Are the Fouta Djallon Highlands Still the Water Tower of West Africa?
Abstract
:1. Introduction: Statements and State of the Art
1.1. What Does Not Change
- -
- -
- the very low mineral concentration of water (lower than 50 mg L−1). The average of dissolved load in total sampling observed by Orange (1990a) [9] is only 35 mg L−1, due to the sandstone and/or granite predominance and the importance of stable lateritic crusts [9]. This relatively old finding remains overall coherent and in line with a series of small sampling tests made in the FDss by the authors in March and May 2019. In 28 samples taken at an elevation of less than 800 m, the mineral concentration of water was on average 55 mg·L−1 (standard deviation = 74, with values ranging from 6.5 to 414), and in 14 samples taken at an elevation higher than 800 m, the mineral concentration was on average 24.5 mg·L−1 (standard deviation = 14.8, values from 6.5 to 53).
- -
1.2. What Could Change
2. Material and Methods
3. Discharges and Runoff Coefficients
4. Land Use/Land Cover Changes (LULCC) are Determined at Three Scales
4.1. At the Regional Scale
4.2. At the Basin Scale
4.3. At the Local Scale
5. Results
5.1. Changes of Depletion Coefficients
- -
- the first one is the ‘hyper humid’ 1947–1969 period, when rainfall was significantly higher than the long-term average across the whole of West Africa.
- -
- the second period is the well-known “Great Drought” of West Africa (1970–1993). The rainfall decreased significantly in 1968, but we arbitrarily made the second period begin in 1970 because a significant number of stream gauge stations have data starting from 1970. The drought is considered to last until 1993.
- -
- the last period spans the years 1994–2019. The year 1994 is when annual rainfall again reached again its long-term mean value. During this period, rainfall is approximately of the long-term trend.
- -
- the evolution through the three periods is not easy to observe for each basin due to the lack of data (some of the data begins in 1970). The only basins where an analysis over the entire period of 1950–2019 is possible are the largest ones (Senegal and Niger Rivers).
- -
- an increase in the DC between period 1 and period 2 is clearly observed in the Upper Niger (at Kouroussa, where it begins in 1965, and at Tinkisso, where an increase in the DC appeared after 1970) and in the Senegal basin. This is clear in the Faleme basin (and probably in the upper Bafing at Sokotoro, though data are lacking). This increase is also observed in the Corubal basin (but particularly over the first drought period, 1970–1975). Despite the lack of data, such a trend also appears in the Gambia River basins (Mako and Missira stream gauges, the second one showing much higher variability). However, it is very difficult to observe this increasing trend in the Konkouré basin, and clearly, the Bafing basin at Daka Saidou does not show any such trends across all available observations.
- -
- only the Niandan at Baro and, to a lesser extent, the upper Tinkisso at Dabola (Figure 5e, but with very limited data) showed a decrease in the DC.
- -
- except the Bafing at Daka Saidou, the three main ‘Sudano-Sahelian’ rivers (the Gambia at Mako, the Niger at Kouroussa, as well as the Faleme at Gourbassi) show a decrease in the DC between the dry 1970–1993 period and the following 1994–2019 period. The DC of Koliba Koumba River also decreased slowly after the drought.
- -
- for 8 out of the 16 basins, a decrease (3) or a stabilization (5) in the DC is observed after 1994 and the rainfall recovery. For the other eight stations, an increase in the DC is ongoing. The increase over the whole period is lower than 20% in three basins (Table 2C) and higher than 20% in five others (Table 2D).
- -
- some basins (Niandan, Milo, Gambia, Tominé) show a marked increase in the DC at the end of the last period: in all of these basins, depletion was higher during the 2005–2015 period than during the Great Drought period.
- -
- Extreme values can be observed in the last years (e.g., in the Milo basin), and in 1983–1984 in the Faleme. As described by Olivry (1986), this happens when the higher value of depletion coefficient occurs when the river dries up completely. Consequently, the DC becomes in some cases the drying up coefficient.
- -
- in some basins, the depletion coefficient can be different depending on the method selected or on the context.
- -
- except the increase in the DC during the drought and decrease after the drought in the large basins, there are no general trends to detect, reflecting great variability across the basins.
- -
- overall, contrary to previous observations by Descroix [5] and Descroix et al. [42], which were based on the behavior of the Upper Niger basin tributaries, there is not a general trend of increasing DC, which could demonstrate a general reduction in the soil water-holding capacity. This trend only appears in the Konkouré basin and in the Milo and Niandan basins.
