Experience from the Implementation and Operation of the Biological Membrane Reactor (MBR) at the Modernized Wastewater Treatment Plant in Wydminy †
Abstract
:1. Introduction
2. Material and Methods
2.1. Technological System before Modernization
2.2. Technological System after Modernization of the Plant
- -
- flat-surface membrane module;
- -
- recommended cross membrane pressure—10–40 mbar;
- -
- area of installed membranes—1232 m2;
- -
- number of installed modules—4;
- -
- air quantity for rinsing the modules—0.10–0.15 Nm3/m2/h;
- -
- maximum temperature—50 °C;
- -
- pH range—1–11;
- -
- membrane material— Polyvinylidene Fluoride (PVDF);
- -
- Pumpless permeate discharge (by gravity).
2.3. Analytical Methods
3. Results and Discussion
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References and Notes
- Yang, W.; Cicek, N.; Ilg, J. State-of art of membrane bioreactors: Worldwide research and commercial applications in North America. J. Membr. Sci. 2006, 270, 201–211. [Google Scholar] [CrossRef]
- Kudlek, E.; Dudziak, M. The assessment of changes in the membrane surface during the filtration of wastewater treatment plant effluent. Desalin. Water Treat. 2018, 128, 298–305. [Google Scholar] [CrossRef]
- Skoczko, I. Water Filtration in Practise and Theory; Polish Academy of Science: Warsaw, Poland, 2019. [Google Scholar]
- Skoczko, I.; Szatyłowicz, E. Treatment Method Assessment of the Impact on the Corrosivity and Aggressiveness for the Boiler Feed Water. Water 2019, 11, 1965. [Google Scholar] [CrossRef] [Green Version]
- Judd, S.; Judd, C. The MBR Book. In Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Membrane Bioreactors. WEF Manual and Practice 36; N/A Water Environment Federation: Alexandria, VA, USA, 2012; ISBN 978-0-07-175366-1. [Google Scholar]
- Kudlek, E.; Kamińska, G.A.; Dudziak, M.; Bohdziewicz, J. Removal of biologically active substances during mechanical-biological wastewater treatment. Ecol. Eng. 2015, 50, 201–209. [Google Scholar]
- Daigger, G.T. Update on Evolving Nutrient Removal Technologies: Membrane Bioreactors, seminar materials CH2M HILL 2005.
- Konieczny, K.; Ćwikła, J.; Szołtysek, M. The application of the membrane reactor to separation processes at a wastewater treatment plant. Membranes and membranę processes in environment protection. Warsaw-Gliwice. Monogr. Environ. Eng. Comm. PAN 2014, 119, 79–92. [Google Scholar]
- Frechen, F.-B. Einführung und Vorstellung der Arbeit des ATV-DVWK-Fachausschusses KA-7 Membranbelebungsverfahren; Membrantage: Kassel, Germany, 2004. [Google Scholar]
- Gnirss, R.; Lesjean, B. Einsatz, Hochfeiner Membranen, Dezentrale Abwassberbehandlung HUSS-MEDIEN GmbH. Wasserwirtshaft Wassertech. WWT 2006, 27, 7–8. [Google Scholar]
- Konieczny, K. Effectiveness of Wastewater Treatment with the Use of the Biological Membrane Reactors. Ann. Set. Environ. Prot. 2015, 17, 1034–1052. [Google Scholar]
- Hackner, T. Decentralized Wastewater Treatment with Membrane Technology the Huber Solutions Membrane ClearBox®, Honey Comb®, BioMem®. Materiały DeSa/R®-Symposium, Berching/Opf, Germany. 14 July 2004, pp. 125–139. Available online: https://docplayer.fr/3944835-Lch-communication-collection-des-articles-des-travaux-de-diplome-collection-of-papers-of-the-diploma-theses.html (accessed on 17 September 2020).
