Investigating Monetary Incentives for Environmentally Friendly Residential Landscapes
Abstract
:1. Introduction
2. Background on Monetary Incentive Programs
3. Methods and Econometric Models
3.1. Design of Choice Experiment
3.2. Survey Instrument
3.3. Econometric Models
4. Results
4.1. Sample Summary
4.2. Willingness-to-Pay for Landscape Attributes and Rebate Incentive
4.3. Environmental Benefits Information and Synergistic Effects
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Environmental Protection Agency (EPA). WaterSense, an EPA Partnership Program. 2016. Available online: https://www3.epa.gov/watersense.html (accessed on 14 March 2017).
- Lee, M.; Tansel, B.; Balbin, M. Urban Sustainability Incentives for Residential Water Conservation: Adoption of Multiple High Efficiency Appliances. Water Resour. Manag. 2013, 27, 2531–2540. [Google Scholar] [CrossRef]
- Millock, K.; Nauges, C. Household Adoption of Water-Efficient Equipment: The Role of Socio-Economic Factors, Environmental Attitudes and Policy. Environ. Resour. Econ. 2010, 46, 539–565. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.H.F.; Brown, R.R. The Water Sensitive City: Principles for Practice. Water Sci. Technol. 2009, 60, 673–682. [Google Scholar] [CrossRef] [Green Version]
- Allen, C. A Quantitative Analysis of the Effect of Cash-4-Grass Programs on Water Consumption. In ProQuest Dissertations and Theses; 208; ProQuest: Ann Arbor, MI, USA, 2014. [Google Scholar]
- Environmental Protection Agency (EPA). Reduce Your Outdoor Water Use. 2013. Available online: https://www.epa.gov/sites/production/files/2017-03/documents/ws-factsheet-outdoor-water-use-in-the-us.pdf (accessed on 14 March 2017).
- Katzev, R.D.; Johnson, T.R. Comparing the Effects of Monetary Incentives and Foot-in-the-Door Strategies in Promoting Residential Electricity Conservation. J. Appl. Soc. Psychol. 1984, 14, 12–27. [Google Scholar] [CrossRef]
- Winett, R.A.; Kaiser, S.; Haberkorn, G. The Effects of Monetary Rebates and Daily Feedback on Electricity Conservation. J. Environ. Syst. 1976, 6, 329–341. [Google Scholar] [CrossRef]
- Winkler, R.C.; Winett, R.A. Behavioral Interventions in Resource Conservation: A Systems Approach Based on Behavioral Economics. Am. Psychol. 1982, 37, 421–435. [Google Scholar] [CrossRef]
- Bennear, L.S.; Taylor, L.; Lee, J. Participation Incentives, Rebound Effects and the Cost-Effectiveness of Rebates for Water-Efficient Appliances. SSRN Electron. J. 2011. [Google Scholar] [CrossRef]
- Campbell, H.E.; Johnson, R.M.; Larson, E.H. Prices, Devices, People, or Rules: The Relative Effectiveness of Policy Instruments in Water Conservation1. Rev. Policy Res. 2004, 21, 637–662. [Google Scholar] [CrossRef]
- Energy Star. Energy Star Overview. 2016. Available online: https://www.energystar.gov/about (accessed on 14 March 2017).
- Gilg, A.; Barr, S. Behavioural Attitudes towards Water Saving? Evidence from a Study of Environmental Actions. Ecol. Econ. 2006, 57, 400–414. [Google Scholar] [CrossRef]
- Clem, T.B. Extension Landscape Programs and the Values-Beliefs-Norms Theory: Studying the Impacts of Extension Programs and Beer Anticipating Environmental Behavior Change. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2017. [Google Scholar]
- Metropolitan Water District of Southern California. SoCal Water$mart|Residential Rebates, Sacramento, CA. 2017. Available online: http://socalwatersmart.com/?page_id=3007 (accessed on 14 March 2017).
- Southern Nevada Water Authority. Water Smart Landscapes Rebate. 2016. Available online: https://www.snwa.com/rebates/wsl/index.html (accessed on 14 March 2017).
- Alachua County Environmental Protection Department. Turf SWAP Program. Gainesville, FL. 2017. Available online: http://www.alachuacounty.us/Depts/epd/WaterResources/myyardourwater/TurfSWAP/Pages/default.aspx (accessed on 14 May 2017).