5.2. Evolution of Runoff Coefficients
- -
- the Konkouré basin, where runoff did not rise again after the dry period, but in this basin, data is not available after 2002, preventing analysis of the long term and obscuring a possible recovery of streamflows. However, since rainfall increased significantly between period 2 and 3, a decrease in the runoff coefficient is noticed.
- -
- the Upper Niger basin where runoff increased only in the Tinkisso basin (except for its upper part) over the last period.
5.3. Any Explanation from the LULCC?
- -
- RC paradoxically decreases or remains low during the last period, which is characterized by rainfall recovery, possibly because natural reservoirs continue to be filled. Can this hypothesis however still be valid after nearly 25 years of rainfall recovery?
- -
- DC increased strongly (downstream Konkouré basin), moderately (Kaba and Nianso stations), or inversely, and remained unchanged (Upper Niger at Kouroussa station).
- -
- in Table 3, the basins where DC increased more than 20% are clearly not the ones where the deforestation rate was the highest (except the small Pt de Linsan–Upper Konkouré River basin).
6. Analysis of LULCC
6.1. LULCC at the Regional Scale
6.2. LULCC at the Upper Bafing Basin Scale
6.3. LULCC at the Sources Scale
6.4. Is There Any Synthesis Provided by Data Analysis?
- -
- axis 1 (component 1) explains 46.4% of the total variance; it is mostly provided by QS, RAD, RUD, and RC (The definition of all abbreviations is given in Table 4).
- -
- axis 2 (component 2) explains 23.8% of the variance, provided by Q, QDX, and A.
- -
- axis 3 (component 3) explains 11.5% of the variance, using DC4, ED41, ED11, and ER1.
- -
- axis 4 (component 4) explains 7.6% of the variance, provided by ED42 and ED12.
7. Discussion
7.1. The DC
7.2. LULCC (Land Use/Land Cover Change)
7.3. Some Hydrological Consequences
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- L’Hôte, J.-P.; Mahé, G. Afrique Centrale et de l’Ouest: Précipitations Moyennes Annuelles (Période 1951–1989); IRD (Orstom): Bondy, France, 1996; 1 map. [Google Scholar]
- Aurouet, A.; Ferry, L.; Cougny, G.; ECOWAS. Atlas de l’eau du Massif du Fouta Djalon-Le Château d’eau de l’Afrique de l’Ouest/Fouta Djallon Highland-Water Atlas; CEDEAO (ECOWAS), IWA, Anteagroup, The World Bank: Washington, DC, USA, 2017; p. 114. Available online: http://documents.banquemondiale.org/curated/fr/844511520436091243/pdf/123986-WP-P150210-FRENCH-PUBLIC.pdf (accessed on 11 April 2020).
- Gebrehiwot, S.G.; Gardenas, A.I.; Bewket, W.; Seibert, J.; Ilstedt, U.; Bishop, K. The long-term hydrology of East Africa’s water tower: Statistical change detection in the watersheds of the Abbay Basin. Reg. Environ. Chang. 2013. [Google Scholar] [CrossRef]
- Blanc, P. De l’Egypte à l‘Ethiopie, quand la puissance se déplace en Afrique Nilotique. In Confluences Méditerranée; L’Harmattan: Paris, France, 2014; ISSN 1148-2664. ISBN 9782343045627. Available online: https://www.cairn.info/revue-confluences-mediterranee-2014-3-page-123.htm (accessed on 21 June 2020).
- Descroix, L. Processus et Enjeux d’eau en Afrique de l’Ouest Sahélo-Soudanienne; Editions Des Archives Contemporaines: Paris, France, 2018; 320p, ISBN 9782813003140. [Google Scholar] [CrossRef]
- Boulvert, Y. Approche Synthétique des Aplanissements Cuirassés de Centrafrique et de Guinée (Conakry). 2005. Available online: http://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers19-10/010038259.pdf (accessed on 18 April 2020).
- Mamedov, V.I.; Boufeev, Y.V.; Nikitine, Y.A. Geology of the Republic of Guinea; Geoprospects and State University Lomonossov of Moscow: Moscow, Russia, 2010; 326p. [Google Scholar]
- Boulvert, Y. Repères Historiques sur la Caractérisation du Cuirassement et de la Géomorphologie Guinéenne. Conférence à l’Université de Conakry, Conakry (GIN), 1998/04. Available online: https://numerisud.ird.fr/documents-et-films/publications/Reperes-historiques-sur-la-caracterisation-du-cuirassement-et-de-la-geomorphologie-guineenne (accessed on 18 April 2020).
