A Comparative Approach to a Series of Physico-Chemical Quality Indices Used in Assessing Water Quality in the Lower Danube
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Analysis Procedures
2.2. Study Area
- P2 and P14 near two shipyards.
- P3 in the ferry crossing area (Braila City).
- P10 and P13 in the vicinity of agricultural lands.
- P6 at the confluence of the Danube with River Siret. This tributary is the emissary of treated waters coming from the municipal wastewater treatment plant (Galati City) and from the sewage treatment plant of an important steel mill.
- P9 at the confluence of the Danube with River Prut. This river crosses a large area where agricultural and industrial activities are carried out intensively and it represents the natural border between Romania and the Republic of Moldova. This aspect is relevant considering the fact that wastewater is discharged in River Prut from the territory of this country, as well.
- P15 in the vicinity of the urban agglomeration of Tulcea City.
2.3. Data Analyses
3. Results and Discussion
3.1. Water Quality Assessment Using WQI, WPI and CCME-WQI Indices
3.2. A Comparative Approach to the WQI, WPI and CCME-WQI Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Poonam, T.; Tanushree, B.; Sukalyan, C. Water quality indices—Important tools for water quality assessment: A review. Int. J. Adv. Chem. 2013, 1, 15–28. [Google Scholar]
- Mena-Rivera, L.; Salgado-Silva, V.; Benavides-Benavides, C.; Coto-Campos, J.; Swinscoe, T. Spatial and seasonal surface water quality assessment in a tropical urban catchment: Burío river, Costa Rica. Water 2017, 9, 558. [Google Scholar] [CrossRef] [Green Version]
- Radu, V.-M.; Ionescu, P.; Deak, G.; Diacu, E.; Ivanov, A.A.; Zamfir, S.; Marcus, M.-I. Overall assessment of surface water quality in the lower Danube river. Environ. Monit. Assess. 2020, 192, 135. [Google Scholar] [CrossRef]
- Duan, W.; He, B.; Chen, Y.; Zou, S.; Wang, Y.; Nover, D.; Chen, W.; Yang, G. Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze river basin, China. PLoS ONE 2018, 13, e0188889. [Google Scholar] [CrossRef]
- Duan, W.; He, B.; Nover, D.; Yang, G.; Chen, W.; Meng, H.; Zou, S.; Liu, C. Water quality assessment and pollution source identification of the eastern Poyang lake basin using multivariate statistical methods. Sustainability 2016, 8, 133. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.; Takara, K.; He, B.; Luo, P.; Nover, D.; Yamashiki, Y. Spatial and temporal trends in estimates of nutrient and suspended sediment loads in the Ishikari River, Japan, 1985 to 2010. Sci. Total Environ. 2013, 461–462, 499–508. [Google Scholar] [CrossRef]
- Wang, Y.; He, B.; Duan, W.; Li, W.; Luo, P.; Razafindrabe, B.H.N. Source apportionment of annual water pollution loads in river basins by remote-sensed land cover classification. Water 2016, 8, 361. [Google Scholar] [CrossRef] [Green Version]
- Horton, R.K. An index number system for rating water quality. J. Water Pollut. Cont. Fed. 1965, 37, 300–305. [Google Scholar]
- Lumb, A.; Sharma, T.C.; Bibeault, J.-F. A review of genesis and evolution of water quality index (WQI) and some future directions. Water Qual. Expo. Health 2011, 3, 11–24. [Google Scholar] [CrossRef]
- Tyagi, S.; Sharma, B.; Singh, P.; Dobhal, R. Water quality assessment in terms of water quality index. Am. J. Water Resour. 2013, 1, 34–38. [Google Scholar] [CrossRef]
- Gupta, N.; Pandey, P.; Hussain, J. Effect of physicochemical and biological parameters on the quality of river water of Narmada, Madhya Pradesh, India. Water Sci. 2017, 31, 11–23. [Google Scholar] [CrossRef]