- Le-Clech, P.; Jefferson, B.; Judd, S.J. Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor. J. Membr. Sci. 2003, 218, 117–129. [Google Scholar] [CrossRef]
- Dudziak, M. Retention of mycoestrogens in nanofiltration. Impact of feed water chemistry, membrane properties and operating process conditions. Environ. Prot. Eng. 2012, 38, 5–17. [Google Scholar] [CrossRef]
- Liu, R.; Huang, X.; Xi, J.; Qian, Y. Microbial behavior in a membrane bioreactor with complete sludge retention. Process Biochem. 2005, 40, 3165–3170. [Google Scholar] [CrossRef]
- Melin, T.; Jefferson, B.; Bixio, D.; Thoeye, C.; De Wilde, W.; De Koning, J.; Graaf, J.; Wintgens, T. Membrane bioreactor technology for wastewater treatment and reuse. Desalination 2006, 187, 271–282. [Google Scholar] [CrossRef]
- Smith, S.; Judd, S.; Stephenson, T.; Jefferson, B. Membrane bioreactors—Hybrid activated sludge or a new process? Membr. Technol. 2003, 5, 5–8. [Google Scholar] [CrossRef]
- Kudlek, E.; Dudziak, M.; Bohdziewicz, J. Influence of inorganic ions and organic substances on the degradation of pharmaceutical compound in water matrix. Water 2016, 8, 532. [Google Scholar] [CrossRef] [Green Version]
- Aileen, N.L.; Kim, A.S. A mini-review of modeling studies on membrane bioreactor (MBR) treatment for municipal wastewaters. Desalination 2007, 212, 261–281. [Google Scholar]
- Santos, A.; Ma, W.; Judd, S.J. Membrane bioreactors: Two decades of research and implementation. Desalination 2011, 273, 148–154. [Google Scholar] [CrossRef]
- Ng, H.Y.; Hermanowicz, S.W. Membrane bioreactor operation at short solids retention times: Performance and biomass characteristics. Water Res. 2005, 39, 981–992. [Google Scholar] [CrossRef]
- Report: National Program of Urban Wastewater Treatment 2016. Available online: https://bip.warmia.mazury.pl/kategoria/77/ochrona-srodowiska-krajowy-program-oczyszczania-sciekow-komunalnych-sprawozdania-z-realizacji-kposk.html (accessed on 20 September 2020).
- Regulation of the Minister of Environment of 16 December 2014 (Journal of Laws 2014, item 1800).
- Caring for the Environment. Available online: https://www.schwander.pl/pl/reh/moduly-filtracji-membranowej-alfa-laval-sp-z-o-o (accessed on 15 September 2020).
- Architectural and construction project of the WWTP in Wydminy by BACT-sp. Z o.o. 2018, (accepted by Puzowski P. as construction and modernization manager).
- Judd, S. The status of membrane bioreactor technology. Trends Biotechnol. 2008, 26, 109–116. [Google Scholar] [CrossRef]
- Le-Clech, P. Membrane bioreactors and their uses in wastewater treatments. Appl. Microbiol. Biotechnol. 2010, 88, 1253–1260. [Google Scholar] [CrossRef]
- Kozjek, B.; Rosenbom, S. Water & Waste Treatment Solutions, Croatian Danish Water Days May 2019; Version 30-04-2019-R05; Alfa Laval: Copenhagen, Denmark, 2019. [Google Scholar]
- Tougaard, C. MBR System without Pumps and Minimized Maintenance. In Manuscripts and Materials; Alfa Laval Environment Technology: Copenhagen, Denmark, 2015. [Google Scholar]
- Ratkovich, N.; Bentzen, T.R. Comparison of four types of membrane bioreactor systems in terms of shear stress over the membrane surface using computational fluid dynamics. Water Sci. Technol. 2013, 68, 2534–2544. [Google Scholar] [CrossRef]
