Quantitative Estimation of Soil-Ground Water Storage Utilization during the Crop Growing Season in Arid Regions with Shallow Water Table Depth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Description
2.2. Calculation of Soil-Ground Water Storage Utilization
2.3. Moving Average Method
2.4. Water Balance Analysis to Estimate the Actual Evapotranspiration
2.5. Statistical Indicators
3. Results and Discussion
3.1. Results of the Soil-Ground Water Storage Utilization
3.2. The Impact Factors on Soil-Ground Water Storage Utilization
3.3. Results of Soil Water Storage Utilization, Ground Water Utilization, Soil-Ground Water Storage Utilization below and above 1 m Soil Depth and the Three Coefficients
3.4. Contributions of Ground Water Utilization, Soil-Ground Water Storage Utilization below 1 m Soil Depth, Soil-Ground Water Storage Utilization to the Actual Evapotranspiration
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cai, X.; McKinney, D.C.; Rosegrant, M.W. Sustainability analysis for irrigation water management in the Aral Sea region. Agric. Syst. 2003, 76, 1043–1066. [Google Scholar] [CrossRef] [Green Version]
- Hanasaki, N.; Fujimori, S.; Yamamoto, T.; Yoshikawa, S.; Masaki, Y.; Hijioka, Y.; Kanae, S. A Global Water Scarcity Assessment under Shared Socio-Economic Pathways–Part 2: Water Availability and Scarcity. Hydrol. Earth Syst. Sci. 2013, 17, 2393–2413. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Chen, H.; Huo, Z.; Wang, F.; Shock, C.C. Analysis of the contribution of groundwater to evapotranspiration in an arid irrigation district with shallow water table. Agric. Water Manag. 2016, 171, 131–141. [Google Scholar] [CrossRef]
- Zhang, Y.; Kendy, E.; Qiang, Y.; Changming, L.; Yanjun, S.; Hongyong, S. Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain. Agric. Water Manag. 2004, 64, 107–122. [Google Scholar] [CrossRef]
- Lam, A.; Karssenberg, D.; van den Hurk, B.J.J.M.; Bierkens, M.F.P. Spatial and temporal connections in groundwater contribution to evaporation. Hydrol. Earth Syst. Sci. 2011, 15, 2621–2630. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Shi, H.; Flerchinger, G.N.; Akae, T.; Wang, C. Simulation of freezing and thawing soils in Inner Mongolia Hetao Irrigation District, China. Geoderma 2012, 173, 28–33. [Google Scholar] [CrossRef]
- Li, R.; Shi, H.; Flerchinger, G.N.; Zou, C.; Li, Z. Modeling the effect of antecedent soil water storage on water and heat status in seasonally freezing and thawing agricultural soils. Geoderma 2013, 206, 70–74. [Google Scholar] [CrossRef]
- Lu, X.; Li, R.; Shi, H.; Liang, J.; Miao, Q.; Fan, L. Successive simulations of soil water-heat-salt transport in one whole year of agriculture after different mulching treatments and autumn irrigation. Geoderma 2019, 344, 99–107. [Google Scholar] [CrossRef]
- Xu, X.; Huang, G.; Qu, Z.; Pereira, L.S. Assessing the groundwater dynamics and impacts of water saving in the Hetao Irrigation District, Yellow River basin. Agric. Water Manag. 2010, 98, 301–313. [Google Scholar] [CrossRef]
- Han, Y. Autumn Irrigation Schedule in Hetao Irrigation District Based on SWAP-SHAW Coupling Model. Master’s Thesis, Tsinghua University, Beijing, China., 2017. (In Chinese). [Google Scholar]