- Tunc Dede, O.; Telci, I.T.; Aral, M.M. The use of water quality index models for the evaluation of surface water quality: A case study for Kirmir Basin, Ankara, Turkey. Water Qual. Expo. Health 2013, 5, 41–56. [Google Scholar] [CrossRef]
- Sutadian, A.D.; Muttil, N.; Yilmaz, A.G.; Perera, B.J.C. Development of river water quality indices—A review. Environ. Monit. Assess. 2016, 188, 29. [Google Scholar] [CrossRef] [Green Version]
- Gitau, M.W.; Chen, J.; Ma, Z. Water quality indices as tools for decision making and management. Water Resour. Manag. 2016, 30, 2591–2610. [Google Scholar] [CrossRef]
- Terrado, M.; Barceló, D.; Tauler, R.; Borrell, E.; de Campos, S. Surface-water-quality indices for the analysis of data generated by automated sampling networks. TRAC Trends Anal. Chem. 2010, 29, 40–52. [Google Scholar] [CrossRef]
- Sivaranjani, S.; Rakshit, A.; Singh, S. Water quality assessment with water quality indices. Intern. J. Bioresour. Sci. 2015, 2, 85. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, T.; Abbasi, S.A. Water quality indices based on bioassessment: The biotic indices. J. Water Health 2011, 9, 330–348. [Google Scholar] [CrossRef] [Green Version]
- Pham, L. Comparison between water quality index (WQI) and biological indices, based on planktonic diatom for water quality assessment in the Dong Nai river, Vietnam. Pollution 2017, 3, 311–323. [Google Scholar] [CrossRef]
- Iticescu, C.; Murariu, G.; Georgescu, L.; Burada, A.; Maria-Catalina, T. Seasonal variation of the physico-chemical parameters and water quality index (WQI) of Danube water in the transborder lower Danube area. Rev. Chim. Buchar. Orig. Ed. 2016, 67, 1843–1849. [Google Scholar]
- Ismail, A.H.; Robescu, D. Assessment of water quality of the Danube river using water quality indices technique. Environ. Eng. Manag. J. 2019, 18, 1727–1737. [Google Scholar] [CrossRef]
- Paun, I.; Chiriac, F.L.; Marin, N.M.; Cruceru, L.V.; Pascu, L.F.; Lehr, C.B.; Ene, C. Water quality index, a useful tool for evaluation of Danube river raw water. Rev. Chim. 2017, 68, 1732–1739. [Google Scholar] [CrossRef]
- Milanovi, A.; Milijaševi, D.; Brankov, J. Assessment of polluting effects and surface water quality using water pollution index: A case study of hydro-system Danube-Tisa-Danube, Serbia. Carpathian J. Earth Environ. Sci. 2011, 6, 269–277. [Google Scholar]
- Jakovljevic, D. Serbian and Canadian water quality index of Danube river in Serbia in 2010. J. Geogr. Inst. JC 2012, 62, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Takić, L.M.; Mladenović-Ranisavljević, I.I.; Nikolić, V.D.; Nikolić, L.B.; Vuković, M.V.; Živković, N.V. The assessment of the Danube water quality in Serbia. Adv. Technol. 2012, 1, 58–66. [Google Scholar]
- Mladenović-Ranisavljević, I.I.; Žerajić, S.A. Comparison of different models of water quality index in the assessment of surface water quality. Int. J. Environ. Sci. Technol. 2018, 15, 665–674. [Google Scholar] [CrossRef]
- Ismail, A.; Robescu, D. Chemical water quality assessment of the Danube river in the lower course using water quality indices. U.P.B. Sci. Bull. 2017, 12, 51–62. [Google Scholar]
- Ionescu, P.; Radu, V.-M.; György, D.; Ivanov, A.A.; Diacu, E. Lower Danube water quality assessment using heavy metals indexes. Rev. Chim. 2015, 66, 1088–1092. [Google Scholar]
- ROSCI0065 Dataforms. Available online: https://natura2000.eea.europa.eu/Natura2000/SDF.aspx?site=ROSCI0065 (accessed on 23 October 2020).
- ROSPA0031 Dataforms. Available online: https://natura2000.eea.europa.eu/Natura2000/SDF.aspx?site=ROSPA0031 (accessed on 23 October 2020).