- Stern, P.C. Information, Incentives, and Proenvironmental Consumer Behavior. J. Consum. Policy 1999, 22, 461–478. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA). Customer Incentives for Water Conservation. 1994. Available online: https://nepis.epa.gov/Exe/ZyNET.exe/40000KLY.TXT?ZyActionD=ZyDocument&Client=EPA&Index=1991+Thru+1994&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C91thru94%5CTxt%5C00000014%5C40000KLY.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL (accessed on 14 March 2017).
- Hanak, E.; Davis, M. California Economic Policy: Lawns and Water Demand in California; Public Policy Institute of California: San Francisco, CA, USA, 2006. [Google Scholar]
- Harlan, S.L.; Yabiku, S.T.; Larsen, L.; Brazel, A.J. Household Water Consumption in an Arid City: Affluence, Affordance, and Attitudes. Soc. Nat. Resour. 2009, 22, 691–709. [Google Scholar] [CrossRef]
- Addink, S. Cash for Grass—A Cost Effective Method to Conserve Landscape Water. University of California at Riverside Turfgrass Research Facility. 2008. Available online: http://ucrturf.ucr,edu/topics/Cash-for-Grass.pdf (accessed on 14 May 2017).
- Hilaire, R.S.; Hall, S.; Cruces, L.; Arnold, M.A.; Wilkerson, D.C.; Devitt, D.A.; Hurd, B.H.; Lesikar, B.J.; Lohr, V.I.; Martin, C.A.; et al. Efficient Water Use in Residential Urban Landscapes. HortScience 2008, 43, 2081–2092. [Google Scholar] [CrossRef]
- Lancaster, K.J. A New Approach to Consumer Theory. J. Polit. Econ. 1996, 74, 132–157. [Google Scholar] [CrossRef]
- Johnston, R.J.; Boyle, K.J.; Adamowicz, W.; Bennett, J.; Brouwer, R.; Cameron, T.A.; Hanemann, W.M.; Hanley, N.; Ryan, M.; Scarpa, R.; et al. Contemporary guidance for stated preference studies. J. Assoc. Environ. Resour. Econ. 2017, 4, 319–405. [Google Scholar] [CrossRef] [Green Version]
- U.S. Census Bureau. Quick Facts. 2017. Available online: https://www.census.gov/quickfacts/fact/table/FL,US/PST045217 (accessed on 14 March 2017).
- University of Florida Institute of Food and Agricultural Sciences (UF/IFAS). The Florida Yards and Neighborhoods Handbook. 2015. Available online: https://ffl.ifas.ufl.edu/materials/FYN_Handbook_2015_web.pdf (accessed on 14 May 2017).
- Train, K.E. Discrete Choice Methods with Simulation; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Khachatryan, H.; Suh, D.H.; Zhou, G.; Dukes, M. Sustainable Urban Landscaping: Consumer Preferences and Willingness to Pay for Turfgrass Fertilizers. Can. J. Agric. Econ. 2017, 65, 385–407. [Google Scholar] [CrossRef]
- Hole, A.R.; Kolstad, J.R. Mixed Logit Estimation of Willingness to Pay Distributions: A Comparison of Models in Preference and WTP Space Using Data from a Health-Related Choice Experiment. Empir. Econ. 2012, 42, 445–469. [Google Scholar] [CrossRef]
- Train, K.E.; Weeks, M. Discrete Choice Models in Preference Space and Willingness-to-Pay Space. Appl. Simul. Methods Environ. Resour. Econ. 2005, 3, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Scarpa, R.; Thiene, M.; Train, K. Utility in Willingness to Pay Space: A Tool to Address Confounding Random Scale Effects in Destination Choice to the Alps. Am. J. Agric. Econ. 2008, 90, 994–1010. [Google Scholar] [CrossRef]
- Xie, J.; Gao, Z.; Swisher, M.; Zhao, X. Consumers’ Preferences for Fresh Broccolis: Interactive Effects between Country of Origin and Organic Labels. Agric. Econ. 2016, 47, 181–191. [Google Scholar] [CrossRef]
- Peterson, M.N.; Thurmond, B.; Mchale, M.; Rodriguez, S.; Bondell, H.D.; Cook, M. Predicting Native Plant Landscaping Preferences in Urban Areas. Sustain. Cities Soc. 2012, 5, 70–76. [Google Scholar] [CrossRef]
- Swait, J.; Louviere, J.J. The Role of the Scale Parameter in the Estimation and Comparison of Multinomial Logit Models. J. Mark. Res. 1993, 30, 305. [Google Scholar] [CrossRef]
- Robbins, P.; Birkenholtz, T. Turfgrass Revolution: Measuring the Expansion of the American Lawn. Land Use Policy 2003, 20, 181–194. [Google Scholar] [CrossRef]
- U.S. Geological Survey (USGS). Historical Water-Use in Florida. United States Geological Survey. 15 September 2016. Available online: http://fl.water.usgs.gov/infodata/wateruse/historical.html (accessed on 14 May 2017).
