Size Distribution and Phosphate Removal Capacity of Nano Zero-Valent Iron (nZVI): Influence of pH and Ionic Strength
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of nZVI
2.2. IS and pH Conditions
2.3. Size Distribution
2.4. Batch Tests
2.5. DLVO Theory
3. Results and Discussions
3.1. Characterization of nZVI
3.2. Size Distribution and Mean Aggregate Size
3.3. DLVO Calculations
3.4. Phosphate Removal Capacity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Koirala, S.; Yeh, J.F.; Kanae, S.; Oki, T. Explicit representation of groundwater process in a global-scale land surface model to improve the prediction of water resources. In Proceedings of the Egu General Assembly Conference, Vienna, Austria, 2–7 May 2010. [Google Scholar]
- Beruke, A. Ground Water Resource Evaluation and Management Practices in Gilgel Abay Catchment, Tana Basin. Master‘s Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2012. [Google Scholar]
- Burton, A. Hit or miss: Benefits and risks of using nanoparticles for in situ remediation. Environ. Health Perspect. 2009, 117, A552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefevre, E.; Bossa, N.; Wiesner, M.R.; Gunsch, C.K. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities. Sci. Total Environ. 2016, 565, 889–901. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Cai, S.; Shan, L.; Zhuang, M.; Li, N.; Quan, G.; Yan, J. Adsorptive and reductive removal of chlorophenol from wastewater by biomass-derived mesoporous carbon-supported sulfide nanoscale zerovalent iron. Nanomaterials 2019, 9, 1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, X.D.; Ruan, W.Q.; Hu, J.W.; Fan, M.Y.; Cao, R.S.; Wei, X.H. Optimizing the removal of rhodamine b in aqueous solutions by reduced graphene oxide-supported nanoscale zerovalent iron (nzvi/rgo) using an artificial neural network-genetic algorithm (ann-ga). Nanomaterials 2017, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, D.; Zhang, Z.; Hu, L. Adsorption models of groundwater remediation by nanoscale zero valent iron. In Proceedings of the International Congress on Environmental Geotechnics, Hangzhou, China, 28 October–1 November 2018; pp. 512–520. [Google Scholar]
- Zhang, B.; Zhu, B.-H.; Wang, X.; You, S.-B. Nanoscale Zero Valent Iron Supported by Biomass-Activated Carbon for Highly Efficient Total Chromium Removal from Electroplating Wastewater. Water 2019, 12, 89. [Google Scholar] [CrossRef] [Green Version]
- Krol, M.M.; Oleniuk, A.J.; Kocur, C.M.; Sleep, B.E.; Bennett, P.; Xiong, Z.; O’Carroll, D.M. A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection. Environ. Sci. Technol. 2013, 47, 7332–7340. [Google Scholar] [CrossRef]
- Raychoudhury, T.; Tufenkji, N.; Ghoshal, S. Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Water Res. 2012, 46, 1735–1744. [Google Scholar] [CrossRef]
- Phenrat, T.; Saleh, N.; Sirk, K.; Tilton, R.D.; Lowry, G.V. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci. Technol. 2007, 41, 284–290. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Awad, M.; Al-Farraj, A.S.; Al-Turki, A.M. Stability and dynamic aggregation of bare and stabilized zero-valent iron nanoparticles under variable solution chemistry. Nanomaterials 2020, 10, 192. [Google Scholar] [CrossRef] [Green Version]
- Busch, J.; Meissner, T.; Potthoff, A.; Oswald, S.E. Investigations on mobility of carbon colloid supported nanoscale zero-valent iron (nZVI) in a column experiment and a laboratory 2D-aquifer test system. Environ. Sci. Pollut. Res. Int. 2014, 21, 10908–10916. [Google Scholar] [CrossRef]
- Yin, K.; Lo, I.M.; Dong, H.; Rao, P.; Mak, M.S. Lab-scale simulation of the fate and transport of nano zero-valent iron in subsurface environments: Aggregation, sedimentation, and contaminant desorption. J. Hazard. Mater. 2012, 227–228, 118–125. [Google Scholar] [CrossRef]
- Kocur, C.M.; O’Carroll, D.M.; Sleep, B.E. Impact of nZVI stability on mobility in porous media. J. Contam. Hydrol. 2013, 145, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Hu, L.; Lo, I.M.C. Transport of the arsenic (As)-loaded nano zero-valent iron in groundwater-saturated sand columns: Roles of surface modification and As loading. Chemosphere 2019, 216, 428–436. [Google Scholar] [CrossRef]
