Comparison between Periodic Tracer Tests and Time-Series Analysis to Assess Mid- and Long-Term Recharge Model Changes Due to Multiple Strong Seismic Events in Carbonate Aquifers
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Tracer Test Features and Analysis
2.4. Transient Time-Series Analysis
3. Results and Discussion
3.1. Data Description and Basic Statistics
3.2. Tracer Tests Analysis
3.3. Seismically Induced Mid- and Long-Term Changes to Inflow-Outflow Relationships
3.4. Conceptual Model
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manga, M.; Wang, C.-Y. Earthquake Hydrology. In Treatise on Geophysics; Elsevier BV: Oxford, UK, 2015; Volume 4, pp. 305–328. [Google Scholar]
- Charmoille, A.; Fabbri, O.; Mudry, J.; Guglielmi, Y.; Bertrand, C. Post-seismic permeability change in a shallow fractured aquifer following a ML5.1 earthquake (Fourbanne karst aquifer, Jura outermost thrust unit, eastern France). Geophys. Res. Lett. 2005, 32, 32. [Google Scholar] [CrossRef]
- Esposito, E.; Pece, R.; Porfido, S.; Tranfaglia, G. Ground effects and hydrological changes in the Southern Apennines (Italy) in response to the 23 July 1930 earthquake (MS=6.7). Nat. Hazards Earth Syst. Sci. 2009, 9, 539–550. [Google Scholar] [CrossRef][Green Version]
- De Luca, G.; Di Carlo, G.; Tallini, M. A record of changes in the Gran Sasso groundwater before, during and after the 2016 Amatrice earthquake, central Italy. Sci. Rep. 2018, 8, 15982. [Google Scholar] [CrossRef] [PubMed]
- De Luca, G.; Di Carlo, G.; Tallini, M. Signals from groundwater in Gran Sasso underground laboratory during Amatrice earthquake of August 24th, 2016. Ann. Geophys. 2016, 59. [Google Scholar] [CrossRef]
- Lai, W.-C.; Koizumi, N.; Matsumoto, N.; Kitagawa, Y.; Lin, C.-W.; Shieh, C.-L.; Lee, Y.-P. Effects of seismic ground motion and geological setting on the coseismic groundwater level changes caused by the 1999 Chi-Chi earthquake, Taiwan. Earth Planets Space 2004, 56, 873–880. [Google Scholar] [CrossRef]
- Manga, M.; Rowland, J.C. Response of Alum Rock springs to the October 30, 2007 Alum Rock earthquake and implications for the origin of increased discharge after earthquakes. Geofluids 2009, 9, 237–250. [Google Scholar] [CrossRef]
- Montgomery, D.R. Streamflow and Water Well Responses to Earthquakes. Science 2003, 300, 2047–2049. [Google Scholar] [CrossRef]
- Adinolfi Falcone, R.; Carucci, V.; Falgiani, A.; Manetta, M.; Parisse, B.; Petitta, M.; Rusi, S.; Spizzico, M.; Tallini, M. Changes on groundwater flow and hydrochemistry of the Gran Sasso carbonate aquifer after 2009 L’Aquila earthquake. Ital. J. Geosci. 2012, 131, 459–474. [Google Scholar] [CrossRef]
- Koizumi, N.; Minote, S.; Tanaka, T.; Mori, A.; Ajiki, T.; Sato, T.; Takahashi, H.A.; Matsumoto, N. Hydrological changes after the 2016 Kumamoto earthquake, Japan. Earth Planets Space 2019, 71, 1–10. [Google Scholar] [CrossRef]
- Amoruso, A.; Crescentini, L.; Petitta, M.; Rusi, S.; Tallini, M. Impact of the 6 April 2009 L’Aquila earthquake on groundwater flow in the Gran Sasso carbonate aquifer, Central Italy. Hydrol. Process. 2010, 25, 1754–1764. [Google Scholar] [CrossRef]