- Loheide, S.P.; Butler, J.J.; Gorelick, S.M. Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated-unsaturated flow assessment. Water Resour. Res. 2005, 41, W07030.1–W07030.14. [Google Scholar] [CrossRef]
- Nosetto, M.D.; Jobbágy, E.G.; Jackson, R.B.; Sznaider, G.A. Reciprocal influence of crops and shallow ground water in sandy landscapes of the Inland Pampas. Field Crop. Res. 2009, 113, 138–148. [Google Scholar] [CrossRef]
- Yeh, P.J.; Famiglietti, J.S. Regional Groundwater Evapotranspiration in Illinois. J. Hydrometeorol. 2009, 10, 464–478. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Li, B.; Liu, S.P. A large weighing lysimeter for evapotranspiration and soil-water-groundwater exchange studies. Hydrol. Process. 2000, 14, 1887–1897. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, T.; Paredes, P.; Duan, L.; Pereira, L.S. Water use by a groundwater dependent maize in a semi-arid region of Inner Mongolia: Evapotranspiration partitioning and capillary rise. Agric. Water Manag. 2015, 152, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Sophocleous, M. Seasonal groundwater contribution to crop-water use assessed with lysimeter observations and model simulations. J. Hydrol. 2010, 389, 325–335. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.K.; Mallick, S. Actual evapotranspiration and crop coefficients of wheat (Triticum aestivum) under varying moisture levels of humid tropical canal command area. Agric. Water Manag. 2003, 59, 33–47. [Google Scholar] [CrossRef]
- Luo, Y.; He, C.; Sophocleous, M.; Yin, Z.; Hongrui, R.; Ouyang, Z. Assessment of crop growth and soil water modules in SWAT2000 using extensive field experiment data in an irrigation district of the Yellow River Basin. J. Hydrol. 2008, 352, 139–156. [Google Scholar] [CrossRef]
- Zhang, Y.; Wegehenkel, M. Integration of MODIS data into a simple model for the spatial distributed simulation of soil water content and evapotranspiration. Remote Sens. Environ. 2006, 104, 393–408. [Google Scholar] [CrossRef]
- Soppe, R.W.O.; Ayars, J.E. Characterizing ground water use by safflower using weighing lysimeters. Agric. Water Manag. 2003, 60, 59–71. [Google Scholar] [CrossRef]
- Soylu, M.E.; Istanbulluoglu, E.; Lenters, J.D.; Wang, T. Quantifying the impact of groundwater depth on evapotranspiration in a semi-arid grassland region. Hydrol. Earth Syst. Sci. 2011, 15, 787–806. [Google Scholar] [CrossRef] [Green Version]
- Robock, A.; Vinnikov, K.Y.; Srinivasan, G.; Entin, J.K.; Hollinger, S.E.; Speranskaya, N.A.; Namkhai, A. The Global Soil Moisture Data Bank. Bull. Amer. Meteorol. Soc. 2000, 81, 1281–1299. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Shao, M.; Liu, Z. Vertical distribution and influencing factors of soil water content within 21-m profile on the Chinese Loess Plateau. Geoderma 2013, 193, 300–310. [Google Scholar] [CrossRef]
- Qu, Z.; Liu, T.; Kang, Y.; Huang, Y. The Analysis of Different Scales Diversity Law of Irrigation Water Efficiency and Water Saving Potential in Yellow River Irrigation Areas of Inner Mongolia; Science Press: Beijing, China, 2018. (In Chinese) [Google Scholar]
- Yang, Y.; Shang, S.; Jiang, L. Remote Sensing Temporal and Spatial Patterns of Evapotranspiration and the Responses to Water Management in a Large Irrigation District of North China. Agric. For. Meteorol. 2012, 164, 112–122. [Google Scholar] [CrossRef]