- Patsios, S.I.; Goudoulas, T.B.; Kastrinakis, E.G.; Nychas, S.G.; Karabelas, A.J. A novel method for rheological characterization of biofouling layers developing in Membrane Bioreactors (MBR). J. Membr. Sci. 2015, 482, 13–24. [Google Scholar] [CrossRef]
- Chang, S. Application of submerged hollow fiber membrane in membrane bioreactors: Filtration principles, operation, and membrane fouling. Desalination 2011, 283, 31–39. [Google Scholar] [CrossRef]
- Chen, V.; Le-Clech, P.; Fane, T.A.G. Fouling in membrane bioreactors used in wastewater treatment. J. Membr. Sci. 2006, 284, 17–53. [Google Scholar]
- Skoczko, I.; Szatyłowicz, E. The analysis of physico-chemical properties of two unknown filter materials. J. Ecol. Eng. 2016, 17, 148–154. [Google Scholar] [CrossRef] [Green Version]
Year | 2013 | 2014 | 2015 |
---|---|---|---|
Quantity (m3/year) | 92,280 | 84,824 | 83,003 |
Average Concentration of Pollution Parameter | Average Load of Pollution Parameter before Modernization | Average Load of Pollution Parameter after Modernization |
---|---|---|
Biological Oxygen Demand BOD 1200 mg O2/L | BOD 920.4 kg O2/day | BOD 360.0 kg O2/day |
Chemical Oxygen Demand COD 2520 mg O2/L | COD 1932.8 kg O2/day | COD 756.0 kg O2/day |
Total suspended solids 1460 mg/L | Total suspended solids 1120 kg/day | Total suspended solids 438.0 kg/day |
Total nitrogen 150 mg N/L | Total nitrogen 115 kg N/day | Total nitrogen 45.0 kg N/day |
Total phosphorus 25 mg P/L | Total phosphorus 19.2 kg P/day | Total phosphorus 7.5 kg P/day |
No | Parameter | Unit | Maximum Permissible Limit Values of Pollutants Indicators for Wastewater Discharged into the Water from Sewage Treatment Plants for the Agglomeration |
---|---|---|---|
For the Agglomeration PE 2000–9999 | |||
1 | BOD | mg O2/L | 25 |
2 | COD | mg O2/L | 125 |
3 | Total suspended solids | mg/L | 35 |
4 | Total nitrogen | mg N/L | 15 |
5 | Total phosphorus | mg P/L | 2 |
Technological System before Modernization | Technological System after Modernization |
---|---|
Mechanical point for delivered wastewater (by septic trucks) with equalizing tank, | mechanical point for delivered wastewater (by septic trucks) with equalizing tank, |
step screen, | step screen, |
centrifugal sand–grit separator, | centrifugal sand–grit separator, |
dephosphatation chamber, | dephosphatation chamber, |
denitrification chamber, | denitrification chamber, |
nitrification chamber, | nitrification chamber, |
system for simultaneous coagulation, | system for simultaneous coagulation, |
radial secondary settling tank | MBR, |
stuttering and oversized pumping station for recirculating and excessive sludge, | new pumping station for recirculating and excessive sludge, |
mechanical thickener, | gravitational thickener, |
mechanical station for sludge dewatering with low efficiency | mechanical station for sludge dewatering and sanitizing. |
No | Nazwa Wskaźnika | Unit | Analytical Methodology | Norm |
---|---|---|---|---|
1 | BOD5 | mg O2/L | Spectrophotometric method with allylthiourea addition | PN-EN ISO 5815-1:2019-12 |
2 | COD | mg O2/L | Spectrophotometric method | PN-ISO 15705-2005 |
3 | Total suspended solids | mg/L | method with filtration through glass-fiber filters | PN-EN 872:2002 |
4 | Total nitrogen | mg N/L | Specific method | PB-102, 2nd ed.14 August 2012 |
5 | Total phosphorus | mg P/L | Determination of selected elements by inductively coupled plasma optical emission spectrometry | PN-EN 11885-2009 |