- Raychoudhury, T.; Surasani, V.K. Implication of surface modified NZVI particle retention in the porous media: Assessment with the help of 1-D transport model. J. Earth Syst. Sci. 2017, 126, 56. [Google Scholar] [CrossRef]
- Chatterjee, J.; Gupta, S.K. An agglomeration-based model for colloid filtration. Environ. Sci. Technol. 2009, 43, 3694–3699. [Google Scholar] [CrossRef] [PubMed]
- Tufenkji, N.; Elimelech, M. Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ. Sci. Technol. 2004, 38, 529–536. [Google Scholar] [CrossRef]
- Duan, R.; Dong, Y.; Zhang, Q. Characteristics of Aggregate Size Distribution of Nanoscale Zero-Valent Iron in Aqueous Suspensions and Its Effect on Transport Process in Porous Media. Water 2018, 10, 670. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.B.; Zhang, W.X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 1997, 31, 2154–2156. [Google Scholar] [CrossRef]
- Zhu, H.; Jia, Y.; Wu, X.; Wang, H. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J. Hazard. Mater. 2009, 172, 1591–1596. [Google Scholar] [CrossRef]
- Kaifas, D.; Malleret, L.; Kumar, N.; Fetimi, W.; Claeys-Bruno, M.; Sergent, M.; Doumenq, P. Assessment of potential positive effects of nZVI surface modification and concentration levels on TCE dechlorination in the presence of competing strong oxidants, using an experimental design. Sci. Total Environ. 2014, 481, 335–342. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Kang, Y.; Tsang, E.P. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI. J. Hazard. Mater. 2014, 275, 230–237. [Google Scholar] [CrossRef]
- Wen, Z.; Zhang, Y.; Dai, C. Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI). Colloids Surf. A Physicochem. Eng. Asp. 2014, 457, 433–440. [Google Scholar] [CrossRef]
- Almeelbi, T.; Bezbaruah, A. Aqueous phosphate removal using nanoscale zero-valent iron. J. Nanopart. Res. 2012, 14, 900. [Google Scholar] [CrossRef]
- Hauduc, H.; Takacs, I.; Smith, S.; Szabo, A.; Murthy, S.; Daigger, G.T.; Sperandio, M. A dynamic physicochemical model for chemical phosphorus removal. Water Res. 2015, 73, 157–170. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, K.P. Optimization of phosphate removal from aqueous solution using activated carbon supported zero-valent iron nanoparticles: Application of RSM approach. Appl. Water Sci. 2018, 8, 226. [Google Scholar] [CrossRef] [Green Version]
- Sleiman, N.; Deluchat, V.; Wazne, M.; Mallet, M.; Courtin-Nomade, A.; Kazpard, V.; Baudu, M. Phosphate removal from aqueous solution using ZVI/sand bed reactor: Behavior and mechanism. Water Res. 2016, 99, 56–65. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, H.; Chen, T.; Chen, D.; Li, M.; Chen, C. The Synthesis of NZVI and Its Application to the Removal of Phosphate from Aqueous Solutions. Water Air Soil Pollut. 2017, 228, 321. [Google Scholar] [CrossRef]
- Ding, A. Phosphate removal from aqueous solutions by nanoscale zero-valent iron. Environ. Technol. 2013, 34, 2663–2669. [Google Scholar]
- Sun, Y.P.; Li, X.Q.; Cao, J.; Zhang, W.X.; Wang, H.P. Characterization of zero-valent iron nanoparticles. Adv. Colloid Interface Sci. 2006, 120, 47–56. [Google Scholar] [CrossRef]
- Heo, J.-H.; Lee, D.-H.; Koh, D.-C.; Chang, H.-W. The effect of ionic strength and hardness of trichloroethylene-contaminated synthetic groundwater on remediation using granular activated carbon. J. Geosci. 2007, 11, 229–239. [Google Scholar] [CrossRef]
- Sats, A.; Mootse, H.; Pajumaegi, S.; Pisponen, A.; Tatar, V.; Poikalainen, V. Estimation of particle size distribution in bovine colostrum whey by dynamic light scattering (dls) method. Agron. Res. 2014, 12, 801–806. [Google Scholar]
- Varenne, F.; Botton, J.; Merlet, C.; Vachon, J.-J.; Geiger, S.; Infante, I.C.; Chehimi, M.M.; Vauthier, C. Standardization and validation of a protocol of zeta potential measurements by electrophoretic light scattering for nanomaterial characterization. Colloids Surf. A Physicochem. Eng. Asp. 2015, 486, 218–231. [Google Scholar] [CrossRef]