- Yu, B.; Shang, S.; Zhu, W.; Gentine, P.; Cheng, Y. Mapping daily evapotranspiration over a large irrigation district from MODIS data using a novel hybrid dual-source coupling model. Agric. For. Meteorol. 2019, 276, 107612. [Google Scholar] [CrossRef]
- Yang, J.; Wan, S.; Deng, W.; Zhang, G. Water fluxes at a fluctuating water table and groundwater contributions to wheat water use in the lower Yellow River flood plain, China. Hydrol. Process. 2007, 21, 717–724. [Google Scholar] [CrossRef]
- Doble, R.C.; Crosbie, R.S. Review: Current and emerging methods for catchment-scale modelling of recharge and evapotranspiration from shallow groundwater. Hydrogeol. J. 2017, 25, 3–23. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, B.; Cai, J.; Wei, Z.; Chen, H.; Liu, Y. Optimization of Spring Wheat Irrigation Schedule in Shallow Groundwater Area of Jiefangzha Region in Hetao Irrigation District. Water 2019, 11, 2627. [Google Scholar] [CrossRef] [Green Version]
- Forkutsa, I.; Sommer, R.; Shirokova, Y.I.; Lamers, J.P.A.; Kienzler, K.; Tischbein, B.; Vlek, P.L.G. Modeling irrigated cotton with shallow groundwater in the Aral Sea Basin of Uzbekistan: I. Water dynamics. Irrig. Sci. 2009, 27, 331–346. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Z.; Huo, Z.; Qu, Z.; Xia, Y.; Fernald, A. Impacts of agricultural water saving practice on regional groundwater and water consumption in an arid region with shallow groundwater. Environ. Earth Sci. 2016, 75, 1204. [Google Scholar] [CrossRef]
- Ren, D.; Xu, X.; Huang, G. Irrigation water use in typical irrigation and drainage system of Hetao Irrigation District. Trans. Chin. Soc. Agric. Eng. 2019, 35, 98–105. (In Chinese) [Google Scholar] [CrossRef]
- Raghavendra, N.S.; Deka, P.C. Support vector machine applications in the field of hydrology: A review. Appl. Soft. Comput. 2014, 19, 372–386. [Google Scholar] [CrossRef]
- Cheng, D.; Wang, W.; Zhan, H.; Zhang, Z.; Chen, L. Quantification of transient specific yield considering unsaturated-saturated flow. J. Hydrol. 2020, 580, 124043. [Google Scholar] [CrossRef]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall: Upper Saddle River, NJ, USA, 1979; 604p, ISBN 0-13-365312-9. [Google Scholar]
- Moench, A.F. Specific yield as determined by type-curve analysis of aquifer-test data. Groundwater 1994, 32, 949–958. [Google Scholar] [CrossRef]
- Nwankwor, G.I.; Cherry, J.A.; Gillham, R.W. A Comparative Study of Specific Yield Determinations for a Shallow Sand Aquifer. Groundwater 1984, 22, 764–772. [Google Scholar] [CrossRef]
- Malama, B. Alternative linearization of water table kinematic condition for unconfined aquifer pumping test modeling and its implications for specific yield estimates. J. Hydrol. 2011, 399, 141–147. [Google Scholar] [CrossRef]
- Neuman, S.P. Theory of flow in unconfined aquifers considering delayed response of the water table. Water Resour. Res. 1972, 8, 1031–1045. [Google Scholar] [CrossRef]
- Gao, X.; Huo, Z.; Bai, Y.; Feng, S.; Huang, G.; Shi, H.; Qu, Z. Soil salt and groundwater change in flood irrigation field and uncultivated land: A case study based on 4-year field observations. Environ. Earth Sci. 2015, 73, 2127–2139. [Google Scholar] [CrossRef]