- Khachatryan, H.; Suh, D.H.; Xu, W.; Useche, P.; Dukes, M. Towards Sustainable Water Management: Consumer Preferences and Willingness to Pay for Smart Irrigation Technologies. Land Use Policy 2019, 85, 33–41. [Google Scholar] [CrossRef]
- Suh, D.H.; Khachatryan, H.; Rihn, A.; Dukes, M. Relating Knowledge and Perceptions of Sustainable Water Management to Preferences for Smart Irrigation Technology. Sustainability 2017, 9, 607. [Google Scholar] [CrossRef] [Green Version]
- National Gardening Association. The National Gardening Association’s Comprehensive Study of Consumer Gardening Practices, Trends, and Product Sales; National Gardening Association Inc.: Williston, VT, USA, 2013. [Google Scholar]
Attributes | Levels | Variable |
---|---|---|
Cost of installation ($) | $4500, $5000, $5500, $6000 | Cost |
Landscape design ratio | 75% turfgrass/25% plant (base) 50% turfgrass/50% plant 25% turfgrass/75% plant 100% plant | Plant25 Plant50 Plant75 Plant100 |
Rebate levels Pollinator attractive habitat | 0% (base) 25% 50% High Low (base) | Rebate0 Rebate25 Rebate50 Habitat |
Irrigation system | Smart Conventional (base) | Irrigation |
Maintenance requirement | Low Medium High (base) | Maintlow Maintmed Mainthigh |
Whole Sample | Control Group | Treatment Group | U.S. Census Group b | |
---|---|---|---|---|
Observations | 610 | 305 | 305 | - |
Age | 49.2 | 49.3 | 49.0 | 41.1 a |
Female (%) | 59.0 | 60.3 | 57.7 | 51.1 |
Ethnic Group (%) | ||||
Caucasian | 81.6 | 82.6 | 80.7 | 54.9 |
African American | 7.5 | 6.6 | 8.2 | 16.8 |
Hispanic | 5.6 | 5.9 | 5.3 | 24.9 |
Others | 5.4 | 4.9 | 4.6 | 3.4 |
Education (%) | ||||
High school | 12.0 | 10.1 | 13.8 | 30.0 |
College degree (2 years above) | 68.5 | 70.2 | 66.9 | 45.0 |
Graduate degree | 19.5 | 19.7 | 19.3 | 8.0 |
Employment (%) | ||||
Employed full time | 46.6 | 46.9 | 46.2 | 53.6 |
Employed part time | 8.2 | 7.9 | 8.5 | - |
Self-employed | 7.9 | 6.9 | 8.8 | - |
Unemployed | 7.9 | 8.9 | 6.9 | 4.9 |
Student | 1.2 | 1.0 | 1.3 | - |
Retired | 25.7 | 25.9 | 25.6 | 19.7 |
Income (%) | ||||
Less than $19,999 | 3.8 | 4.9 | 2.6 | 18.8 |
$20,000–$59,999 | 36.9 | 37.1 | 36.7 | 39.4 |
$60,000–$99,999 | 33.3 | 30.1 | 36.4 | 22.3 |
$100,000 above | 26.1 | 27.9 | 24.2 | 19.6 |
Control Group | Treatment Group | WTP Difference (Treatment-Control) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Attributes | Overall Control Group N = 305 (1) | Low Incentive Requirement N = 80 (2) | Medium Incentive Requirement N = 128 (3) | High Incentive Requirement N = 97 (4) | Overall Treatment Group N = 305 (5) | Low Incentive Requirement N = 68 (6) | Medium Incentive Requirement N = 122 (7) | High Incentive Requirement N = 115 (8) | ΔWTP (Overall) | ΔWTP (Low Incentive Requirement) | ΔWTP (Medium Incentive Requirement) | ΔWTP (High Incentive Requirement) |