- Orange, D. Hydroclimatologie du Fouta Djallon et Dynamique Actuelle d’un Vieux Paysage Latéritique. Ph.D. Thesis, Université Louis Pasteur de Strasbourg, Strasbourg, France, 1990; 232p. Available online: https://www.persee.fr/doc/sgeol_0302-2684_1992_mon_93_ (accessed on 30 October 2018).
- Orange, D.; Gac, J.-Y. Reconnaissance géochimique des eaux du Fouta Djalon (Guinée), flux de matières dissoutes et en suspension en Haute-Gambie. Géodynamique 1990, 5, 35–49. [Google Scholar]
- Michel, P. Les Bassins des Fleuves Sénégal et Gambie, Etude Géomorphologique; ORSTOM: Bondy, France, 1973; 810p. [Google Scholar]
- D’Aubreville, A. Erosion et “bovalisation” en Afrique noire française. L’Agron. Trop. 1947, 2, 339–357. [Google Scholar]
- Maignien, R. Compte-rendu de recherches sur les latérites. In Colloquium on Laterites, Madagascar 1964; Reports on Natural Ressources, n°4; UNESCO: Paris, France, 1966; 155p. [Google Scholar]
- Richard-Molard, J. Les traits d’ensemble du Fouta-Djalon. Rev. Géograph. Alp. 1943, XXXI, 199–213. [Google Scholar] [CrossRef]
- Pouquet, J. Le plateau de Labé (Guinée française, A.O.F). Remarques sur le caractère dramatique des phénomènes d’érosion des sols et sur les remèdes proposés. Bull. l’IFAN (Inst. Fr. d’Afr. Noire) 1956, 18, 1–16. [Google Scholar]
- Pouquet, J. Quelques types d’évolution du relief en Guinée française: Processus hydrographiques et phénomènes de cuirassement sur les hautes surfaces du Fouta-Dialon (AO.F.). In Proceedings of the Eighteenth Internacional Congress of Geography, Rio de Janeiro, Brazil, 9–18 August 1956; pp. 350–361. [Google Scholar]
- Sudres, A. La dégradation des sols au Foutah Djalon. L’Agron. Trop. 1947, I, 227–246. [Google Scholar]
- Olivry, J.-C. Synthèse des Connaissances Hydrologiques et Potentiel en Ressources en Eau du Fleuve Niger; Provisional Report; World Bank, Niger Basin Authority: Niamey, Niger, 2002; 160p. [Google Scholar]
- Olivry, J.-C. Les conséquences durables de la sécheresse actuelle sur l’écoulement du fleuve Sénégal et l’hypersalinisation de la Basse-Casamance. In The Influence of Climate Change and Climatic Variability on the Hydrologic Regime and Water Resources; Proceedings of the Vancouver Symposium; IAHS Publ. No. 168: Wallingford, UK, 1987; 12p. [Google Scholar]
- Bricquet, J.-P.; Bamba, F.; Mahé, G.; Touré, M.; Olivry, J.-C. Evolution récente des ressources en eau de l’Afrique atlantique. Rev. Sci. l’Eau 1997, 3, 321–337. [Google Scholar] [CrossRef] [Green Version]
- Olivry, J.-C.; Bricquet, J.-P.; Mahé, G. Vers un appauvrissement durable des ressources en eau de l’Afrique humide? In Hydrology of Warm Humid Regions. Proceedings of the 4th Assembly IAHS, Yokohama, Japan, 13–15 July 1993; Gladwell, J.S., Ed.; Publication IAHS 216: Wallingford, UK, 1993; pp. 67–78. [Google Scholar]
- Gomis, D.E.R. Synthèse Hydrologique Du Fleuve GAMBIE en Amont de Gouloumbou; Master Memory; UCAD: Dakar, Senegal, 2000; 166p. [Google Scholar]
- Bodian, A.; Dacosta, H.; Dezetter, A. Analyse des débits de crues et d’étiages dans le bassin versant du fleuve sénégal en amont du barrage de Manantali. Clim. Dev. 2013, 15, 46–56. [Google Scholar]
- Samoura, K. Contributions Méthodologiques à L’évaluation Environnementale Stratégique De L’exploitation du Potentiel Hydroélectrique des Bassins Côtiers en Milieu Tropical: Cas du Konkouré, en Guinée. Ph.D. Thesis, UQAM, Montreal, QC, Canada, 2011; 304p. [Google Scholar]
- Tallaksen, L.M. A review of baseflow recession analysis. J. Hydrol. 1995, 165, 349–370. [Google Scholar] [CrossRef]
- Boyer, J.F.; Dieulin, C.; Rouché, N.; Crès, A.; Servat, E.; Paturel, J.E.; Mahé, G. SIEREM: An environmental information system for water resources. In Water Resource Variability: Hydrological Impacts. Proceedings of the 5th FRIEND World Conference, Havana, Cuba, November 2016; IAHS Publ.: La Havana, Cuba, 2006; Volume 308, pp. 19–25. [Google Scholar]