- Valigi, D.; Fronzi, D.; Cambi, C.; Beddini, G.; Cardellini, C.; Checcucci, R.; Mastrorillo, L.; Mirabella, F.; Tazioli, A. Earthquake-Induced Spring Discharge Modifications: The Pescara di Arquata Spring Reaction to the August–October 2016 Central Italy Earthquakes. Water 2020, 12, 767. [Google Scholar] [CrossRef]
- Dar, F.A.; Perrin, J.; Ahmed, S.; Narayana, A.C. Review: Carbonate aquifers and future perspectives of karst hydrogeology in India. Hydrogeol. J. 2014, 22, 1493–1506. [Google Scholar] [CrossRef]
- Bakalowicz, M. Karst groundwater: A challenge for new resources. Hydrogeol. J. 2005, 13, 148–160. [Google Scholar] [CrossRef]
- Manga, M.; ABeresnev, I.; Brodsky, E.E.; ElKhoury, J.E.; Elsworth, D.; Ingebritsen, S.E.; Mays, D.C.; Wang, C.-Y. Changes in permeability caused by transient stresses: Field observations, experiments, and mechanisms. Rev. Geophys. 2012, 50, 50. [Google Scholar] [CrossRef]
- Fiorillo, F.; Doglioni, A. The relation between karst spring discharge and rainfall by cross-correlation analysis (Campania, southern Italy). Hydrogeol. J. 2010, 18, 1881–1895. [Google Scholar] [CrossRef]
- Lambrakis, N.; Andreou, A.S.; Polydoropoulos, P.; Georgopoulos, E.; Bountis, T. Nonlinear analysis and forecasting of a brackish Karstic spring. Water Resour. Res. 2000, 36, 875–884. [Google Scholar] [CrossRef]
- Larocque, M.; Mangin, A.; Razack, M.; Banton, O. Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France). J. Hydrol. 1998, 205, 217–231. [Google Scholar] [CrossRef]
- Mathevet, T.; Lepiller, M.L.; Mangin, A. Application of time-series analyses to the hydrological functioning of an Alpine karstic system: The case of Bange-L’Eau-Morte. Hydrol. Earth Syst. Sci. 2004, 8, 1051–1064. [Google Scholar] [CrossRef]
- Aquilanti, L.; Clementi, F.; Landolfo, S.; Nanni, T.; Palpacelli, S.; Tazioli, A. A DNA tracer used in column tests for hydrogeology applications. Environ. Earth Sci. 2013, 70, 3143–3154. [Google Scholar] [CrossRef]
- Tazioli, A.; Aquilanti, L.; Clementi, F.; Marcellini, M.; Nanni, T.; Palpacelli, S.; Vivalda, P.M. Hydraulic contacts identification in the aquifers of limestone ridges: Tracer tests in the Montelago pilot area (Central Apennines). Acque Sotter. Ital. J. Groundw. 2016, 5. [Google Scholar] [CrossRef]
- Mudarra, M.; Hartmann, A.; Andreo, B. Combining Experimental Methods and Modeling to Quantify the Complex Recharge Behavior of Karst Aquifers. Water Resour. Res. 2019, 55, 1384–1404. [Google Scholar] [CrossRef]
- Chiaraluce, L.; Di Stefano, R.; Tinti, E.; Scognamiglio, L.; Michele, M.; Casarotti, E.; Cattaneo, M.; De Gori, P.; Chiarabba, C.; Monachesi, G.; et al. The 2016 Central Italy Seismic Sequence: A First Look at the Mainshocks, Aftershocks, and Source Models. Seismol. Res. Lett. 2017, 88, 757–771. [Google Scholar] [CrossRef]
- Di Matteo, L.; Dragoni, W.; Azzaro, S.; Pauselli, C.; Porreca, M.; Bellina, G.; Cardaci, W.; Lucio, D.M.; Dragoni, W.; Salvatore, A.; et al. Effects of earthquakes on the discharge of groundwater systems: The case of the 2016 seismic sequence in the Central Apennines, Italy. J. Hydrol. 2020, 583, 124509. [Google Scholar] [CrossRef]
- Fronzi, D.; Banzato, F.; Caliro, S.; Cambi, C.; Cardellini, C.; Checcucci, R.; Mastrorillo, L.; Mirabella, F.; Petitta, M.; Valigi, D.; et al. Preliminary results on the response of some springs of the Sibillini Mountains area to the 2016-2017 seismic sequence. Acque Sotter. Ital. J. Groundw. 2020. [Google Scholar] [CrossRef]