- European Parliament; Council of the European Union. Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the conservation of wild birds. Off. J. Eur. Union 2009, 19, 7–25. [Google Scholar]
- Council of the European Union. Directive 92 /43 /EECof the European Parliament and of the Council of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off. J. 1992, 7–50. [Google Scholar]
- Iticescu, C.; Georgescu, L.P.; Murariu, G.; Topa, C.; Timofti, M.; Pintilie, V.; Arseni, M. Lower Danube water quality quantified through WQI and multivariate analysis. Water 2019, 11, 1305. [Google Scholar] [CrossRef] [Green Version]
- Gasparotti, C. The main factors of water pollution in Danube river basin. Euro. Econ. 2014, 33, 91–106. [Google Scholar]
- Bora, M.; Goswami, D.C. Water quality assessment in terms of water quality index (WQI): Case study of the Kolong river, Assam, India. Appl. Water Sci. 2017, 7, 3125–3135. [Google Scholar] [CrossRef] [Green Version]
- Chandra, D.S.; Asadi, S.; Raju, M.V.S. Estimation of water quality index by weighted arithmetic water quality index method: A model study. Int. J. Civ. Eng. Technol. (Ijciet) 2017, 8, 1215–1222. [Google Scholar]
- Paun, I. Water quality indices—Methods for evaluating the quality of drinking water. In Proceedings of the SIMI 2016 National Research and Development Institute for Industrial Ecology, Bucharest, Romania, 13–14 October 2016; pp. 395–402. [Google Scholar]
- Yisa, J.; Jimoh, T. Analytical Studies on Water Qualty Index of River Landzu. Am. J. Appl. Sci. 2010, 4, 453–458. [Google Scholar] [CrossRef] [Green Version]
- Romanian Ministry of Research and Innovation. Order 161/2006, the normative on the classification of surface water quality in order to establish the ecologicals Romanian ministry of research and innovation. In Status of Water Bodies; Official Monitor: Bucharest, Romania, 2006. [Google Scholar]
- Brankov, J.; Milijašević, D.; Milanović, A. The assessment of the surface water quality using the water pollution index: A case study of the Timok river (The Danube River basin), Serbia. Arch. Environ. Prot. 2012, 38, 49–61. [Google Scholar] [CrossRef]
- Milijasevic, D.; Milanovic, A.; Brankov, J.; Radovanovic, M. Water quality assessment of the Borska Reka river using the WPI (Water Pollution Index) method. Arch. Biol. Sci. (Beogr.) 2011, 63, 819–824. [Google Scholar] [CrossRef]
- Boyacioglu, H. Utilization of the water quality index method as a classification tool. Environ. Monit. Assess. 2010, 167, 115–124. [Google Scholar] [CrossRef]
- Khan, A.A.; Tobin, A.; Paterson, R.; Khan, H.; Warren, R. Application of CCME procedures for deriving site-specific water quality guidelines for the CCME water quality index. Water Qual. Res. J. 2005, 40, 448–456. [Google Scholar] [CrossRef]
- Lumb, A.; Sharma, T.C.; Bibeault, J.-F.; Klawunn, P. A comparative study of USA and Canadian water quality index models. Water Qual. Expo. Health 2011, 3, 203–216. [Google Scholar] [CrossRef]
