Groundwater Isotopes in the Sonoyta River Watershed, USA-Mexico: Implications for Recharge Sources and Management of the Quitobaquito Springs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Location
2.1.2. Climate and Isotopes
2.1.3. Geology, Hydrogeology, and Hydrogeochemistry
2.2. Data Collection and Analysis
3. Results
3.1. Rainfall
3.2. Tinajas
3.3. Groundwater
3.4. Springs
3.5. Summary of Geographic Distribution
4. Discussion
4.1. Recharge Sources
4.2. Other Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, G.I.; Friedman, I.; Veronda, G.; Johnson, C.A. Stable isotope compositions of waters in the Great Basin, United States, 3, Comparison of groundwaters with modern precipitation. J. Geophys. Res. 2002, 107, 4402. [Google Scholar] [CrossRef]
- Eastoe, C.J.; Wright, W. Hydrology of Mountain Blocks in Arizona and New Mexico as Revealed by Isotopes in Groundwater and Precipitation. Geosciences 2019, 9, 461. [Google Scholar] [CrossRef] [Green Version]
- Eastoe, C.J.; Rodney, R. Isotopes as Tracers of Water Origin in and Near a Regional Carbonate Aquifer: The Southern Sacramento Mountains, New Mexico. Water 2014, 6, 301–323. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, C.B.; McIntosh, J.C.; Eastoe, C.; Dickinson, J.E.; Meixner, T. Evaluation of the importance of clay confining units on groundwater flow in alluvial basins using solute and isotope tracers: The case of Middle San Pedro Basin in southeastern Arizona (USA). Hydrogeol. J. 2014, 22, 829–849. [Google Scholar] [CrossRef]
- Barnett, T. Human-induced changes in the hydrology of the western United States. Science 2008, 319, 1080–1083. [Google Scholar] [CrossRef] [Green Version]
- Rosen, P.; Melendez, C.; Riedle, J.; Pate, A.F. Ecology and Conservation in the Sonoyta Valley, Arizona and Sonora. In Southwestern Desert Resources; Halvorson, W., Schwalbe, C., Van Ripper, C., III, Eds.; University of Arizona Press: Tucson, AZ, USA, 2010; pp. 143–160. [Google Scholar]
- Minckley, C.; Izaguirre Pompa, I.D.; Timmons, R.; Caldwell, D.L.; Rosen, P. Native Aquatic Vertebrates: Conservation and Management in the Río Sonoyta Basin, Sonora, Mexico. In Proceedings of the Merging Science and Management in a Rapidly Changing World: Biodiversity and Management of the Madrean Archipelago, Tucson, AZ, USA, 1–5 May 2012; Gottfried, G.J., Folliot, P.F., Gebow, B.S., Eskew, L.G., Collins, L.C., Eds.; U.S. Department of Agriculture, Forest Service: Fort Collins, CO, USA, 2013. RMRS-P-67. [Google Scholar]
- Murguia, M.D.L. El agua en la Reserva de la Biosfera el Pinacate y Gran Desierto de Altar, Sonora, Mexico. Nat. Res. J. 2000, 40, 411–434. [Google Scholar]
- Hollet, K. Geohydrology and Water Resources of the Papago Farms-Great Plain Area, Papago Indian Reservation, Arizona, and the Upper Rio Sonoyta Area, Sonora, Mexico. In U.S. Geological Survey Water-Supply Paper; U.S. Geological Survey: Reston, VA, USA, 1985; Volume 2258, pp. 1–51. [Google Scholar]
- Hendrickson, D.; Varela-Romero, A. Conservation status of desert pupfish, Cyprinodon macularius, in Mexico and Arizona. Copeia 1989, 1989, 479–483. [Google Scholar] [CrossRef]
- Miller, R.; Fuiman, L. Description and conservation status of Cyprinodon macularius eremus, a new subspecies of pupfish from Organ Pipe Cactus National Monument, Arizona. Copeia 1987, 1987, 593–609. [Google Scholar] [CrossRef] [Green Version]
- Holm, P.; National Park Service, Tucson, AZ, USA. Personal communication, 2017.