Mean Estimates | ||||||||||||
Plant50 | 0.694 *** | 0.547 | 0.627 * | 0.499 | 0.382 * | 1.369 | 0.088 | 0.357 | −0.312 *** | 0.822 *** | −0.539*** | −0.142 |
(0.252) | (0.465) | (0.343) | (0.329) | (0.200) | (0.974) | (0.223) | (0.317) | [0.01] | [0.008] | [0.001] | [0.395] | |
Plant75 | 0.103 | −0.126 | 0.122 | 0.230 | 0.234 | 0.878 | 0.098 | 0.142 | 0.131 | 1.004 | −0.024 | −0.088 |
(0.246) | (0.583) | (0.310) | (0.366) | (0.225) | (0.797) | (0.241) | (0.354) | [0.23] | [0.200] | [0.870] | [0.766] | |
Plant100 | −1.510 *** | −2.512 *** | −2.162 ** | −0.311 | −1.588 *** | −1.313 | −1.026 ** | −2.274 ** | −0.078 | 1.199 | 1.136 ** | −1.963 *** |
(0.560) | (0.898) | (0.921) | (0.692) | (0.540) | (2.119) | (0.448) | (0.947) | [0.43] | [0.362] | [0.039] | [0.008] | |
Habitat | 0.729 *** | 1.818 *** | 0.745 ** | 0.916 ** | 1.114 *** | 1.594 ** | 1.127 *** | 0.771 ** | 0.385 *** | −0.224 ** | 0.382 *** | −0.145 |
(0.209) | (0.569) | (0.300) | (0.365) | (0.226) | (0.726) | (0.272) | (0.346) | [0.00] | [0.010] | [0.001] | [0.374] | |
Irrigation | 0.401 ** | 0.666** | 0.399 | 0.625 ** | 0.951 *** | 1.331 ** | 0.975 *** | 0.557 ** | 0.550 *** | 1.996 ** | 0.576 *** | −0.068 |
(0.169) | (0.323) | (0.262) | (0.295) | (0.189) | (0.642) | (0.234) | (0.274) | [0.00] | [0.022] | [0.000] | [0.471] | |
Mainlow | 1.982 *** | 1.504 ** | 1.913 *** | 1.926 *** | 1.841 *** | 2.662 * | 1.377 *** | 1.799 *** | −0.141 * | 1.158 *** | −0.536 *** | −0.127 * |
(0.456) | (0.767) | (0.669) | (0.697) | (0.422) | (1.610) | (0.431) | (0.684) | [0.05] | [0.000] | [0.002] | [0.054] | |
Mainmed | 1.198 *** | 1.346 ** | 0.953 ** | 1.314 *** | 1.295 *** | 1.654 | 1.003 *** | 1.256 ** | 0.097 *** | 0.308 *** | 0.050 *** | −0.058 |
(0.304) | (0.582) | (0.391) | (0.484) | (0.307) | (1.023) | (0.313) | (0.500) | [0.00] | [0.000] | [0.000] | [0.387] | |
Rebate25 | 0.598 *** | 0.929 ** | 0.752 *** | 0.716 ** | 0.816 *** | 1.251 * | 0.638 *** | 0.802 ** | 0.218 *** | 0.322 *** | −0.114 *** | 0.086 ** |
(0.171) | (0.407) | (0.284) | (0.295) | (0.190) | (0.697) | (0.203) | (0.313) | [0.00] | [0.001] | [0.003] | [0.040] | |
Rebate50 | 0.959 *** | 1.253 ** | 1.075 *** | 0.999 *** | 0.885 *** | 0.628 | 0.676 *** | 0.968 ** | −0.074 ** | −0.625 *** | −0.399 *** | −0.031 |
(0.254) | (0.600) | (0.400) | (0.368) | (0.238) | (0.791) | (0.258) | (0.408) | [0.04] | [0.000] | [0.000] | [0.560] | |
Scale(λ) | −0.560 *** | −0.611 | −0.667 ** | −0.608 ** | −0.574 *** | −0.708 | −0.407** | −0.649 ** | ||||
(0.180) | (0.377) | (0.260) | (0.288) | (0.171) | (0.465) | (0.198) | (0.276) | |||||
Optout | −8.224 *** | −12.58 *** | −8.22 *** | −5.49 *** | −7.334 *** | −7.595 *** | −6.196 *** | −7.923 *** | ||||