- Sun, P.; Shijirbaatar, A.; Fang, J.; Owens, G.; Lin, D.; Zhang, K. Distinguishable Transport Behavior of Zinc Oxide Nanoparticles in Silica Sand and Soil Columns. Sci. Total Environ. 2015, 505, 189–198. [Google Scholar] [CrossRef]
- Phenrat, T.; Saleh, N.; Sirk, K.; Kim, H.-J.; Tilton, R.D.; Lowry, G.V. Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: Adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J. Nanopart. Res. 2007, 10, 795–814. [Google Scholar] [CrossRef]
- De Vicente, J.; Delgado, A.V.; Plaza, R.C.; Duran, J.D.G.; Gonzalez-Caballero, F. Stability of cobalt ferrite colloidal particles. Effect of pH and applied magnetic fields. Langmuir 2000, 16, 7954–7961. [Google Scholar] [CrossRef]
- Hogg, R.; Healy, T.W.; Fuerstenau, D.W. Mutual Coagulation of Colloidal Dispersions. Trans. Faraday Soc. 1966, 62, 1638–1651. [Google Scholar] [CrossRef]
- Rončević, S.; Nemet, I.; Ferri, T.Z.; Matković-Čalogović, D. Characterization of nZVI nanoparticles functionalized by EDTA and dipicolinic acid: A comparative study of metal ion removal from aqueous solutions. RSC Adv. 2019, 9, 31043–31051. [Google Scholar] [CrossRef] [Green Version]
- Maamoun, I.; Eljamal, O.; Khalil, A.M.E.; Sugihara, Y.; Matsunaga, N. Phosphate Removal Through Nano-Zero-Valent Iron Permeable Reactive Barrier; Column Experiment and Reactive Solute Transport Modeling. Transp. Porous Media 2018, 125, 395–412. [Google Scholar] [CrossRef]
- Yan, W.; Herzing, A.A.; Kiely, C.J.; Zhang, W.X. Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water. J. Contam. Hydrol. 2010, 118, 96–104. [Google Scholar] [CrossRef]
- Molnar, I.L.; Johnson, W.P.; Gerhard, J.I.; Willson, C.S.; O’Carroll, D.M. Predicting colloid transport through saturated porous media: A critical review. Water Resour. Res. 2015, 51, 6804–6845. [Google Scholar] [CrossRef] [Green Version]
- Nagoya, S.; Nakamichi, S.; Kawase, Y. Mechanisms of phosphate removal from aqueous solution by zero-valent iron: A novel kinetic model for electrostatic adsorption, surface complexation and precipitation of phosphate under oxic conditions. Sep. Purif. Technol. 2019, 218, 120–129. [Google Scholar] [CrossRef]
- Caravelli, A.H.; Contreras, E.M.; Zaritzky, N.E. Phosphorous removal in batch systems using ferric chloride in the presence of activated sludges. J. Hazard. Mater. 2010, 177, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Carraway, E. Reduction of chlorinated ethanes by nano-sized zero-valent iron. Environ. Sci. Technol. 2005, 39, 6237–6245. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Lo, I.M.C. Transport of Surface-Modified Nano Zero-Valent Iron (SM-NZVI) in Saturated Porous Media: Effects of Surface Stabilizer Type, Subsurface Geochemistry, and Contaminant Loading. Water Air Soil Pollut. 2014, 225, 2107. [Google Scholar] [CrossRef]
- Long, T.; Andrewramsburg, C. Encapsulation of nzvi particles using a gum arabic stabilized oil-in-water emulsion. J. Hazard. Mater. 2011, 189, 801–808. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, D.; Hu, L.; Lo, I.M.C.; Yu, Z. Size Distribution and Phosphate Removal Capacity of Nano Zero-Valent Iron (nZVI): Influence of pH and Ionic Strength. Water 2020, 12, 2939. https://doi.org/10.3390/w12102939
Lin D, Hu L, Lo IMC, Yu Z. Size Distribution and Phosphate Removal Capacity of Nano Zero-Valent Iron (nZVI): Influence of pH and Ionic Strength. Water. 2020; 12(10):2939. https://doi.org/10.3390/w12102939
Chicago/Turabian StyleLin, Dantong, Liming Hu, Irene M. C. Lo, and Zhigang Yu. 2020. "Size Distribution and Phosphate Removal Capacity of Nano Zero-Valent Iron (nZVI): Influence of pH and Ionic Strength" Water 12, no. 10: 2939. https://doi.org/10.3390/w12102939
APA StyleLin, D., Hu, L., Lo, I. M. C., & Yu, Z. (2020). Size Distribution and Phosphate Removal Capacity of Nano Zero-Valent Iron (nZVI): Influence of pH and Ionic Strength. Water, 12(10), 2939. https://doi.org/10.3390/w12102939