- Goodman, B. Hydrogeology of the Quitobaquito Springs Area, La Abra Plain, and the Rio Sonoyta Valley, Organ Pipe Cactus National Monument, Arizona and Sonora, Mexico. Master’s Thesis, University of Arizona, Tucson, AZ, USA, 1992. [Google Scholar]
- Eastoe, C.; Towne, D. Regional zonation of groundwater recharge mechanisms in alluvial basins of Arizona: Interpretation of isotope mapping. J. Geochem. Explor. 2018, 194, 134–145. [Google Scholar] [CrossRef]
- Winograd, I.; Riggs, A.; Coplen, T. The relative contribution of summer and cool-season precipitation to groundwater recharge, Spring Mountains, Nevada, USA. Hydrogeol. J. 1998, 6, 77–93. [Google Scholar] [CrossRef]
- Cunningham, E.; Long, A.; Eastoe, C.; Bassett, R. Migration of recharge waters downgradient from the Santa Catalina Mountains into the Tucson basin aquifer, Arizona, USA. Hydrogeol. J. 1998, 6, 94–103. [Google Scholar] [CrossRef]
- Eastoe, C.; Gu, A.; Long, A. The origins, ages and flow paths of groundwater in Tucson Basin: Results of a study of multiple isotope systems. In Groundwater Recharge in a Desert Environment: The Southwestern United States; Hogan, J.F., Phillips, F.M., Scanlon, B.R., Eds.; Am. Geophys. Union: Washington, DC, USA, 2004; pp. 217–234. [Google Scholar] [CrossRef]
- Sanford, W.; Plummer, L.; McAda, D.; Bexfield, L. Hydrochemical tracers in the Middle Rio Grande Basin, USA: 2. Calibration of a groundwater-flow model. Hydrogeol. J. 2004, 12, 389–407. [Google Scholar] [CrossRef]
- Harshbarger & Associates, Inc. Overview Report of Groundwater Basins along International Boundary Arizona, U.S. and Sonora, Mexico; The U.S. Section of the International Boundary and Water Commission: El Paso, TX, USA, 1979; Volume Pr-236-79-1, pp. 1–124.
- Hereford, R. Entrenchment and Widening of the Upper San Pedro River, Arizona; Geological Society of America: Boulder, CO, USA, 1993; pp. 1–282. [Google Scholar] [CrossRef] [Green Version]
- Wright, W.; Long, A.; Comrie, A.; Leavitt, S.; Cavazos, T.; Eastoe, C. Monsoonal moisture sources revealed using temperature, precipitation, and precipitation stable isotope timeseries. Geophys. Res. Let. 2001, 28, 787–790. [Google Scholar] [CrossRef]
- Sellers, W.; Hill, R. Arizona Climate 1931–1972; The University of Arizona Press: Tucson, AZ, USA, 1974; pp. 1–616. [Google Scholar]
- The Western Regional Climate Center. Climate of Arizona. Available online: https://wrcc.dri.edu/narratives/ARIZONA.htm (accessed on 20 December 2016).
- Conner, C.; National Park Service, Tucson, AZ, USA. Personal communication, 2017.
- The Western Regional Climate Center. Climatological Data Summaries. Available online: https://wrcc.dri.edu/xummary/Climsmaz.html (accessed on 15 September 2017).