(0.853) | (0.377) | (1.135) | (0.736) | (0.682) | (1.607) | (0.609) | (1.088) | |||||
Standard Deviation | ||||||||||||
Plant50 | 1.637 *** | 2.132 *** | 1.309 *** | 1.145 ** | 1.447 *** | 1.251 * | 0.638 *** | 0.802 ** | ||||
(0.363) | (0.693) | (0.475) | (0.449) | (0.351) | (0.697) | (0.203) | (0.313) | |||||
Plant75 | 2.213 *** | 2.675 *** | 1.301 * | 2.162 *** | 2.082 *** | 4.334 * | 1.007 *** | 2.122 *** | ||||
(0.470) | (1.013) | (0.666) | (0.774) | (0.456) | (2.286) | (0.351) | (0.737) | |||||
Plant100 | 6.293 *** | 5.703 *** | 5.572 *** | 4.526 *** | 5.313 *** | 9.973 | 2.382 *** | 5.829 *** | ||||
(1.379) | (1.725) | (1.799) | (1.430) | (1.169) | (6.371) | (0.892) | (1.998) | |||||
Habitat | 1.175 *** | 0.475 | 0.809 | 0.676 | 1.097 *** | 0.567 | 0.960 ** | 1.479 *** | ||||
(0.312) | (0.343) | (0.631) | (0.435) | (0.319) | (0.608) | (0.406) | (0.535) | |||||
Irrigation | 0.629 | 1.083 ** | 0.471 | 0.846 ** | 0.572 | 2.296 * | 0.494 | 0.506 | ||||
(0.445) | (0.463) | (0.454) | (0.396) | (0.377) | (1.338) | (0.346) | (0.551) | |||||
Mainlow | 1.275 *** | 0.746 * | 1.544 ** | 0.693 * | 0.844 | 1.719 | 1.141 * | 0.106 | ||||
(0.456) | (0.404) | (0.769) | (0.380) | (0.552) | (1.087) | (0.621) | (1.021) | |||||
Mainmed | 0.104 | 0.199 | 0.193 | 0.208 | 0.034 | 0.095 | 0.124 | 0.630 | ||||
(0.193) | (0.257) | (0.306) | (0.283) | (0.237) | (0.443) | (0.334) | (0.404) | |||||
Scale(λ) | 0.579 *** | 1.316 *** | 0.047 | 0.666*** | 0.499 *** | 0.413 | 0.197 | 0.227 | ||||
(0.200) | (0.457) | (0.176) | (0.185) | (0.154) | (0.312) | (0.178) | (0.156) | |||||
Optout | 5.727 *** | 9.558 *** | 5.007 *** | 7.044 *** | 4.416 *** | 6.002 ** | 3.428 *** | 3.474 *** | ||||
(1.160) | (3.339) | (1.423) | (2.076) | (0.826) | (2.789) | (0.771) | (1.071) | |||||
# of Obs. | 7320 | 1920 | 3072 | 2328 | 7320 | 1632 | 2928 | 2760 | ||||
Log-likeli-hood | −2018.827 | −511.538 | −849.856 | −652.946 | −2032.899 | −417.212 | −829.783 | −765.423 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Khachatryan, H. Investigating Monetary Incentives for Environmentally Friendly Residential Landscapes. Water 2020, 12, 3023. https://doi.org/10.3390/w12113023
Zhang X, Khachatryan H. Investigating Monetary Incentives for Environmentally Friendly Residential Landscapes. Water. 2020; 12(11):3023. https://doi.org/10.3390/w12113023
Chicago/Turabian StyleZhang, Xumin, and Hayk Khachatryan. 2020. "Investigating Monetary Incentives for Environmentally Friendly Residential Landscapes" Water 12, no. 11: 3023. https://doi.org/10.3390/w12113023
APA StyleZhang, X., & Khachatryan, H. (2020). Investigating Monetary Incentives for Environmentally Friendly Residential Landscapes. Water, 12(11), 3023. https://doi.org/10.3390/w12113023