- Petitta, M.; Mastrorillo, L.; Preziosi, E.; Banzato, F.; Barberio, M.D.; Billi, A.; Cambi, C.; De Luca, G.; Di Carlo, G.; Di Curzio, D.; et al. Water-table and discharge changes associated with the 2016–2017 seismic sequence in central Italy: Hydrogeological data and a conceptual model for fractured carbonate aquifers. Hydrogeol. J. 2018, 26, 1009–1026. [Google Scholar] [CrossRef]
- Valigi, D.; Mastrorillo, L.; Cardellini, C.; Checcucci, R.; Di Matteo, L.; Frondini, F.; Mirabella, F.; Viaroli, S.; Vispi, I. Springs discharge variations induced by strong earthquakes: The Mw 6.5 Norcia event (Italy, October 30th 2016). Rendiconti Online Soc. Geol. Ital. 2019, 47, 141–146. [Google Scholar] [CrossRef]
- Mastrorillo, L.; Saroli, M.; Viaroli, S.; Banzato, F.; Valigi, D.; Petitta, M. Sustained post-seismic effects on groundwater flow in fractured carbonate aquifers in Central Italy. Hydrol. Process. 2019, 34, 1167–1181. [Google Scholar] [CrossRef]
- Nanni, T.; Vivalda, P.M.; Palpacelli, S.; Marcellini, M.; Tazioli, A. Groundwater circulation and earthquake-related changes in hydrogeological karst environments: A case study of the Sibillini Mountains (central Italy) involving artificial tracers. Hydrogeol. J. 2020, 1–20. [Google Scholar] [CrossRef]
- Banzato, F.; Mastrorillo, L.; Nanni, T.; Palpacelli, S.; Petitta, M.; Vivalda, P.M. L’acquifero carbonatico fratturato delle Sorgenti del Fiume Aso (Parco Nazionale dei Monti Sibillini): Valutazioni sulla risorsa rinnovabile e sull’area di alimentazione. In Proceedings of the “La ricerca carsologica in Italia” Laboratorio Carsologico Sotterraneo di Bossea, Frabosa Soprana, Italy, 22–23 June 2013. [Google Scholar]
- Nanni, T. Caratteri idrogeologici delle Marche. In L’ambiente Fisico delle Marche; S.E.C.L.A. s.r.l.: Florence, Italy, 1991. [Google Scholar]
- Mastrorillo, L.; Baldoni, T.; Banzato, F.; Boscherini, A.; Cascone, D.; Checcucci, R.; Boni, C. Quantitative hydrogeological analysis of the carbonate domain of the Umbria Region (Central Italy). Ital. J. Eng. Geol. Environ. 2009, 1, 137–155. [Google Scholar]
- Aquilanti, L.; Clementi, F.; Nanni, T.; Palpacelli, S.; Tazioli, A.; Vivalda, P.M. DNA and fluorescein tracer tests to study the recharge, groundwater flowpath and hydraulic contact of aquifers in the Umbria-Marche limestone ridge (central Apennines, Italy). Environ. Earth Sci. 2016, 75, 1–17. [Google Scholar] [CrossRef]
- Calamita, F. Thrusts and fold-related structures in the Umbria-Marche Apennines (Central Italy). Ann. Tecto. 1990, 4, 83–117. [Google Scholar]
- Pierantoni, P.; Deiana, G.; Galdenzi, S. Stratigraphic and structural features of the Sibillini Mountains (Umbria-Marche Apennines, Italy). Ital. J. Geosci. 2013, 132, 497–520. [Google Scholar] [CrossRef]
- Lavecchia, G. II sovrascorrimento dei Monti Sibillini: Analisi cinematica e strutturale. Boll. Soc. Geol. It. 1985, 104, 161–194. [Google Scholar]
- Calamita, F.; Deiana, G. Evoluzione Strutturale Neogenico-Quaternaria Dell’appennino Umbro-Marchigiano. Available online: http://193.204.8.201:8080/jspui/bitstream/1336/204/1/Vol.%20Geologia%20Marche%20Capitolo%208.pdf (accessed on 2 November 2020).
