censo de Población y Vivienda 2017 Región de Coquimbo; INE: Santiago, Chile, 2019.
- Campisano, A.; Lupia, F. A dimensionless approach for the urban-scale evaluation of domestic rainwater harvesting systems for toilet flushing and garden irrigation. Urban. Water J. 2017, 14, 883–891. [Google Scholar] [CrossRef]
- Liu, S.; Butler, D.; Memon, F.; Makropoulos, C.; Wang, Q. Impact of system factors on the water saving efficiency of household grey water recycling. Desalin. Water Treat. 2010, 24, 226–235. [Google Scholar] [CrossRef]
- Superintendencia de Servicios Sanitarios Manual del Cliente. Available online: http://www.siss.gob.cl/577/articles-8797_manual_cliente.pdf (accessed on 20 July 2020).
- Cheng, C.L.; Hong, Y.T. Evaluating water utilization in primary schools. Build. Environ. 2004, 39, 837–845. [Google Scholar] [CrossRef]
- Farina, M.; Maglionico, M.; Pollastri, M.; Stojkov, I. Water consumptions in public schools. Procedia Eng. 2011, 21, 929–938. [Google Scholar] [CrossRef] [Green Version]
- Birks, R.; Hills, S. Characterisation of indicator organisms and pathogens in domestic greywater for Recyclin. Environ. Monit. Assess. 2007, 129, 61–69. [Google Scholar] [CrossRef]
- Birks, R.; Colbourne, J.; Hills, S.; Hobson, R. Microbiological water quality in a large in-building, water recycling facility. Water Sci. Technol. 2004, 50, 165–172. [Google Scholar] [CrossRef]
- Ghaitidak, D.M.; Yadav, K.D. Characteristics and treatment of greywater—A review. Environ. Sci. Pollut. Res. 2013, 20, 2795–2809. [Google Scholar] [CrossRef] [PubMed]
- Nolde, E. Greywater recycling systems in Germany—Results, experiences and guidelines. Water Sci. Technol. 2005, 51, 203–210. [Google Scholar] [CrossRef] [PubMed]
- March, J.G.; Gual, M.; Orozco, F. Experiences on greywater re-use for toilet flushing in a hotel (Mallorca, Island, Spain). Desalination 2004, 164, 241–247. [Google Scholar] [CrossRef]
- Mourad, K.A.; Berndtsson, J.C.; Berndtsson, R. Potential fresh water saving using greywater in toilet flushing in Syria. J. Environ. Manag. 2011, 92, 2447–2453. [Google Scholar] [CrossRef]
- Friedler, E.; Gilboa, Y. Performance of UV disinfection and the microbial quality of greywater effluent along a reuse system for toilet flushing. Sci. Total Environ. 2010, 408, 2109–2117. [Google Scholar] [CrossRef] [PubMed]
- Fountoulakis, M.S.; Markakis, N.; Petousi, I.; Manios, T. Single house on-site grey water treatment using a submerged membrane bioreactor for toilet flushing. Sci. Total Environ. 2016, 551–552, 706–711. [Google Scholar] [CrossRef]
- Godfrey, S.; Labhasetwar, P.; Wate, S.; Jimenez, B. Safe greywater reuse to augment water supply and provide sanitation in semi-arid areas of rural India. Water Sci. Technol. 2010, 62, 1296–1303. [Google Scholar] [CrossRef]
- Godfrey, S.; Labhasetwar, P.; Wate, S. Greywater reuse in residential schools in Madhya Pradesh, India-A case study of cost-benefit analysis. Resour. Conserv. Recycl. 2009, 53, 287–293. [Google Scholar] [CrossRef]
- INE. Síntesis de Resultados CENSO 2017; INE: Santiago, Chile, 2018.
- Christova-Boal, D.; Eden, R.E.; McFarlane, S. An investigation into greywater reuse for urban residential properties. Desalination 1996, 106, 391–397. [Google Scholar] [CrossRef]
- Prathapar, S.A.; Jamrah, A.; Ahmed, M.; Al Adawi, S.; Al Sidairi, S.; Al Harassi, A. Overcoming constraints in treated greywater reuse in Oman. Desalination 2005, 186, 177–186. [Google Scholar] [CrossRef]
- Mandal, D.; Labhasetwar, P.; Dhone, S.; Dubey, A.S.; Shinde, G.; Wate, S. Water conservation due to greywater treatment and reuse in urban setting with specific context to developing countries. Resour. Conserv. Recycl. 2011, 55, 356–361. [Google Scholar] [CrossRef]
- Li, Z.; Boyle, F.; Reynolds, A. Rainwater harvesting and greywater treatment systems for domestic application in Ireland. Desalination 2010, 260, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Krozer, Y.; Hophmayer-Tokich, S.; van Meerendonk, H.; Tijsma, S.; Vos, E. Innovations in the water chain—experiences in The Netherlands. J. Clean. Prod. 2010, 18, 439–446. [Google Scholar] [CrossRef]
- Revitt, D.M.; Eriksson, E.; Donner, E. The implications of household greywater treatment and reuse for municipal wastewater flows and micropollutant loads. Water Res. 2011, 45, 1549–1560. [Google Scholar] [CrossRef]
- Yerri, S.; Piratla, K.R. Decentralized water reuse planning: Evaluation of life cycle costs and benefits. Resour. Conserv. Recycl. 2019, 141, 339–346. [Google Scholar] [CrossRef]