- Lumb, A.; Halliwell, D.; Sharma, T. Application of CCME water quality index to monitor water quality: A case study of the Mackenzie river basin, Canada. Environ. Monit. Assess. 2006, 113, 411–429. [Google Scholar] [CrossRef]
- Munna, G.M.; Chowdhury, M.M.I.; Ahmed, A.A.M.; Chowdhury, S. A Canadian water quality guideline-water quality index (CCME-WQI) based assessment study of water quality in Surma river. J. Civ. Eng. Constr. Technol. 2013, 4, 81–89. [Google Scholar]
- CCME. Canadian water quality guidelines for the protection of aquatic life—CCME water quality index 1.0—User’s Manual. In Canadian Environmental Quality Guidelines; CCME: Winnipeg, MB, Canada, 1999; Volume 5. [Google Scholar]
- Mihaela, T.; Popa, P.; Murariu, G.; Georgescu, L.; Iticescu, C.; Barbu, M. Complementary approach for numerical modelling of physicochemical parameters of the Prut river aquatic system. J. Environ. Prot. Ecol. 2016, 17, 53–63. [Google Scholar]
- Solanki, V.R.; Murthy, S.S.; Kaur, A.; Raja, S.S. Variations in dissolved oxygen and biochemical oxygen demand in two freshwater lakes of Bohdan, Andhra Pradesh, India. Nat. Environ. Pollut. Technol. 2007, 6, 623–628. [Google Scholar]
- Iticescu, C.; Georgescu, L.P.; Topa, C.M. Assessing the Danube water quality index in the city of Galati, Romania. Carpathian J. Earth Environ. Sci. 2013, 8, 155–164. [Google Scholar]
Parameter (Abbreviation) | Reference Method | |
---|---|---|
in-situ | pH | SR EN ISO 10523:2012 |
Dissolved Oxygen (DO) | SR ISO 5814:1984 | |
Biochemical oxygen demand (BOD5) | SR EN 1899-2:2002 | |
ex-situ | Chemical oxygen demand (COD) | SR ISO 15705:2002 |
Ammonium nitrogen (N-NH4+) | SR EN ISO 11732:2005 | |
Nitrate nitrogen (N-NO3−) | SR EN ISO 11905-1:2003 | |
Nitrite nitrogen (N-NO2−) | SR EN 26777:2006 | |
Total nitrogen (N-total) | SR EN ISO 11905-1:2003 | |
Total phosphorus (P-total) | SR EN ISO 6878:2005 | |
Ion sulphate (SO42−) | STAS 3069-87 | |
Ion chloride (Cl−) | SR ISO 9297/2001 | |
Total iron (Fe-total) | SR ISO 6332:1996/C91:2006 | |
Total chrome (Cr-total) | SR ISO 9174-98 | |
Zinc (Zn2+) | Photometric method—reaction of alkaline solution zinc ions with pyridylazoresorcinol |
Parameter | Unit | Maximum Allowed Concentration (mg·L−1) |
---|---|---|
pH | upH | 8.2 |
DO | mg O2·L−1 | >7 |
BOD5 | mg O2·L−1 | 5 |
COD | mg O2·L−1 | 25 |
N-NH4+ | mg N·L−1 | 0.8 |
N-NO3− | mg N·L−1 | 3 |
N-NO2− | mg N·L−1 | 0.03 |
SO42− | mg·L−1 | 120 |
Cl− | mg·L−1 | 50 |
N-total | mg·L−1 | 7 |
P-total | mg·L−1 | 0.4 |
Fe-total | mg·L−1 | 0.5 |
Zn2+ | mg·L−1 | 0.2 |
Cr-total | mg·L−1 | 0.05 |
WQI Values | Status |
---|---|
0–25 | Excellent (I) |
26–50 | Good (II) |
51–75 | Poor (III) |
76–100 | Very poor (IV) |
>100 | Unsuitable for drinking (V) |
WPI Value | Water Quality Class |
---|---|
≤0.3 | I—Very pure |
0.3–1.0 | II—Pure |