- Dragoni, W.; Speranza, G.; Valigi, D. Impatto delle variazioni climatiche sui sistemi idrogeologici: II caso della sorgente Pescara di Arquata (Appennino umbro-marchigiano, Italia). Geol. Tec. Ambient. 2003, 3, 27–35. [Google Scholar]
- Boni, C. Hydrogeological study for identification, characterisation and management of groundwater resources in the Sibillini Mountains National Park (Central Italy). Ital. J. Eng. Geol. Environ. 2010, 21–39. [Google Scholar] [CrossRef]
- Lippi Boncambi, C. Soil observations on the Sibillini Mountains, in particular on the peaty soils of the Castelluccio di Norcia plain. Boll. Soc. Geol. It. 1950, 69, 26–37. [Google Scholar]
- US EPA. The Qtracer2 Program for Tracer-Breakthrough Curve Analysis for Tracer Tests in Karstic Aquifers and Other Hydrologic Systems; EPA/600/R-02/001; US Environmental Protection Agency, Office of Research and Development, National Centre for Environmental Assessment: Washington, DC, USA, 2002. Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=54930 (accessed on 2 November 2020).
- Delbart, C.; Valdes, D.; Barbecot, F.; Tognelli, A.; Richon, P.; Couchoux, L. Temporal variability of karst aquifer response time established by the sliding-windows cross-correlation method. J. Hydrol. 2014, 511, 580–588. [Google Scholar] [CrossRef]
- Chiaudani, A.; Di Curzio, D.; Palmucci, W.; Pasculli, A.; Polemio, M.; Rusi, S. Statistical and Fractal Approaches on Long Time-Series to Surface-Water/Groundwater Relationship Assessment: A Central Italy Alluvial Plain Case Study. Water 2017, 9, 850. [Google Scholar] [CrossRef]
- Viaroli, S.; Di Curzio, D.; Lepore, D.; Mazza, R. Multiparameter daily time-series analysis to groundwater recharge assessment in a caldera aquifer: Roccamonfina Volcano, Italy. Sci. Total Environ. 2019, 676, 501–513. [Google Scholar] [CrossRef]
- Nanni, T.; Rusi, S. Idrogeologia del massiccio carbonatico della Majella (Abruzzo). Boll. Soc. Geol. It. 2003, 122, 173–202. [Google Scholar]
- Fiorillo, F.; Petitta, M.; Preziosi, E.; Rusi, S.; Esposito, L.; Tallini, M. Long-term trend and fluctuations of karst spring discharge in a Mediterranean area (central-southern Italy). Environ. Earth Sci. 2014, 74, 153–172. [Google Scholar] [CrossRef]
- Rusi, S.; Di Curzio, D.; Palmucci, W.; Petaccia, R. Detection of the natural origin hydrocarbon contamination in carbonate aquifers (central Apennine, Italy). Environ. Sci. Pollut. Res. 2018, 25, 15577–15596. [Google Scholar] [CrossRef] [PubMed]
- Chiaudani, A.; Di Curzio, D.; Rusi, S. The snow and rainfall impact on the Verde spring behavior: A statistical approach on hydrodynamic and hydrochemical daily time-series. Sci. Total Environ. 2019, 689, 481–493. [Google Scholar] [CrossRef]
- Gregor, M. BFI+ 3.0 User’s Manual (21pp) 2010. Available online: https://hydrooffice.org/Files/UM%20BFI.pdf (accessed on 30 October 2020).