- Chen, H.; Huo, Z.; Dai, X.; Ma, S.; Xu, X.; Huang, G. Impact of agricultural water-saving practices on regional evapotranspiration: The role of groundwater in sustainable agriculture in arid and semi-arid areas. Agric. Meteorol. 2018, 263, 156–168. [Google Scholar] [CrossRef]
- Li, Y.; Wu, C.; Bao, M.; Gu, X. Research on the Spacing of Regional Meteorological Stations in Hulun Buir Grassland. In Proceedings of the 32nd annual meeting of Chinese Meteorological Society, Tianjing, China, 14 October 2015; Chinese Meteorological Society: Beijing, China, 2015. (In Chinese). [Google Scholar]
- Ren, D.; Xu, X.; Hao, Y.; Huang, G. Modeling and assessing field irrigation water use in a canal system of Hetao, upper Yellow River basin: Application to maize, sunflower and watermelon. J. Hydrol. 2016, 532, 122–139. [Google Scholar] [CrossRef]
- Mogheir, Y.; de Lima, J.L.M.P.; Singh, V.P. Characterizing the spatial variability of groundwater quality using the entropy theory: I. Synthetic data. Hydrol. Process. 2004, 18, 2165–2179. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.L.; Chau, K.W.; Li, Y.S. Methods to improve neural network performance in daily flows prediction. J. Hydrol. 2009, 372, 80–93. [Google Scholar] [CrossRef] [Green Version]
- Evett, S.R.; Kustas, W.P.; Gowda, P.H.; Anderson, M.C.; Prueger, J.H.; Howell, T.A. Overview of the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment 2008 (BEAREX08): A field experiment evaluating methods for quantifying ET at multiple scales. Adv. Water Resour. 2012, 50, 4–19. [Google Scholar] [CrossRef]
- Abdi, H. Coefficient of variation. In Encyclopedia of Research Design, 1st ed.; Salkind, N., Ed.; Sage: Thousand Oaks, CA, USA, 2010; Volume 1, pp. 169–171. [Google Scholar] [CrossRef]
- Xi, H.; Feng, Q.; Si, J.; Chang, Z.; Cao, S. Impacts of river recharge on groundwater level and hydrochemistry in the lower reaches of Heihe River Watershed, northwestern China. Hydrogeol. J. 2010, 18, 791–801. [Google Scholar] [CrossRef]
- Huang, T.; Pang, Z. Changes in groundwater induced by water diversion in the Lower Tarim River, Xinjiang Uygur, NW China: Evidence from environmental isotopes and water chemistry. J. Hydrometeorol. 2010, 387, 188–201. [Google Scholar] [CrossRef]
- Yue, W.; Liu, X.; Wang, T.; Chen, X. Impacts of water saving on groundwater balance in a large-scale arid irrigation district, northwest china. Irrig. Sci. 2016, 34, 297–312. [Google Scholar] [CrossRef]
- Steinwand, A.L.; Harrington, R.F.; Or, D. Water balance for Great Basin phreatophytes derived from eddy covariance, soil water, and water table measurements. J. Hydrol. 2006, 329, 595–605. [Google Scholar] [CrossRef]
- Nwankwor, G.I.; Gillham, R.W.; van der Kamp, G.; Akindunni, F.F. Unsaturated and saturated flow in response to pumping of an unconfined aquifer: Field evidence of delayed drainage. Groundwater 1992, 30, 690–700. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, P. A preliminary study on the mechanism of water release from saturated layered soils. J. Wuhan Coll. Geol. 1985, 10, 21–27. (In Chinese) [Google Scholar]
Study Area | Irrigation Area (km2) | Annual Average Water Table Depth (m) | Number of Soil Moisture Content Monitoring Sites | Number of Water Table Depth Monitoring Wells |