- Dieulin, C.; Mahé, G.; Paturel, J.-E.; Ejjiyar, S.; Tramblay, Y.; Rouché, N.; El Mansouri, B. A new 60-year 1940–1999 monthly gridded rainfall data set for Africa. Water 2019, 11, 387. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; Van Nostrand Reinhold: New York, NY, USA, 1987; ISBN 0-442-23050-8. [Google Scholar]
- San Emeterio, J.-L.; Alexandre, F.; Andrieu, J.; Génin, A.; Mering, C. Changements socio-environnementaux et dynamiques des paysages ruraux le long du gradient bioclimatique nord-sud dans le sud-ouest du Niger (régions de Tillabery et de Dosso. VertigO Rev. Electron. Sci. L’Environ. 2013, 13. Available online: http://journals.openedition.org/vertigo/14456 (accessed on 12 October 2015). [CrossRef]
- Andrieu, J. Phenological analysis of the savanna-forest transition from 1981 to 2006 form Côte d’Ivoire to Benin with NDVI NOAA time series. Eur. J. Remote Sens. 2017. [Google Scholar] [CrossRef] [Green Version]
- Andrieu, J. Vegetation change analysis in Côte d’Ivoire during conflicts using a phenological metric and Kendall correlation of two NDVI time series (Text in French). Tropicultura 2018, 36, 258–270. Available online: http://www.tropicultura.org/text/v36n2/258.pdf (accessed on 9 November 2019).
- Nicholson, S.E. On the question of the ‘‘recovery’’ of the rains in the West African Sahel. J. Arid Environ. 2005, 63, 615–641. [Google Scholar] [CrossRef]
- Ali, A.; Lebel, T. The Sahelian standardized rainfall index revisited. Int. J. Climatol. 2009, 29, 1705–1714. [Google Scholar] [CrossRef]
- Nicholson, S.E. The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. Int. Sch. Res. Not. 2013, 2013, 453251. [Google Scholar] [CrossRef]
- Descroix, L.; Diongue Niang, A.; Panthou, G.; Bodian, A.; Sané, T.; Dacosta, H.; Malam Abdou, M.; Vandervaere, J.-P.; Quantin, G. Evolution Récente de la Mousson en Afrique de l’Ouest à Travers Deux Fenêtres (Sénégambie et Bassin du Niger Moyen). Climatologie 2015, 12, 25–43. [Google Scholar]
- Ardoin-Bardin, S.; Dezetter, A.; Servat, E.; Paturel, J.-E.; Mahé, G.; Niel, H.; Dieulin, C. Using general circulation model outputs to assess impacts of climate change on runoff for large hydrological catchments in West Africa. Hydrol. Sci. J. 2009, 54, 77–89. [Google Scholar] [CrossRef]
- Biasutti, M. Forced Sahel rainfall trends in the CMIP5 archive. J. Geophys. Res. Atmos. 2013, 118, 1613–1623. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change Synthesis Report; IPCC, WMO: Geneva, Switzerland, 2014; 167p. [Google Scholar]
- Descroix, L.; Guichard, F.; Grippa, M.; Lambert, L.A.; Panthou, G.; Gal, L.; Dardel, C.; Quantin, G.; Kergoat, L.; Bouaïta, Y.; et al. Evolution of surface hydrology in the Sahelo-Sudanian stripe: An updated synthesis. Water 2018, 10, 748. [Google Scholar] [CrossRef] [Green Version]
- Mahé, G.; Bamba, F.; Diabaté, M.; Diarra, A.; Diarra, M. The reduction of the water resources on upper basins of the Niger river: Hydrological balances and analysis of the depletion curves (1951–1989). Poster proceedings, Sustainability of water ressources under increasing uncertainty. In Proceedings of the 5th IAHS Assembly, Rabat, Maroc, 23 April–3 May 1997; pp. 9–12. [Google Scholar]
- Mahé, G.; L’Hôte, Y.; Olivry, J.C.; Wotling, G. Trends and discontinuities in regional rainfall of west and central Africa–1951–1989. Hydrol. Sci. J. 2001, 46, 211–226. [Google Scholar] [CrossRef]
- Bamba, F.; Mahé, G.; Bricquet, J.P.; Olivry, J.C. Changements climatiques et variabilité des ressources en eau des bassins du Haut Niger et de la Cuvette Lacustre. In Réseaux Hydrométriques, Réseaux Télématiques, Réseaux Scientifiques: Nouveaux Visages de l’Hydrologie Régionale en Afrique; Fritsch, J.M., Paturel, J.E., Servat, E., Eds.; XIIèmes Journées Hydrologiques de l’ORSTOM: Montpellier, France, 1996; 26p. [Google Scholar]
- Sangaré, S.; Mahé, G.; Paturel, J.-E.; Bangoura, Y. Bilan hydrologique du fleuve Niger en Guinée de 1950 à 2000. Sud Sciences et Technologies 2002, 9, 21–33. Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers16-04/010034319.pdf (accessed on 18 June 2017).