- Sloto, R.A.; Crouse, M.Y. HYSEP: A Computer Program for Streamflow Hydrograph Separation and Analysis. Water Resour. Investig. Rep. 1996, 96, 4040. [Google Scholar] [CrossRef]
- Seidenbecher, T. Amygdalar and Hippocampal Theta Rhythm Synchronization During Fear Memory Retrieval. Science 2003, 301, 846–850. [Google Scholar] [CrossRef]
- Mudarra, M.; Andreo, B. Relative importance of the saturated and the unsaturated zones in the hydrogeological functioning of karst aquifers: The case of Alta Cadena (Southern Spain). J. Hydrol. 2011, 397, 263–280. [Google Scholar] [CrossRef]
- Evans, J.P.; Forster, C.B.; Goddard, J.V. Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. J. Struct. Geol. 1997, 19, 1393–1404. [Google Scholar] [CrossRef]
- Porreca, M.; Minelli, G.; Ercoli, M.; Brobia, A.; Mancinelli, P.; Cruciani, F.; Giorgetti, C.; Carboni, F.; Mirabella, F.; Cavinato, G.; et al. Seismic Reflection Profiles and Subsurface Geology of the Area Interested by the 2016-2017 Earthquake Sequence (Central Italy). Tectonics 2018, 37, 1116–1137. [Google Scholar] [CrossRef]
- Villani, F.; Pucci, S.; Civico, R.; De Martini, P.M.; Cinti, F.; Pantosti, D. Surface Faulting of the 30 October 2016 Mw 6.5 Central Italy Earthquake: Detailed Analysis of a Complex Coseismic Rupture. Tectonics 2018, 37, 3378–3410. [Google Scholar] [CrossRef]
- Puliti, I.; Pizzi, A.; Benedetti, L.; Di Domenica, A.; Fleury, J. Comparing Slip Distribution of an Active Fault System at Various Timescales: Insights for the Evolution of the Mt. Vettore-Mt. Bove Fault System in Central Apennines. Tectonics 2020, 39. [Google Scholar] [CrossRef]
Point | Abbreviation | Parameter | Instrument |
---|---|---|---|
Pescara spring | PES | Discharge | Water level gauge |
Capodacqua spring | CD | Discharge | Water level gauge |
Foce spring | FOC | Discharge | Water level gauge |
Monte Prata station | MTPs MTPr | Snow cover thickness | Snow gauge |
Montemonaco station | MTMr | Rainfall | Rain gauge |
Capodacqua station | CDr | Rainfall | Rain gauge |
Rainfall | Rain gauge |
Test ID | Injection Date | Tracer | Mass (kg) | Mèrgani Discharge (L/s) | Period | Reference |
---|---|---|---|---|---|---|
TEST1 | 12 February 2016 | Fluorescein | 2 | 1550 | Pre-seismic | [29] |
TEST2 | 9 June 2016 | Tinopal CBS-X | 29 | 10 | Co-seismic | [29] |
TEST3 | 20 March 2017 | Tinopal CBS-X | 85 | 136 | Post-seismic | [29] |
TEST4 | 20 March 2018 | Fluorescein | 16 | 130 | This study | |
TEST5 | 08 February 2019 | Fluorescein | 27 | 70 | This study |
Pre-Seismic Period | ||||||||
Unit | N of Data | Mean | Min | 25th | Median | 75th | Max | |
MTPs | cm | 1027 | 11.8 | 0.0 | 0.0 | 0.0 | 7.5 | 195.0 |
MTPr | mm | 1027 | 3.0 | 0.0 | 0.0 | 0.0 | 2.0 | 135.0 |
CDr | mm | 1027 | 3.5 | 0.0 | 0.0 | 0.0 | 2.8 | 179.2 |
MTMr | mm | 1027 | 3.6 | 0.0 | 0.0 | 0.0 | 3.2 | 158.8 |
PES | L/s | 1027 | 309.9 | 119.9 | 192.8 | 313.6 | 412.6 | 559.5 |
CD | L/s | 1027 | 430.3 | 205.6 | 326.8 | 444.6 | 529.8 | 671.4 |
FOC | L/s | 1027 | 1033.7 | 866.9 | 1020.0 | 1043.7 | 1059.5 | 1476.4 |
Co-Seismic Period | ||||||||
Unit | N of Data | Mean | Min | 25th | Median | 75th | Max | |