- Eastoe, C.; Dettman, D.L. Isotope amount effects in hydrologic and climate reconstructions of monsoon climates: Implications of some long-term data sets for precipitation. Chem. Geol. 2016, 430, 78–89. [Google Scholar] [CrossRef]
- Wright, W. δD and δ18O in Mixed Conifer Systems in the U.S. Southwest: The Potential of δ18O in Pinus ponderosa Tree Rings as a Natural Environmental Recorder. Ph.D. Thesis, University of Arizona, Tucson, AZ, USA, 2001. [Google Scholar]
- Wahi, A.; Hogan, J.; Ekwurzel, B.; Baillie, M.; Eastoe, C. Geochemical Quantification of Semiarid Mountain Recharge. Ground Water 2008, 46, 414–425. [Google Scholar] [CrossRef]
- Jasechko, S.; Taylor, R. Intensive rainfall recharges tropical groundwaters. Environ. Res. Let. 2015, 10, 124015. [Google Scholar] [CrossRef]
- Haxel, G.; Tosdal, R.; May, D.; Wright, J. Latest Cretaceous and early Tertiary orogenesis in south-central Arizona-Thrust faulting, regional metemorphism, and granitic plutonism. Geol. Soc. Am. 1984, 94, 631–653. [Google Scholar] [CrossRef]
- Gray, F.; Miller, R.; Grubensky, M.; Tosdal, R.; Haxel, G.; Peterson, D.; May, D.J.; Silver, L.T. Geologic Map of the Ajo and Lukeville 1° by 2° Quadrangle, Southwest Arizona; U.S. Geological Survey Open-File Report 87-347; U.S. Geological Survey: Reston, Virginia, USA, 1988; pp. 1–23.
- Bezy, J.; Gutmann, J.; Haxel, G. A Guide to the Geology of Organ Pipe Cactus National Monument and the Pinacate Biosphere Reserve; Arizona Geological Survey: Tucson, AZ, USA, 2000; pp. 1–66. [Google Scholar]
- Brown, J. Interpretive Geologic Map of Mt. Ajo Quadrangle, Organ Pipe Cactus National Monument, Arizona; U.S. Geological Survey Open-File Report 92-23; U.S. Geological Survey: Reston, Virginia, USA, 1992; pp. 1–15.
- Carruth, R. Hydrogeology of the Quitobaquito Springs and La Abra Plain area, Organ Pipe Cactus National Monument, Arizona, and Sonora Mexico; Water-Resources Investigations Report 95-4295; U.S. Geological Survey: Reston, Virginia, USA, 1996; pp. 1–23.
- Servicio Geologico Mexicano—Cartas Geologicas. Available online: https://mapserver.sgm.gob.mx/Cartas_Online/geologia/168_H12-A24_GM.pdf (accessed on 25 August 2017).
- Anderson, T.; Freethey, G.T. Geohydrology and Water Resources of Alluvial Basins in South-Central Arizona and Parts of Adjacent States; U.S. Geological Survey Open File Report 89-378; U.S. Geological Survey: Reston, Virginia, USA, 1990; pp. 1–99.
- Trainer, F. Plutonic and metamorphic rocks. In The Geology of North America; Back, W., Rosenshein, J., Seaber, P., Eds.; Geological Society of America: Boulder, CO, USA, 1988; Volume O-2, pp. 367–380. [Google Scholar]
- Woloshun, C. Temperature as an Indicator of Flow in Fractured Rock NEAR Oracle, Arizona. Master’s Thesis, University of Arizona, Tucson, AZ, USA, 1989. [Google Scholar]
- Markovich, K.H.; Manning, A.H.; Condon, L.E.; McIntosh, J.C. Mountain-Block Recharge: A Review of Current Understanding. Water Resour. Res. 2019, 55, 8278–8304. [Google Scholar] [CrossRef] [Green Version]
- Robertson, F.N. Geochemistry of Groundwater in Alluvial Basins of Arizona and Adjacent Parts of Nevada, New Mexico, and California; Professional Paper 1406-C; U.S. Geological Survey: Reston, Virginia, USA, 1991; pp. 1–91.
- Baillie, M.N.; Hogan, J.F.; Ekwurzel, B.; Wahi, A.K.; Eastoe, C.J. Quantifying water sources to a semiarid riparian ecosystem, San Pedro River, Arizona. J. Geophys. Res. (Biogeosci.) 2007, 112, G03S02. [Google Scholar] [CrossRef]
- National Water Quality Monitoring Council—Water Quality Portal. Available online: https://www.waterqualitydata.us (accessed on 18 December 2017).