- Brunet Moret, Y.; Chaperon, P.; Lamagat, J.-P.; Molinier, M. Monographie Hydrologique du Fleuve Niger; Orstom: Paris, France, 1986; 800p. [Google Scholar]
- Bodian, A.; Diop, L.; Panthou, G.; Dacosta, H.; Deme, A.; Dezetter, A.; Ndiaye, P.M.; Diouf, I.; Vischel, T. Recent Trend in Hydroclimatic Conditions in the Senegal River Basin. Water 2020, 12, 436. [Google Scholar] [CrossRef] [Green Version]
- André, V.; Pestaña, G. Les visages du Fouta-Djalon. Les Cah. d’Outre-Mer 2002, 217. Available online: http://com.revues.org/index1038.html (accessed on 11 September 2014). [CrossRef] [Green Version]
- Brandt, M.; Rasmussen, K.; Peñuelas, J.; Tian, F.; Schurgers, G.; Verger, A.; Mertz, O.; Palmer, J.R.B.; Fensholt, R. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat. Ecol. Evol. 2017, 1, 0081. [Google Scholar] [CrossRef] [Green Version]
- Boserup, E. The Conditions of Agricultural Growth: The Economics of Agrarian Change under Population Pressure; (Republished 1993: Earthscan Publications: London, UK); Allen and Unwin: London, UK, 1965. [Google Scholar]
- Tiffen, M.; Mortimore, M.; Gichuki, F. More People, Less Erosion: Environmental Recovery in Kenya; John Wiley & Sons: London, UK, 1994; 311p. [Google Scholar]
- Luxereau, A.; Roussel, B. Changements Ecologiques et Sociaux au Niger; Etudes Africaines; L’Harmattan Ed: Paris, France, 1997; 239p. [Google Scholar]
- Demont, M.; Jouve, P. Evolution d’Agro-Systèmes Villageois Dans la Region de Korhogo (ord Côte d’Ivoire): Boserup vs. Malthus, Opposition ou Complémentarité? Dynamiques Agraires et Construction Sociale Du Territoire; Séminaire CNEARC-UTM: Montpellier, France, 2000; pp. 93–108. [Google Scholar]
- Mortimore, M.J.; Adams, W.M. Farmer adaptation, change and &crisis’ in the Sahel. Glob. Environ. Chang. 2001, 11, 49–57. [Google Scholar]
- Panthou, G.; Vischel, T.; Lebel, T. Recent trends in the regime of extreme rainfall in the Central Sahel. Int. J. Climatol. 2014, 34, 3998–4006. [Google Scholar] [CrossRef]
- Panthou, G.; Lebel, T.; Vischel, T.; Quantin, G.; Sané, Y.; Ba, A.; Ndiaye, O.; Diongue-Niang, A.; Diop Kane, M. Rainfall intensification in tropical semi-arid regions: The Sahelian case. Environ. Res. Lett. 2018, 13, 064013. [Google Scholar] [CrossRef]
Country | % of Surface Water Resources Originating in the Fouta Djallon | Concerned River Basins |
---|---|---|
Mauritania | 96 | Senegal |
Gambia | 63 | Gambia |
Senegal | 60 | Senegal, Gambia, Anyamba/Geba |
Guinea-Bissau | 48 | Corubal/Koliba, Anyamba/Geba |
Mali | 55 | Senegal, Niger |
Niger | 70 | Niger |
A | Decreasing | DC | 4 Months Depletion Coef | 2 Months Depletion Coef | 1 Month Depletion Coef | Yearly | |||||||
Mean 1947–70 | Mean 71–93 | Mean 94–2019 | Mean 1947–70 | Mean 71–93 | Mean 94–2019 | Mean 1947–70 | Mean 71–93 | Mean 94–2019 | Deforestation % | ||||
Senegal | Gourbassi | Faleme | coef | 0.0339 | 0.0460 | 0.0412 | 0.0433 | 0.0533 | 0.0465 | 0.0550 | 0.0622 | 0.0554 | 0.099 |
day | 28-November | 25- November | 1-December | 27-October | 3-November | 3-Nov | 18-October | 23-October | 18-October | ||||