MTPs | cm | 148 | 2.6 | 0.0 | 0.0 | 0.0 | 0.0 | 64.0 |
MTPr | mm | 148 | 3.5 | 0.0 | 0.0 | 0.2 | 2.4 | 108.2 |
CDr | mm | 148 | 3.0 | 0.0 | 0.0 | 0.2 | 2.6 | 64.2 |
MTMr | mm | 148 | 3.0 | 0.0 | 0.0 | 0.0 | 1.9 | 75.0 |
PES | L/s | 148 | 346.6 | 242.4 | 320.2 | 357.0 | 378.0 | 412.3 |
CD | L/s | 148 | 568.3 | 410.1 | 559.2 | 581.0 | 602.7 | 700.5 |
FOC | L/s | 148 | 1065.9 | 871.3 | 1035.8 | 1064.3 | 1090.5 | 1343.4 |
Post-Seismic Period | ||||||||
Unit | N of Data | Mean | Min | 25th | Median | 75th | Max | |
MTPs | cm | 1016 | 17.8 | 0.0 | 0.0 | 0.0 | 14.7 | 158.7 |
MTPr | mm | 1016 | 2.6 | 0.0 | 0.0 | 0.0 | 1.6 | 60.0 |
CDr | mm | 1016 | 2.9 | 0.0 | 0.0 | 0.0 | 2.0 | 83.4 |
MTMr | mm | 1016 | 3.4 | 0.0 | 0.0 | 0.0 | 2.2 | 121.6 |
PES | L/s | 1016 | 154.6 | 24.6 | 59.5 | 143.5 | 218.6 | 404.0 |
CD | L/s | 1016 | 377.1 | 199.5 | 276.0 | 376.6 | 468.4 | 593.9 |
FOC | L/s | 1016 | 422.0 | 153.1 | 221.2 | 279.7 | 408.4 | 1740.0 |
Spring | Distance from IP (m) | TEST1 | TEST2 | TEST3 | TEST4 | TEST5 |
---|---|---|---|---|---|---|
PES | 7300 | - | 165–561 (44–13) | n.d. | n.d. | - |
CD | 6300 | 108–572 (58–11) | 114–525 (55–12) | 37–39 (170–161) | - | 20–29 (315–217) |
FOC | 12,600 | 50–59 (252–213) | 35–37 (360–340) | 35-116 (360–108) | 210–273 (60–46) | 39–132 (323–95) |
Window | N Months | Starting Date | Ending Date | Period |
---|---|---|---|---|
1 | 24 | 1 November 2013 | 31 October 2015 | Pre-seismic |
2 | 24 | 1 May 2014 | 30 April 2016 | |
3 | 24 | 1 November 2014 | 31 October 2016 | Co-seismic |
4 | 24 | 1 May 2015 | 30 April 2017 | |
5 | 24 | 1 November 2015 | 31 October 2017 | |
6 | 24 | 1 May 2016 | 30 April 2018 | |
7 | 24 | 1 November 2016 | 31 October 2018 | |
8 | 24 | 1 May 2017 | 30 April 2019 | Post-seismic |
9 | 24 | 1 November 2017 | 31 October 2019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fronzi, D.; Di Curzio, D.; Rusi, S.; Valigi, D.; Tazioli, A. Comparison between Periodic Tracer Tests and Time-Series Analysis to Assess Mid- and Long-Term Recharge Model Changes Due to Multiple Strong Seismic Events in Carbonate Aquifers. Water 2020, 12, 3073. https://doi.org/10.3390/w12113073
Fronzi D, Di Curzio D, Rusi S, Valigi D, Tazioli A. Comparison between Periodic Tracer Tests and Time-Series Analysis to Assess Mid- and Long-Term Recharge Model Changes Due to Multiple Strong Seismic Events in Carbonate Aquifers. Water. 2020; 12(11):3073. https://doi.org/10.3390/w12113073
Chicago/Turabian StyleFronzi, Davide, Diego Di Curzio, Sergio Rusi, Daniela Valigi, and Alberto Tazioli. 2020. "Comparison between Periodic Tracer Tests and Time-Series Analysis to Assess Mid- and Long-Term Recharge Model Changes Due to Multiple Strong Seismic Events in Carbonate Aquifers" Water 12, no. 11: 3073. https://doi.org/10.3390/w12113073
APA StyleFronzi, D., Di Curzio, D., Rusi, S., Valigi, D., & Tazioli, A. (2020). Comparison between Periodic Tracer Tests and Time-Series Analysis to Assess Mid- and Long-Term Recharge Model Changes Due to Multiple Strong Seismic Events in Carbonate Aquifers. Water, 12(11), 3073. https://doi.org/10.3390/w12113073