- Gieskes, J.; Rogers, W. Alkalinity determinations in interstitial waters of marine sediments. J. Sediment. Res. 1973, 43, 272–277. [Google Scholar] [CrossRef]
- Parkhurst, D.; Appelo, C. User’s Guide to PHREEQC (Version 2)—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; Water-Resources Investigations Report 99-4259; U.S. Geological Survey: Reston, Virginia, USA, 1999; pp. 1–312.
- Welker, J. ENSO effects on the isotropic (δ18O, δ2H and d-excess) of precipitation across the US using a high-density, long-term network (USNIP). Rapid Comm. Mass Spec. 2012, 17, 1655–1660. [Google Scholar] [CrossRef]
- Zamora, H.A.; Wilder, T.W.; Eastoe, C.J.; McIntosh, J.C.; Welker, J.; Flessa, K.W. Evaluation of Groundwater Sources, Flow Paths, and Residence Time of the Gran Desierto Pozos, Sonora, Mexico. Geosciences 2019, 9, 378. [Google Scholar] [CrossRef] [Green Version]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Colleen, F.; National Park Service, Tucson, AZ, USA. Personal communication, 2017.
- Towne, D. Ambient Groundwater Quality of the Western Mexican Drainage: A 2016–2017 Baseline Study; ADEQ Open File Report 17-02; ADEQ Arizona Department of Environmental Quality: Phoenix, AZ, USA, 2018; pp. 1–52.
- Gu, A.; Gray, F.; Eastoe, C.; Norman, L.; Duarte, O.; Long, A. Tracing ground water input to base flow using sulfate (S, O) isotopes. Ground Water 2008, 46, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Eastoe, C.; Hess, G.; Mahieux, S. Identifying recharge from tropical cyclonic storms, Baja California Sur, Mexico. Ground Water 2014, 53, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Jasechko, S.; Lechler, A.; Pausata, F.; Fawcett, P.; Gleeson, D. Late-glacial to late-Holocene shifts in global precipitation. Clim. Past 2015, 11, 1375–1393. [Google Scholar] [CrossRef] [Green Version]
- Wagner, J.; Cole, J.; Beck, J.; Patchett, P.; Henderson, G.; Barnett, H. Moisture variability in the southwest United States linked to abrupt glacial climate change. Nat. Geosci. 2010, 3, 110–113. [Google Scholar] [CrossRef]
- Van Devender, T.; Martin, P.; Thompson, R.; Cole, K.; Jull, A.; Long, A.; Toolin, L.J.; Donahue, D.J. Fossil packrat middens and the tandem accelerator mass spectrometer. Nature 1985, 317, 610–613. [Google Scholar] [CrossRef]
- Van Devender, T. Late Quaternary Vegetation and Climate of the Sonoran Desert, United States and Mexico. In Packrat Middens: The Last 40,000 Years of Biotic Change; Betancourt, J., Van Devender, T., Martin, P., Eds.; University of Arizona Press: Tucson, AZ, USA, 1990; pp. 134–165. [Google Scholar]