1.0–2.0 | III—Moderately polluted |
2.0–4.0 | IV—Polluted |
4.0–6.0 | V—Impure |
≥6.0 | VI—Heavily impure |
CWQI Value | Quality Category |
---|---|
95–100 | Excellent (I) |
80–94 | Good (II) |
65–79 | Fair (III) |
45–64 | Marginal (IV) |
0–44 | Poor (V) |
P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | P11 | P12 | P13 | P14 | P15 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH (upH) | Mean | 7.14 | 7.43 | 7.64 | 7.53 | 7.96 | 7.92 | 8.12 | 7.61 | 8.24 | 7.73 | 7.86 | 7.86 | 7.84 | 7.68 | 7.49 |
Min | 6.86 | 7.23 | 7.45 | 7.04 | 7.40 | 7.55 | 7.31 | 6.50 | 7.00 | 7.28 | 7.55 | 7.50 | 7.47 | 7.33 | 7.17 | |
Max | 7.97 | 7.88 | 7.88 | 7.87 | 8.50 | 8.32 | 9.37 | 8.22 | 10.02 | 8.27 | 8.23 | 8.21 | 8.16 | 8.13 | 8.19 | |
Std Dev | 0.38 | 0.23 | 0.16 | 0.27 | 0.37 | 0,29 | 0.83 | 0.72 | 1.18 | 0.43 | 0.29 | 0.30 | 0.29 | 0.37 | 0.34 | |
DO (mg·L−1) | Mean | 9.60 | 9.50 | 9.75 | 6.01 | 8.49 | 8.34 | 8.99 | 8.83 | 8.86 | 9.27 | 9.10 | 9.41 | 10.21 | 9.55 | 8.75 |
Min | 6.58 | 6.69 | 6.40 | 3.20 | 3.26 | 3.26 | 3.13 | 3.68 | 3.72 | 7.25 | 5.96 | 6.09 | 6.28 | 6.36 | 4.83 | |
Max | 12.63 | 12.92 | 12.76 | 12.10 | 12.86 | 13.16 | 13.00 | 13.77 | 12.48 | 11.36 | 11.78 | 12.94 | 13.29 | 11.61 | 11.09 | |
Std Dev | 2.73 | 2.71 | 2.83 | 3.41 | 3.84 | 3.78 | 3.50 | 3.96 | 3.23 | 1.96 | 2.55 | 2.94 | 3.32 | 2.53 | 2.93 | |
BOD5 (mg·L−1) | Mean | 7.90 | 8.34 | 7.63 | 6.01 | 8.71 | 9.64 | 7.75 | 8.44 | 11.79 | 4.63 | 7.59 | 6.83 | 8.93 | 6.19 | 6.69 |
Min | 1.00 | 1.70 | 2.10 | 3.20 | 0.50 | 1.00 | 1.60 | 4.00 | 4.00 | 1.00 | 1.60 | 3.40 | 4.00 | 3.50 | 1.00 | |
Max | 17.00 | 15.90 | 14.80 | 18.10 | 15.90 | 20.80 | 15.00 | 13.10 | 19.20 | 15.00 | 12.00 | 10.30 | 15.30 | 7.60 | 10.90 | |
Std Dev | 5.82 | 6.09 | 5.65 | 5.41 | 6.11 | 8.00 | 4.64 | 3.71 | 6.57 | 5.59 | 4.39 | 3.42 | 3.34 | 1.88 | 4.45 | |
COD (mg·L−1) | Mean | 11.10 | 14.63 | 6.90 | 8.27 | 11.44 | 12.03 | 13.21 | 14.34 | 15.16 | 8.00 | 10.91 | 12.27 | 7.37 | 6.20 | 6.99 |
Min | 4.00 | 3.00 | 4.00 | 3.00 | 4.00 | 4.00 | 3.00 | 5.00 | 6.00 | 4.00 | 4.00 | 4.00 | 4.00 | 2.00 | 3.00 | |
Max | 32.00 | 35.00 | 16.30 | 16.90 | 19.33 | 23.40 | 28.00 | 22.00 | 27.00 | 12.00 | 30.00 | 38.00 | 16.00 | 12.00 | 16.00 | |
Std Dev | 10.18 | 11.50 | 4.70 | 5.56 | 6.52 | 9.02 | 9.51 | 6.59 | 8.05 | 3.11 | 8.92 | 10.96 | 4.00 | 3.58 | 4.48 | |
N-NH4+ (mg·L−1) | Mean | 0.43 | 0.35 | 0.28 | 0.27 | 0.34 | 0.64 | 0.27 | 0.25 | 0.23 | 0.31 | 0.38 | 0.23 | 0.25 | 0.23 | 0.53 |
Min | 0.26 | 0.09 | 0.16 | 0.10 | 0.11 | 0.22 | 0.18 | 0.12 | 0.09 | 0.05 | 0.10 | 0.07 | 0.05 | 0.08 | 0.18 | |
Max | 0.69 | 0.90 | 0.43 | 0.42 | 0.78 | 2.34 | 0.46 | 0.45 | 0.49 | 0.63 | 1.17 | 0.41 | 0.39 | 0.34 | 2.12 | |
Std Dev | 0.14 | 0.27 | 0.09 | 0.12 | 0.21 | 0.72 | 0.10 | 0.12 | 0.14 | 0.24 | 0.37 | 0.10 | 0.12 | 0.08 | 0.71 | |
N-NO3− (mg·L−1) | Mean | 1.77 | 1.67 | 2.41 | 2.34 | 1.59 | 2.13 | 1.63 | 1.65 | 2.40 | 3.24 | 2.67 | 1.86 | 2.09 | 1.89 | 1.97 |