6 | Heavy metals (arsenic, chromium, zinc, cadmium, copper, nickel, lead, and mercury), silver, and vanadium | mg/L | Determination of selected elements by inductively coupled plasma optical emission spectrometry | PN-EN 11885-2009 |
Parameter | Unit | I 2019 | IV 2019 | VI 2019 | IX 2019 | II 2020 | V 2020 | IX 2020 |
---|---|---|---|---|---|---|---|---|
pH | - | - | - | 7.2 | - | 7.5 | ||
BOD5 | mg O2/L | 5 | 3 | <3 | <3 | <3 | <3 | <3 |
COD | mg O2/L | 78 | 58 | 46 | 35 | 41 | 35 | 44 |
Total nitrogen | mg N/L | 12 | 4.8 | 9.3 | 4.9 | 10.4 | 6.36 | 13.8 |
Total phosphorus | mg P/L | <0.5 | <0.5 | 0.672 | 0.605 | 0.213 | 0.233 | 1.73 |
Total suspended solids | mg/L | 18 | 20 | 4.2 | <2 | <2 | <2 | <2 |
Volatile phenols | mg/L | - | - | - | <0.010 | - | - | <0.010 |
Copper | mg/L | - | - | - | <0.019 | - | - | <0.19 |
Zink | mg/L | - | - | - | 0.051 | - | - | 0.034 |
Cadmium | mg/L | - | - | - | <0.0006 | - | - | <0.0006 |
Lead | mg/L | - | - | - | <0.006 | - | - | <0.006 |
Mercury | mg/L | - | - | - | <0.00001 | - | - | 0.00005 |
Chromium | mg/L | - | - | - | 0.019 | - | - | <0.013 |
Arsenic | mg/L | - | - | - | <0.007 | - | - | <0.007 |
Nickel | mg/L | - | - | - | 0.003 | - | - | 0.003 |
Silver | mg/L | - | - | - | <0.07 | - | - | <0.07 |
Vanadium | mg/L | - | - | - | <0.008 | - | - | <0.008 |
Parameter | Unit | 2017 | 2018 | 2019 | 2020 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw Sewage | Treated Sewage | Limit | Effect (%) | Raw Sewage | Treated Sewage | Limit | Effect (%) | Raw Sewage | Treated Sewage | Limit | Effect (%) | Raw Sewage | Treated Sewage | Limit | Effect (%) | ||
BOD5 | mg O2/L | 1360 | 18.64 | 25 | 98.71 | 880 | 22.5 | 25 | 97.49 | 530 | 3.5 | 25 | 99.34 | 300 | 3 | 25 | 99.00 |
COD | mg O2/L | 7934 | 124.92 | 125 | 98.31 | 9628 | 122.33 | 125 | 98.75 | 3460 | 54.25 | 125 | 98.43 | 1640 | 40 | 125 | 97.56 |
Total suspended solids | mg/L | >4000 | 41 | 35 | 89.57 | >4000 | 40.55 | 35 | 89.98 | >2300 | 11.05 | 35 | 99.52 | 340 | 2 | 35 | 99.41 |
Total nitrogen | mg N/L | 540 | 14.55 | 15 | 97.23 | 370 | 13.23 | 15 | 97.51 | 265 | 7.75 | 15 | 98.86 | 280 | 10.22 | 15 | 96.42 |
Total phosphorus | mg P/L | 41.8 | 1.98 | 2 | 95.65 | >50 | 1.66 | 2 | 96.68 | >50 | 0.57 | 2 | 98.68 | >50 | 1.73 | 2 | 96.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skoczko, I.; Puzowski, P.; Szatyłowicz, E. Experience from the Implementation and Operation of the Biological Membrane Reactor (MBR) at the Modernized Wastewater Treatment Plant in Wydminy. Water 2020, 12, 3410. https://doi.org/10.3390/w12123410
Skoczko I, Puzowski P, Szatyłowicz E. Experience from the Implementation and Operation of the Biological Membrane Reactor (MBR) at the Modernized Wastewater Treatment Plant in Wydminy. Water. 2020; 12(12):3410. https://doi.org/10.3390/w12123410
Chicago/Turabian StyleSkoczko, Iwona, Pawel Puzowski, and Ewa Szatyłowicz. 2020. "Experience from the Implementation and Operation of the Biological Membrane Reactor (MBR) at the Modernized Wastewater Treatment Plant in Wydminy" Water 12, no. 12: 3410. https://doi.org/10.3390/w12123410
APA StyleSkoczko, I., Puzowski, P., & Szatyłowicz, E. (2020). Experience from the Implementation and Operation of the Biological Membrane Reactor (MBR) at the Modernized Wastewater Treatment Plant in Wydminy. Water, 12(12), 3410. https://doi.org/10.3390/w12123410