- Stute, M.; Schlosser, P.; Clark, J.F.; Broecker, W.S. Paleotemperatures in the Southwestern United States Derived from Noble Gases in Ground Water. Science 1992, 256, 1000–1003. [Google Scholar] [CrossRef]
- Tierney, J.E.; Zhu, J.; King, J.; Malevich, S.B.; Hakim, G.J.; Poulsen, C.J. Glacial cooling and climate sensitivity revisited. Nature 2020, 584, 569–573. [Google Scholar] [CrossRef]
- Meixner, T.; Manning, A.H.; Stonestrom, D.A.; Allen, D.M.; Ajami, H.; Blasch, K.W.; Brookfield, A.E.; Castro, C.L.; Clark, J.F.; Gochis, D.J.; et al. Implications of projected climate change for groundwater recharge in the western United States. J. Hydrol. 2016, 534, 124–138. [Google Scholar] [CrossRef] [Green Version]
Site | Type | Date | T (°C) | pH | E.C. (mS/cm) | Ca2+ (mg/L) | Mg2+ (mg/L) | Na+ (mg/L) | K+ (mg/L) | Cl− (mg/L) | SO42− (mg/L) | NO3−-N (mg/L) | Br− (mg/L) | F− (mg/L) | HCO3− (mg/L) | δ18O (‰) | δ2H (‰) | δ13C-DIC (‰) | 3H (TU) | 14C (pMC) | Group |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Spring | Mar-16 | 14 | 6.6 | 0.28 | 2 | 0 | 69 | 3 | 21 | 29 | 0.3 | 0.0 | 0 | 195 | −5.3 | −45 | −6.5 | 1.8 | 103 | C |
Feb-17 | 14 | 8.2 | 0.24 | 5 | 0 | 76 | 4 | 21 | 26 | 0 | 0 | 207 | −4.5 | −38 | C | ||||||
Mar-11 | −5.4 | −44 | C | ||||||||||||||||||
Oct-03 | 22 | 6.8 | 0.33 | 2 | 0 | 64 | 2 | 25 | 36 | 63 | |||||||||||
May-03 | 7.2 | 0.30 | 1 | 0 | 61 | 2 | 22 | 32 | 53 | ||||||||||||
Dec-02 | 13 | 7.5 | 0.41 | 3 | 0 | 79 | 3 | 22 | 25 | 118 | |||||||||||
2 | Spring | Dec-76 | 14 | 8.3 | 1.10 | 33 | 8 | 190 | 4 | 140 | 87 | 307 | |||||||||
Mar-11 | −4.5 | −44 | C | ||||||||||||||||||
3 | Spring | Feb-17 | 25 | 7.6 | 1.15 | 38 | 11 | 200 | 5 | 150 | 97 | 3 | 5 | 305 | −8.4 | −59 | B | ||||
Mar-16 | 28 | 7.4 | 1.15 | 36 | 12 | 213 | 5 | 170 | 101 | 3 | 0.0 | 5 | 480 | −8.3 | −64 | −8.3 | 1.2 | 62 | B | ||
−8.5 | −61 | B | |||||||||||||||||||
4 | Spring/Pond | Jul-88 | 30 | 7.7 | 1.15 | 33 | 10 | 190 | 5 | 150 | 87 | 306 | |||||||||
Jan-85 | 25 | 7.7 | 1.17 | 38 | 11 | 200 | 5 | 160 | 97 | 311 | −8.3 | −61 | B | ||||||||
Aug-82 | 28 | 7.9 | 1.06 | 36 | 10 | 41 | 5 | 150 | 93 | 313 | −8.4 | −63 | B | ||||||||
Dec-81 | 25 | 8.3 | 1.14 | 37 | 11 | 210 | 5 | 150 | 92 | 305 | |||||||||||
Nov-76 | 26 | 7.9 | 1.15 | 36 | 10 | 200 | 5 | 150 | 97 | 311 | |||||||||||
5 | Well | Jul-83 | 25 | 8.4 | 2.52 | 30 | 18 | 500 | 3 | 460 | 230 | 432 | −7.0 | −54 | −7.3 | A | |||||