Senegal | Daka Saidou | Bafing | coef | 0.0238 | 0.0243 | 0.0237 | 0.0298 | 0.0321 | 0.0317 | 0.0352 | 0.0395 | 0.0392 | 0.197 |
day | 29-November | 8-November | 3-December | 7-November | 5-November | 17-November | 5-November | 18-October | 11-November | ||||
Niger | Dabola | Tinkisso | coef | 0.0264 | 0.0228 | 0.0252 | 0.0381 | 0.0366 | 0.0351 | 0.0485 | 0.0456 | 0.0424 | 0.873 |
day | 3-December | 20-November | 9-December | 4-November | 25-October | 15-November | 27-October | 17-October | 2-November | ||||
B | Stabilized | DC | 4 Months Depletion Coef | 2 Months Depletion Coef | 1 Month Depletion Coef | Yearly | |||||||
Mean 1947–70 | Mean 71–93 | Mean 94–2019 | Mean 1947–70 | Mean 71–93 | Mean 94–2019 | Mean 1947–70 | Mean 71–93 | Mean 94–2019 | Deforestation % | ||||
Gambia | Missirah | Koulountou | coef | 0.0407 | 0.0394 | 0.0434 | 0.0443 | 0.0525 | 0.0625 | 0.339 | |||
day | 21-November | 3-December | 6-November | 15-November | 24-October | 8-November | |||||||
Gambia | Mako | Gambia | coef | 0.0294 | 0.0308 | 0.0381 | 0.0401 | 0.0485 | 0.0500 | 0.427 | |||
day | 29-November | 4-November | 27-Oct | 5-November | 22-October | 29-October | |||||||
Corubal | Gaoual K | Koumba | coef | 0.0201 | 0.0197 | 0.0284 | 0.0267 | 0.0388 | 0.0371 | 0.836 | |||
(Koliba) | day | 30-November | 9-December | 30-October | 9-November | 31-October | 14-November | ||||||
Senegal | Sokotoro | Bafing | coef | 0.0269 | 0.0314 | 0.0403 | 2.229 | ||||||
day | 27-November | 16-November | 30-Oct | ||||||||||
Niger | Kouroussa | Niger | coef | 0.0249 | 0.0269 | 0.0271 | 0.0300 | 0.0321 | 0.0312 | 0.0355 | 0.0383 | 0.0366 | 0.936 |
day | 27-December | 18-December | 28-December | 25-December | 14-December | 1-December | 26-November | 10-December | 21-November | ||||
C | Increasing | DC | < 20% | 4 Months Depletion Coef | 2 Months Depletion Coef | 1 Month Depletion Coef | Yearly | ||||||
Ddef | Mean 1947–70 | Mean 71–93 | Mean 94–2019 | Mean 1947–70 | Mean 71–93 | Mean 94–2019 | Mean 1947–70 | Mean 71–93 | Mean 94–2019 | Deforestation % | |||
Konkouré | Nianso | Kokoulo | coef | 0.0297 | 0.0305 | 0.0281 | 0.0334 | 0.0368 | 0.0418 | 1.858 | |||
day | 30-November | 12-December | 14-November | 24-November | 1-November | 19-November | |||||||
Konkouré | Kaba | Kakrima | coef | 0.0278 | 0.0295 | 0.0320 | 0.0344 | 0.0399 | 0.0400 | 1.724 | |||
day | 9-December | 2-December | 29-November | 17-November | 15-November | 8-November | |||||||
Corubal | Gaoual T | Tominé | coef | 0.0201 | 0.0241 | 0.0279 | 0.0318 | 0.0393 | 0.0428 | 2.273 | |||
30-November | 4-December | 30-October | 6-November | ||||||||||
D | Increasing | DC | > 20% | 4 Months Depletion Coef | 2 Months Depletion Coef | 1 Month Depletion Coef | Yearly | ||||||
mean 1947–70 | mean 71–93 | mean 94–2019 | mean 1947–70 | mean 71–93 | mean 94–2019 | mean 1947–70 | mean 71–93 | mean 94–2019 | Deforestation % | ||||
Niger | Tinkisso | Tinkisso | coef | 0.0269 | 0.0333 | 0.0365 | 0.0342 | 0.0374 | 0.0390 | 0.0459 | 0.0465 | 0.0505 | 0.235 |