Min | 0.80 | 0.80 | 0.80 | 0.70 | 0.70 | 0.90 | 0.70 | 0.80 | 0.90 | 1.70 | 1.50 | 1.40 | 1.40 | 1.60 | 1.40 | |
Max | 2.60 | 2.60 | 4.70 | 4.60 | 2.80 | 4.40 | 3.50 | 2.70 | 3.40 | 5.60 | 4.90 | 3.30 | 3.10 | 2.20 | 2.70 | |
Std Dev | 0.67 | 0.73 | 1.32 | 1.36 | 0.81 | 1.17 | 1.10 | 0.80 | 0.91 | 1.69 | 1.53 | 0.66 | 0.62 | 0.23 | 0.39 | |
N-NO2− (mg·L−1) | Mean | 0.018 | 0.018 | 0.018 | 0.018 | 0.019 | 0.019 | 0.018 | 0.018 | 0.019 | 0.018 | 0.019 | 0.018 | 0.019 | 0.018 | 0.018 |
Min | 0.012 | 0.011 | 0.011 | 0.011 | 0.012 | 0.013 | 0.015 | 0.014 | 0.015 | 0.015 | 0.016 | 0.015 | 0.015 | 0.015 | 0.014 | |
Max | 0.025 | 0.026 | 0.036 | 0.030 | 0.036 | 0.027 | 0.029 | 0.029 | 0.029 | 0.028 | 0.033 | 0.025 | 0.028 | 0.032 | 0.032 | |
Std Dev | 0.004 | 0.004 | 0.008 | 0.006 | 0.007 | 0.005 | 0.005 | 0.005 | 0.004 | 0.004 | 0.006 | 0.003 | 0.004 | 0.006 | 0.006 | |
SO42− (mg·L−1) | Mean | 34.57 | 33.71 | 33.43 | 34.57 | 32.50 | 43.75 | 35.25 | 32.88 | 34.00 | 36.00 | 36.86 | 36.14 | 36.14 | 38.43 | 37.43 |
Min | 29.00 | 29.00 | 28.00 | 28.00 | 29.00 | 25.00 | 26.00 | 28.00 | 27.00 | 29.00 | 29.00 | 30.00 | 31.00 | 31.00 | 31.00 | |
Max | 40.00 | 41.00 | 38.00 | 39.00 | 38.00 | 65.00 | 50.00 | 41.00 | 50.00 | 48.00 | 47.00 | 44.00 | 42.00 | 46.00 | 49.00 | |
Std Dev | 4.35 | 5.53 | 3.74 | 4.12 | 3.51 | 15.28 | 7.38 | 5.22 | 7.37 | 6.88 | 6.52 | 5.21 | 4.49 | 6.29 | 6.90 | |
Cl− (mg·L−1) | Mean | 35.11 | 35.26 | 34.40 | 35.54 | 34.18 | 35.24 | 35.24 | 37.36 | 36.05 | 35.26 | 34.12 | 35.40 | 34.12 | 34.97 | 34.83 |
Min | 34.90 | 34.90 | 31.41 | 34.90 | 30.00 | 30.00 | 33.00 | 34.90 | 35.00 | 34.90 | 31.41 | 34.90 | 31.41 | 34.90 | 34.00 | |
Max | 36.00 | 37.00 | 38.00 | 39.00 | 40.00 | 45.00 | 39.00 | 45.00 | 39.00 | 37.00 | 36.00 | 38.00 | 36.00 | 35.00 | 35.00 | |
Std Dev | 0.39 | 0.77 | 2.32 | 1.53 | 3.08 | 4.37 | 1.67 | 4.15 | 1.68 | 0.77 | 1.89 | 1.15 | 1.89 | 0.05 | 0.37 | |
N-total (mg·L−1) | Mean | 1.87 | 1.81 | 1.71 | 1.79 | 1.74 | 2.05 | 2.13 | 1.69 | 1.70 | 1.81 | 1.17 | 1.39 | 1.66 | 1.49 | 1.27 |
Min | 0.10 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.30 | 0.30 | 0.40 | 0.30 | 0.40 | 0.40 | 0.30 | 0.30 | 0.20 | |
Max | 3.10 | 3.50 | 3.00 | 4.00 | 2.70 | 3.90 | 4.00 | 2.80 | 4.40 | 6.10 | 2.70 | 2.80 | 5.10 | 3.30 | 2.80 | |
Std Dev | 1.42 | 1.38 | 1.15 | 1.36 | 0.95 | 1.38 | 1.33 | 1.03 | 1.40 | 2.11 | 1.06 | 1.09 | 1.73 | 1.32 | 1.13 | |
P-total (mg·L−1) | Mean | 0.12 | 0.13 | 0.13 | 0.14 | 0.14 | 0.15 | 0.11 | 0.11 | 0.14 | 0.16 | 0.17 | 0.12 | 0.13 | 0.15 | 0.22 |
Min | 0.10 | 0.10 | 0.10 | 0.10 | 0.08 | 0.10 | 0.09 | 0.02 | 0.10 | 0.10 | 0.10 | 0.08 | 0.10 | 0.10 | 0.08 | |
Max | 0.18 | 0.22 | 0.20 | 0.20 | 0.20 | 0.20 | 0.18 | 0.20 | 0.26 | 0.40 | 0.40 | 0.22 | 0.20 | 0.30 | 0.80 | |
Std Dev | 0.03 | 0.05 | 0.05 | 0.04 | 0.04 | 0.04 | 0.03 | 0.06 | 0.06 | 0.11 | 0.11 | 0.06 | 0.05 | 0.07 | 0.26 | |