6 | Well | Jan-85 | 25 | 7.7 | 1.19 | 39 | 11 | 210 | 5 | 170 | 98 | 318 | −8.4 | −61 | B | ||||||
Jun-83 | 25 | 7.7 | 1.17 | 40 | 11 | 210 | 9 | 160 | 110 | 337 | −8.5 | −62 | −11.1 | B | |||||||
Dec-76 | 14 | 8.2 | 1.30 | 40 | 11 | 210 | 6 | 160 | 110 | 315 | |||||||||||
7 | Well | Feb-17 | 28 | 8.0 | 0.83 | 14 | 5 | 160 | 3 | 100 | 68 | 4 | 5 | 195 | −8.6 | −62 | B | ||||
8 | Well | Feb-17 | 26 | 8.1 | 0.95 | 22 | 8 | 180 | 4 | 140 | 70 | 5 | 5 | 195 | −8.7 | −62 | B | ||||
9 | Well | Feb-17 | 32 | 7.7 | 0.78 | 41 | 10 | 103 | 4 | 83 | 52 | 4 | 2 | 198 | −8.3 | −60 | B | ||||
Mar-16 | 31 | 5.8 | 0.82 | 25 | 11 | 119 | 4 | 104 | 62 | 5 | 0.0 | 2 | 205 | −8.2 | −62 | −9.6 | <0.7 | 47 | B | ||
Mar-89 | 33 | 8.1 | 0.86 | 30 | 13 | 120 | 4 | 110 | 64 | 198 | |||||||||||
Jul-88 | 33 | 7.8 | 0.82 | 30 | 13 | 120 | 5 | 110 | 60 | 198 | |||||||||||
10 | Well | Mar-16 | 28 | 6.0 | 0.86 | 11 | 5 | 173 | 4 | 106 | 70 | 5 | 0.0 | 8 | 284 | −8.7 | −64 | −7.8 | <0.5 | 21 | B |
11 | Well | Mar-16 | 38 | 6.8 | 4.25 | 129 | 7 | 578 | 18 | 868 | 372 | 0 | 2.6 | 3 | 118 | −7.9 | −62 | −4.8 | <0.5 | 24 | B |
12 | Well | Mar-16 | 84 | 13 | 13 | 3 | 5 | 2 | 0 | 0.0 | 0 | 450 | −7.3 | −53 | −9.0 | A | |||||
Jan-85 | 16 | 7.3 | 0.57 | 89 | 12 | 12 | 2 | 6 | 15 | 349 | −7.5 | −52 | A | ||||||||
13 | Well | Mar-16 | 23 | 7.0 | 0.70 | 84 | 16 | 54 | 3 | 12 | 2 | 0 | 0.0 | 0 | 452 | −5.9 | −44 | −3.0 | 2.6 | 107 | |
Jan-83 | 25 | 8.0 | 0.45 | 60 | 12 | 39 | 1 | 7 | 18 | 322 | −7.5 | −53 | A | ||||||||
14 | Well | Mar-16 | 30 | 7.3 | 2.05 | 81 | 24 | 438 | 16 | 517 | 148 | 2 | 1.8 | 4 | 678 | −8.0 | −61 | −2.0 | <0.5 | 73 | B |
Jul-83 | 31 | 7.5 | 1.85 | 48 | 10 | 330 | 7 | 280 | 200 | 340 | −8.0 | −61 | −9.9 | B | |||||||
15 | Well | Jul-83 | 24 | 7.9 | 2.35 | 29 | 10 | 540 | 5 | 350 | 240 | 650 | −8.1 | −64 | −7.8 | B | |||||
16 | Well | Mar-16 | 21 | 6.9 | 0.83 | 75 | 17 | 110 | 2 | 104 | 59 | 1 | 0.0 | 1 | 455 | −7.8 | −56 | −12.2 | 0.8 | 99 | A |
17 | Well | Apr-16 | 29 | 7.2 | 1.47 | 39 | 15 | 288 | 6 | 265 | 191 | 6 | 1.1 | 5 | 279 | −8.6 | −63 | −7.6 | <0.7 | 49 | B |
18 | Well | Apr-16 | 28 | 7.5 | 1.16 | 28 | 11 | 226 | 4 | 190 | 127 | 5 | 0.9 | 6 | 257 | −8.7 | −64 | −7.5 | <0.8 | B | |
19 | Well | Apr-16 | 24 | 7.1 | 1.76 | 46 | 12 | 372 | 5 | 265 | 189 | 3 | 1.1 | 0 | 643 | −8.0 | −60 | −8.2 | <0.7 | 80 | B |
20 | Well | Apr-16 | 32 | 8.0 | 1.59 | 15 | 4 | 363 | 5 | 385 | 146 | 0 | 1.3 | 0 | 232 | −7.8 | −60 | −5.5 | <1.0 | 27 | |