day | 18-December | 21-December | 1-Jan | 24-November | 19-November | 2-December | 14-November | 2-November | 19-November | ||||
Niger | Baro | Niandan | coef | 0.0230 | 0.0279 | 0.0314 | 0.0279 | 0.0325 | 0.0383 | 0.0356 | 0.0393 | 0.0443 | 0.626 |
day | 14-December | 21-December | 22-December | 10-December | 5-December | 27-December | 30-November | 25-November | 24-December | ||||
Niger | Kankan | Milo | coef | 0.0227 | 0.0256 | 0.0321 | 0.0285 | 0.0310 | 0.0419 | 0.0347 | 0.0397 | 0.0517 | 0.634 |
day | 8-December | 6-December | 15-November | 16-November | 11-November | 14-November | 2-November | 9-November | 11-November | ||||
Konkouré | Pt Rte Télimélé | Konkouré | coef | 0.0132 | 0.0212 | 0.0245 | 0.0153 | 0.0252 | 0.0268 | 0.0191 | 0.0281 | 0.0359 | 0.881 |
day | 7-January | 26-December | 13-December | 8-December | 3-December | 29-November | 26-November | 19-November | 11-November | ||||
Konkouré | Pt de Linsan | Upper K. | coef | 0.0234 | 0.0303 | 0.0334 | 0.0294 | 0.0343 | 0.0376 | 0.0365 | 0.0473 | 0.0460 | 3.731 |
day | 7-November | 14-November | 22-November | 22-October | 6-November | 7-November | 23-October | 31-October | 11-November |
B | Class B | Discharge m3·s−1 | Specific Discharge l.s−1·km−2 | Runoff Coefficient | Max Daily Discharge/+ Day | ||||||||||
Station | Basin | Area km² | 47–70 | 71–93 | 94–2019 | 47–70 | 71–93 | 94–2019 | 47–70 | 71–93 | 94–19 | 47–70 | 71–93 | 94–2019 | |
Senegal | Daka Saidou | Bafing | 15700 | 306.6 | 182.4 | 225.9 | 19.5 | 11.6 | 14.4 | 0.390 | 0.264 | 0.310 | 1750/16 September | 1074/29 August | 1363/4 September |
Senegal | Sokotoro | Up Bafing | 1750 | 29.6 | 16.9 | 0.354 | 136/5 September | ||||||||
Niger | Tinkisso | Tinkisso | 6370 | 89.0 | 55.0 | 87.1 | 14.0 | 8.6 | 13.7 | 0.296 | 0.197 | 0.308 | 337/31 August | 244/19 September | 332/20 September |
Niger | Dabola | Up Tinkisso | 1260 | 14.9 | 14.1 | 14.5 | 11.8 | 11.2 | 11.5 | 0.244 | 0.226 | 0.242 | 67.1/4 September | 65.1/5 September | 64.2/21 September |
Niger | Kouroussa | Niger | 16560 | 256.0 | 165.0 | 181 | 15.5 | 10.0 | 10.9 | 0.286 | 0.201 | 0.212 | 1188/29 September | 728/15 September | 840/25 September |
Niger | Baro | Niandan | 12770 | 274.2 | 205.2 | 205.4 | 21.5 | 16.1 | 16.1 | 0.348 | 0.281 | 0.284 | 1192/21 September | 865/13 September | 922/7 September |
Niger | Kankan | Milo | 9620 | 206.4 | 149.4 | 144.9 | 21.0 | 15.5 | 15.1 | 0.349 | 0.284 | 0.262 | 771/18 September | 665/10 September | 712/19 September |
A | Class A | Discharge m3·s−1 | Specific Discharge l.s−1·km−2 | Runoff Coefficient | Max Daily Discharge/+ Day | ||||||||||
Station | Basin | Area km² | 47–70 | 71–93 | 94–2019 | 47–70 | 71–93 | 94–2019 | 47–70 | 71–93 | 94–2019 | 47–70 | 71–93 | 94–2019 | |
Senegal | Gourbassi | Faleme | 17100 | 166.5 | 64.8 | 100.4 | 9.7 | 3.8 | 5.9 | 0.225 | 0.102 | 0.149 | 1322/1 January | 746/6 September | 977/10 September |
Gambia | Mako | Gambia | 10540 | 79.3 | 116.6 | 7.6 | 11.2 | 0.184 | 0.247 | 699/6 September | 922/10 September | ||||