---|---|---|---|---|
Jiefangzha | 1243 | 1.634 | 22 | 57 |
Wula | 195 | 1.392 | 5 | 10 |
Yangjia | 430 | 1.451 | 6 | 17 |
Huangji | 497 | 1.787 | 9 | 23 |
Qinghui | 121 | 2.042 | 2 | 7 |
Yonglian | 20 | 1.461 | 10 | 10 |
Study Area | Soil-Ground Water Storage Utilization (mm) | Average Utilization Efficiency of Autumn Irrigation (%) | |||
---|---|---|---|---|---|
Average | Maximum | Minimum | Standard Deviation | ||
Jiefangzha | 121 | 229 | 57 | 49 | 32.2 |
Wula | 126 | 243 | 68 | 50 | 32.5 |
Yangjia | 113 | 202 | 18 | 64 | 31.5 |
Huangji | 124 | 250 | 69 | 49 | 31.6 |
Qinghui | 185 | 357 | 50 | 86 | 57.3 |
Yonglian | 117 | 149 | 95 | 24 | 47.6 |
Impact Factors | Tai | Si | Ss | Sa | Δh | Ia + Pa | Is + Ps | |
---|---|---|---|---|---|---|---|---|
Correlation coefficient (R) | 0.647 ** | 0.641 * | −0.572 * | 0.604 * | 0.554 * | 0.479 | −0.403 | 0.333 |
Significance level (P) | 0.009 | 0.010 | 0.026 | 0.017 | 0.032 | 0.071 | 0.136 | 0.225 |
Variables | Jiefangzha | Yonglian | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Average | Maximum | Minimum | Standard Deviation | Cv | Average | Maximum | Minimum | Standard Deviation | Cv | |
ΔWs | 112 | 201 | 43 | 45 | 0.399 | 98 | 129 | 73 | 24 | 0.245 |
ΔWg | 9 | 28 | 0 | 9 | 0.957 | 19 | 22 | 17 | 2 | 0.125 |
ΔW01 | 74 | 134 | 17 | 33 | 0.442 | 74 | 96 | 57 | 17 | 0.233 |
ΔW1 | 46 | 95 | 25 | 21 | 0.451 | 44 | 52 | 39 | 6 | 0.147 |
ηg | 0.026 | 0.040 | 0.008 | 0.010 | 0.368 | 0.028 | 0.029 | 0.027 | 0.001 | 0.035 |
η1 | 0.111 | 0.152 | 0.069 | 0.027 | 0.243 | 0.065 | 0.072 | 0.050 | 0.010 | 0.161 |
η | 0.271 | 0.497 | 0.104 | 0.114 | 0.419 | 0.174 | 0.201 | 0.122 | 0.036 | 0.208 |
Variables | Jiefangzha | Yonglian | ||||||
---|---|---|---|---|---|---|---|---|
Average | Maximum | Minimum | Standard Deviation | Average | Maximum | Minimum | Standard Deviation | |
ET | 502 | 591 | 413 | 53 | 485 | 561 | 431 | 58 |
RW | 23.75% | 40.00% | 12.31% | 8.31% | 24.21% | 29.93% | 21.15% | 4.04% |
RW1 | 9.20% | 16.55% | 4.20% | 3.69% | 9.03% | 10.55% | 7.93% | 1.12% |
RWg | 1.75% | 4.86% | 0.02% | 1.53% | 4.03% | 4.96% | 3.06% | 0.77% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Zhu, Y.; Wu, J.; Ye, M.; Mao, W.; Yang, J. Quantitative Estimation of Soil-Ground Water Storage Utilization during the Crop Growing Season in Arid Regions with Shallow Water Table Depth. Water 2020, 12, 3351. https://doi.org/10.3390/w12123351
Zhao T, Zhu Y, Wu J, Ye M, Mao W, Yang J. Quantitative Estimation of Soil-Ground Water Storage Utilization during the Crop Growing Season in Arid Regions with Shallow Water Table Depth. Water. 2020; 12(12):3351. https://doi.org/10.3390/w12123351
Chicago/Turabian StyleZhao, Tianxing, Yan Zhu, Jingwei Wu, Ming Ye, Wei Mao, and Jinzhong Yang. 2020. "Quantitative Estimation of Soil-Ground Water Storage Utilization during the Crop Growing Season in Arid Regions with Shallow Water Table Depth" Water 12, no. 12: 3351. https://doi.org/10.3390/w12123351
APA StyleZhao, T., Zhu, Y., Wu, J., Ye, M., Mao, W., & Yang, J. (2020). Quantitative Estimation of Soil-Ground Water Storage Utilization during the Crop Growing Season in Arid Regions with Shallow Water Table Depth. Water, 12(12), 3351. https://doi.org/10.3390/w12123351