Fe-total (mg·L−1) | Mean | 0.06 | 0.10 | 0.13 | 0.08 | 0.05 | 0.11 | 0.12 | 0.05 | 0.07 | 0.07 | 0.06 | 0.05 | 0.06 | 0.06 | 0.15 |
Min | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.04 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 | |
Max | 0.14 | 0.17 | 0.40 | 0.16 | 0.10 | 0.21 | 0.36 | 0.10 | 0.14 | 0.14 | 0.12 | 0.10 | 0.12 | 0.14 | 0.57 | |
Std Dev | 0.06 | 0.07 | 0.14 | 0.06 | 0.04 | 0.07 | 0.15 | 0.04 | 0.05 | 0.05 | 0.05 | 0.04 | 0.04 | 0.06 | 0.20 | |
Zn2+ (mg·L−1) | Mean | 0.109 | 0.099 | 0.094 | 0.100 | 0.103 | 0.073 | 0.084 | 0.117 | 0.064 | 0.099 | 0.085 | 0.113 | 0.105 | 0.056 | 0.059 |
Min | 0.066 | 0.047 | 0.063 | 0.050 | 0.050 | 0.060 | 0.015 | 0.004 | 0.040 | 0.001 | 0.012 | 0.013 | 0.014 | 0.020 | 0.017 | |
Max | 0.179 | 0.184 | 0.120 | 0.157 | 0.170 | 0.120 | 0.151 | 0.210 | 0.117 | 0.181 | 0.146 | 0.247 | 0.292 | 0.084 | 0.139 | |
Std Dev | 0.039 | 0.046 | 0.017 | 0.041 | 0.046 | 0.022 | 0.051 | 0.077 | 0.029 | 0.065 | 0.052 | 0.085 | 0.090 | 0.023 | 0.038 | |
Cr-total (mg·L−1) | Mean | 0.027 | 0.020 | 0.033 | 0.024 | 0.024 | 0.028 | 0.015 | 0.014 | 0.025 | 0.023 | 0.027 | 0.023 | 0.029 | 0.026 | 0.024 |
Min | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | |
Max | 0.060 | 0.040 | 0.050 | 0.040 | 0.040 | 0.050 | 0.040 | 0.020 | 0.040 | 0.030 | 0.060 | 0.050 | 0.060 | 0.060 | 0.060 | |
Std Dev | 0.017 | 0.010 | 0.017 | 0.011 | 0.011 | 0.015 | 0.011 | 0.005 | 0.011 | 0.008 | 0.024 | 0.017 | 0.020 | 0.021 | 0.018 |
F1 | F2 | F3 | CCME-WQI Values | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Season/ Sampling Station | Autumn | Winter | Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | Winter | Spring | Summer |
P1 | 7.14 | 7.14 | 14.29 | 21.43 | 7.14 | 7.14 | 4.76 | 10.71 | 5.41 | 0.71 | 6.00 | 4.90 | 93.39 | 94.15 | 90.64 | 85.88 |
P2 | 7.14 | 7.14 | 7.14 | 21.43 | 7.14 | 7.14 | 2.38 | 10.71 | 4.11 | 0.88 | 4.93 | 7.24 | 93.70 | 94.15 | 94.80 | 85.55 |
P3 | 7.14 | 7.14 | 14.29 | 21.43 | 7.14 | 7.69 | 4.76 | 10.71 | 2.78 | 2.33 | 5.67 | 6.08 | 93.95 | 93.79 | 90.71 | 85.73 |
P4 | 14.29 | 7.14 | 7.14 | 7.14 | 14.29 | 7.69 | 4.76 | 3.57 | 4.04 | 0.47 | 7.12 | 0.64 | 88.10 | 93.93 | 93.56 | 95.37 |
P5 | 21.43 | 7.14 | 7.14 | 21.43 | 10.71 | 7.69 | 2.38 | 14.29 | 6.35 | 1.52 | 4.93 | 9.93 | 85.69 | 93.88 | 94.80 | 84.06 |
P6 | 14.29 | 14.29 | 28.57 | 14.29 | 14.29 | 14.29 | 9.52 | 10.71 | 13.63 | 1.12 | 11.89 | 12.11 | 85.93 | 88.32 | 81.31 | 87.54 |
P7 | 14.29 | 7.14 | 21.43 | 14.29 | 14.29 | 7.14 | 9.52 | 10.71 | 11.15 | 2.10 | 3.07 | 8.26 | 86.68 | 94.04 | 86.35 | 88.64 |
P8 | 14.29 | 7.14 | 7.14 | 7.14 | 10.71 | 7.14 | 4.76 | 7.14 | 4.87 | 1.13 | 2.10 | 6.10 | 89.31 | 94.13 | 94.90 | 93.19 |
P9 | 14.29 | 7.14 | 21.43 | 14.29 | 14.29 | 7.69 | 7.14 | 14.29 | 19.05 | 1.87 | 4.42 | 14.04 | 83.97 | 93.84 | 86.71 | 85.80 |
P10 | 7.14 | 7.14 | 7.14 | 14.29 | 7.14 | 7.69 | 4.76 | 7.14 | 10.26 | 6.25 | 2.02 | 3.56 | 91.69 | 92.95 | 94.91 | 90.55 |