Gambia | Missirah | Koulountou | 6200 | 27.3 | 32.9 | 4.4 | 5.3 | 0.118 | 0.131 | 170/17 September | 209/11 September | ||||
C | Class C | Discharge m3·s−1 | Specific Discharge l·s−1·km−2 | Runoff Coefficient | Max Daily Discharge/+ Day | ||||||||||
Station | Basin | Area km² | 47–70 | 71–93 | 94–2019 | 47–70 | 71–93 | 94–2019 | 47–70 | 71–93 | 94–2019 | 47–70 | 71–93 | 94–2019 | |
Konkouré | Pt de Linsan | Konkouré | 402 | 17.5 | 13.1 | 12.2 | 43.5 | 32.5 | 30.5 | 0.655 | 0.528 | 0.476 | 113/20 August | 88.9/26 August | 93.3/6 September |
Konkouré | Nianso | Kokoulo | 2260 | 60.8 | 62.1 | 26.9 | 27.5 | 0.486 | 0.439 | 533/28 August | 441/29 August | ||||
Konkouré | Kaba | Kakrima | 3190 | 72.4 | 77.6 | 22.7 | 24.3 | 0.407 | 0.392 | 468/27 August | 496/26 August | ||||
Konkouré | Pt Télimélé | Konkouré | 10210 | 427.4 | 255.0 | 262.0 | 41.9 | 25.0 | 25.7 | 0.604 | 0.410 | 0.401 | 1971/19 August | 1409/23 August | 1422/5 September |
Corubal | Gaoual T | Tominé | 3300 | 98.1 | 124.2 | 29.7 | 37.6 | 0.471 | 0.529 | 565/30 August | 642/13 September | ||||
Corubal | Gaoual K | Koumba | 6200 | 174.1 | 201.5 | 28.5 | 33.0 | 0.500 | 0.533 | 879/6 September | 972/8 September |
Q | Mean Yearly Discharge in m3/s |
---|---|
QS | specific discharge (l·s−1·km−2) |
QDX | maximum daily discharge |
DC4 | depletion coef in 4 months |
ED41 | DC4 evolution period 1 to per 2 |
ED42 | DC4 evolution period 2 to per 3 |
DC1 | depletion coef in 1 month |
ED11 | DC1 evolution period 1 to per 2 |
ED12 | DC1 evolution period 2 to per 3 |
RAD | rainfall depth |
RUD | runoff depth |
RC | runoff coefficient |
ER1 | RC evolution period 1 to per 2 |
ER2 | RC evolution period 2 to per 3 |
A | area |
DEFO | % deforestation 2000–2020 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Descroix, L.; Faty, B.; Manga, S.P.; Diedhiou, A.B.; A. Lambert, L.; Soumaré, S.; Andrieu, J.; Ogilvie, A.; Fall, A.; Mahé, G.; et al. Are the Fouta Djallon Highlands Still the Water Tower of West Africa? Water 2020, 12, 2968. https://doi.org/10.3390/w12112968
Descroix L, Faty B, Manga SP, Diedhiou AB, A. Lambert L, Soumaré S, Andrieu J, Ogilvie A, Fall A, Mahé G, et al. Are the Fouta Djallon Highlands Still the Water Tower of West Africa? Water. 2020; 12(11):2968. https://doi.org/10.3390/w12112968
Chicago/Turabian StyleDescroix, Luc, Bakary Faty, Sylvie Paméla Manga, Ange Bouramanding Diedhiou, Laurent A. Lambert, Safietou Soumaré, Julien Andrieu, Andrew Ogilvie, Ababacar Fall, Gil Mahé, and et al. 2020. "Are the Fouta Djallon Highlands Still the Water Tower of West Africa?" Water 12, no. 11: 2968. https://doi.org/10.3390/w12112968
APA StyleDescroix, L., Faty, B., Manga, S. P., Diedhiou, A. B., A. Lambert, L., Soumaré, S., Andrieu, J., Ogilvie, A., Fall, A., Mahé, G., Sombily Diallo, F. B., Diallo, A., Diallo, K., Albergel, J., Alkali Tanimoun, B., Amadou, I., Bader, J.-C., Barry, A., Bodian, A., ... Vandervaere, J.-P. (2020). Are the Fouta Djallon Highlands Still the Water Tower of West Africa? Water, 12(11), 2968. https://doi.org/10.3390/w12112968