21 | Well | Apr-16 | 31 | 7.9 | 1.93 | 23 | 16 | 409 | 5 | 473 | 164 | 2 | 1.7 | 0 | 438 | −7.6 | −59 | −5.3 | <0.5 | 16 | |
22 | Well | Jun-81 | 24 | 7.3 | 0.58 | 72 | 17 | 30 | 1 | 15 | 66 | 268 | −8.6 | −61 | B | ||||||
23 | Well | Jan-78 | 25 | 8.0 | 0.58 | 5 | 4 | 114 | 44 | 48 | 165 | ||||||||||
Jan-81 | 25 | 8.2 | 0.58 | 9 | 4 | 110 | 2 | 44 | 40 | 207 | −7.3 | −58 | A | ||||||||
24 | Well | Sep-78 | 8.4 | 23 | 15 | 109 | 3 | 15 | 61 | 250 | |||||||||||
Apr-81 | 8.0 | 0.81 | 30 | 20 | 120 | 2 | 34 | 100 | 305 | −7.0 | −53 | A | |||||||||
25 | Well | Mar-78 | 31 | 7.7 | 0.53 | 24 | 16 | 61 | 31 | 23 | 222 | ||||||||||
Apr-81 | 0.53 | 26 | 15 | 60 | 5 | 34 | 22 | 220 | −7.2 | −54 | A | ||||||||||
26 | Well | Feb-16 | 7.8 | 0.9 | 27 | 5 | 137 | 5 | 124 | 114 | 4 | 127 | −8.0 | −59 | B | ||||||
27 | Well | Oct-16 | 7.6 | 0.5 | 17 | 4 | 90 | 4 | 12 | 15 | 5 | 0.0 | 348 | -7.6 | -51 | <0.4 | A | ||||
28 | Well | Feb-17 | 27 | 7.7 | 0.549 | 45 | 7.4 | 60 | 1.9 | 31 | 17 | 268 | −7.5 | −52 | A |
Group | δ18O-Max | δ18O-Min | δ2H-Max | δ2H-Min | Sites |
---|---|---|---|---|---|
A | −7.0 | −7.8 | −51 | −58 | 5, 12, 13, 16, 23, 24, 25, 27, 28 |
B | −7.9 | −8.7 | −59 | −64 | 3, 4, 6, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 22, 26 |
C | −4.5 | −5.4 | −38 | −45 | 1, 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamora, H.A.; Eastoe, C.J.; Wilder, B.T.; McIntosh, J.C.; Meixner, T.; Flessa, K.W. Groundwater Isotopes in the Sonoyta River Watershed, USA-Mexico: Implications for Recharge Sources and Management of the Quitobaquito Springs. Water 2020, 12, 3307. https://doi.org/10.3390/w12123307
Zamora HA, Eastoe CJ, Wilder BT, McIntosh JC, Meixner T, Flessa KW. Groundwater Isotopes in the Sonoyta River Watershed, USA-Mexico: Implications for Recharge Sources and Management of the Quitobaquito Springs. Water. 2020; 12(12):3307. https://doi.org/10.3390/w12123307
Chicago/Turabian StyleZamora, Hector A., Christopher J. Eastoe, Benjamin T. Wilder, Jennifer C. McIntosh, Thomas Meixner, and Karl W. Flessa. 2020. "Groundwater Isotopes in the Sonoyta River Watershed, USA-Mexico: Implications for Recharge Sources and Management of the Quitobaquito Springs" Water 12, no. 12: 3307. https://doi.org/10.3390/w12123307
APA StyleZamora, H. A., Eastoe, C. J., Wilder, B. T., McIntosh, J. C., Meixner, T., & Flessa, K. W. (2020). Groundwater Isotopes in the Sonoyta River Watershed, USA-Mexico: Implications for Recharge Sources and Management of the Quitobaquito Springs. Water, 12(12), 3307. https://doi.org/10.3390/w12123307