P11 | 7.14 | 7.14 | 21.43 | 35.71 | 7.14 | 7.14 | 7.14 | 17.86 | 9.09 | 2.37 | 3.98 | 7.25 | 92.15 | 94.01 | 86.76 | 76.57 |
P12 | 7.14 | 7.14 | 7.14 | 21.43 | 7.14 | 7.14 | 4.76 | 10.71 | 2.10 | 0.71 | 2.46 | 12.31 | 94.04 | 94.15 | 94.84 | 84.45 |
P13 | 7.14 | 7.14 | 7.14 | 21.43 | 7.14 | 7.14 | 7.14 | 10.71 | 12.83 | 0.24 | 5.32 | 3.30 | 90.57 | 94.17 | 93.41 | 86.04 |
P14 | 14.29 | 7.14 | 7.14 | 21.43 | 14.29 | 7.14 | 4.76 | 10.71 | 23.91 | 2.78 | 1.22 | 2.40 | 81.93 | 93.95 | 94.99 | 86.10 |
P15 | 7.14 | 7.14 | 21.43 | 21.43 | 7.14 | 7.14 | 7.14 | 10.71 | 1.41 | 1.55 | 6.73 | 5.71 | 94.11 | 94.10 | 86.39 | 85.78 |
Variable | WQI-Autumn | WPI-Autumn | CWQI-Autumn | CWQI-Winter | WPI-Winter | CWQI-Winter | WQI-Spring | WPI-Spring | CWQI-Spring | WQI- Summer | WPI- Summer | CWQI-Summer |
---|---|---|---|---|---|---|---|---|---|---|---|---|
WQI-Autumn | 1.00 | |||||||||||
WPI-Autumn | 0.50 | 1.00 | ||||||||||
CWQI-Autumn | −0.46 | −0.57 | 1.00 | |||||||||
WQI-Winter | −0.28 | 0.41 | −0.21 | 1.00 | ||||||||
WPI-Winter | −0.04 | 0.59 | −0.54 | 0.57 | 1.00 | |||||||
CWQI-Winter | −0.18 | −0.32 | 0.26 | −0.42 | −0.18 | 1.00 | ||||||
WQI-Spring | −0.44 | −0.32 | −0.56 | 0.23 | −0.34 | −0.33 | 1.00 | |||||
WPI-Spring | −0.40 | 0.02 | 0.28 | 0.46 | −0.10 | −0.63 | 0.72 | 1.00 | ||||
CWQI-Spring | 0.01 | −0.29 | −0.14 | −0.15 | −0.15 | 0.57 | −0.41 | −0.62 | 1.00 | |||
WQI-Summer | 0.11 | −0.32 | 0.45 | −0.20 | −0.60 | 0.03 | 0.52 | 0.26 | −0.03 | 1.00 | ||
WPI-Summer | −0.18 | −0.18 | 0.60 | 0.15 | −0.28 | −0.14 | 0.45 | 0.28 | −0.33 | 0.35 | 1.00 | |
CWQI-Summer | −0.19 | 0.14 | −0.47 | 0.24 | 0.30 | −0.09 | −0.26 | 0.08 | 0.26 | −0.52 | −0.76 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calmuc, M.; Calmuc, V.; Arseni, M.; Topa, C.; Timofti, M.; Georgescu, L.P.; Iticescu, C. A Comparative Approach to a Series of Physico-Chemical Quality Indices Used in Assessing Water Quality in the Lower Danube. Water 2020, 12, 3239. https://doi.org/10.3390/w12113239
Calmuc M, Calmuc V, Arseni M, Topa C, Timofti M, Georgescu LP, Iticescu C. A Comparative Approach to a Series of Physico-Chemical Quality Indices Used in Assessing Water Quality in the Lower Danube. Water. 2020; 12(11):3239. https://doi.org/10.3390/w12113239
Chicago/Turabian StyleCalmuc, Madalina, Valentina Calmuc, Maxim Arseni, Catalina Topa, Mihaela Timofti, Lucian P. Georgescu, and Catalina Iticescu. 2020. "A Comparative Approach to a Series of Physico-Chemical Quality Indices Used in Assessing Water Quality in the Lower Danube" Water 12, no. 11: 3239. https://doi.org/10.3390/w12113239
APA StyleCalmuc, M., Calmuc, V., Arseni, M., Topa, C., Timofti, M., Georgescu, L. P., & Iticescu, C. (2020). A Comparative Approach to a Series of Physico-Chemical Quality Indices Used in Assessing Water Quality in the Lower Danube. Water, 12(11), 3239. https://doi.org/10.3390/w12113239