- Bravo, M.B. Contexto legal: Reutilización de aguas grises. SustentaBiT 2011, 11, 34–38. [Google Scholar]
- Dalahmeh, S.S.; Assayed, M.; Suleiman, W.T. Themes of stakeholder participation in greywater management in rural communities in Jordan. Desalination 2009, 243, 159–169. [Google Scholar] [CrossRef] [Green Version]
Educational Establishment | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameter | Item of measurement | Dr. José Luis Arraño School | Samo Alto School | El Guindo School | Pedro de Valdivia School | Carlos Condell School | Alejandro Chelén School | Teresita de Los Andes School | Teresa Cannon School | Ovalle Polytechnic |
Total of respondents | Respondents per establishment, n (%) | 14 (88%) | 79 (75%) | 55 (45%) | 105 (79%) | 82 (48%) | 238 (97%) | 165 (67%) | 162 (45%) | 388 (28%) |
Gender of respondents | Male, n (%) | 4 (29%) | 36 (46%) | 22 (40%) | 48 (46%) | 34 (41%) | 93 (39%) | 84 (51%) | 80 (49%) | 291 (75%) |
Female, n (%) | 10 (71%) | 43 (54%) | 33 (60%) | 57 (54%) | 48 (59%) | 145 (61%) | 81 (49%) | 82 (51%) | 97 (25%) | |
Role of respondents | Teachers + Assistants, n (%) | 2 (14%) | 15 (19%) | 11 (20%) | 22 (21%) | 10 (12%) | 55 (23%) | 28 (17%) | 29 (18%) | 82 (21%) |
Students, n (%) | 8 (57%) | 60 (76%) | 41 (75%) | 80 (76%) | 69 (84%) | 176 (74%) | 132 (80%) | 120 (74%) | 289 (75%) | |
Administration + Manteinance, n (%) | 4 (29%) | 4 (5%) | 3 (5%) | 3 (3%) | 3 (4%) | 7 (3%) | 5 (3%) | 13 (8%) | 17 (4%) |
Educational Establishment | No. Members | Average Greywater Generation per School per Day (lpsd) |
---|---|---|
Dr. José Luis Arraño School | 16 | 504 |
Samo Alto School | 105 | 1386 |
El Guindo School | 121 | 2783 |
Pedro de Valdivia School | 133 | 6544 |
Carlos Condell School | 172 | 5642 |
Alejandro Chelén School | 246 | 6765 |
Teresita de Los Andes School | 247 | 7681 |
Teresa Cannon School | 360 | 5796 |
Ovalle Polytechnic | 1363 | 24,261 |
Parameter | Item of Measurement | Household Survey Data |
---|---|---|
Total families respondents | Number of surveys | 148 |
Gender of the family member respondent | Male, n (%) | 21 (14.2%) |
Female, n (%) | 120 (81.1%) | |
No data, n (%) | 7 (4.7%) | |
Age of the family member respondent | Range (average) | 21–79 (41) |
Educational level of the family member respondent | Complete higher education, n (%) | 11 (7.4%) |
Incomplete higher education, n (%) | 4 (2.7%) | |
Complete secondary education, n (%) | 66 (44.6%) | |
Incomplete secondary education, n (5) | 18 (12.2%) | |
Complete basic education, n (%) | 20 (13.5%) | |
Incomplete basic education, n (%) | 20 (13.5%) | |
None, n (%) | 1 (0.7%) | |
No data, n (%) | 8 (5.4%) |
Range of Water Savings per School/Household per Day (lpsd/lphd) * | Potential Economic Savings (US $/year) | Treatment System | Range of Estimated Costs for Greywater Treatment (US $) | |
---|---|---|---|---|
Schools | 504–24,261 | $226–10,855 | Primary, secondary and tertiary treatment technologies [50] | Capital: $1450 Operating and Maintenance: $165/year |
Filtration systems using activated carbon and zeolite ** | Capital: $2000–4450 | |||
Households | 274–2743 | $124–1230 | Septic tank–Anaerobic–Aerobic [14] | Capital: $2600 Maintenance: $47/year |
Intermittent sand filter [14,60] | Capital: $700 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, C.; Sánchez, R.; Lozano-Parra, J.; Rebolledo, N.; Schneider, N.; Serrano, J.; Leiva, E. Water Balance Assessment in Schools and Households of Rural Areas of Coquimbo Region, North-Central Chile: Potential for Greywater Reuse. Water 2020, 12, 2915. https://doi.org/10.3390/w12102915
Rodríguez C, Sánchez R, Lozano-Parra J, Rebolledo N, Schneider N, Serrano J, Leiva E. Water Balance Assessment in Schools and Households of Rural Areas of Coquimbo Region, North-Central Chile: Potential for Greywater Reuse. Water. 2020; 12(10):2915. https://doi.org/10.3390/w12102915
Chicago/Turabian StyleRodríguez, Carolina, Rafael Sánchez, Javier Lozano-Parra, Natalia Rebolledo, Nicolás Schneider, Jennyfer Serrano, and Eduardo Leiva. 2020. "Water Balance Assessment in Schools and Households of Rural Areas of Coquimbo Region, North-Central Chile: Potential for Greywater Reuse" Water 12, no. 10: 2915. https://doi.org/10.3390/w12102915
APA StyleRodríguez, C., Sánchez, R., Lozano-Parra, J., Rebolledo, N., Schneider, N., Serrano, J., & Leiva, E. (2020). Water Balance Assessment in Schools and Households of Rural Areas of Coquimbo Region, North-Central Chile: Potential for Greywater Reuse. Water, 12(10), 2915. https://doi.org/10.3390/w12102915