Recent Advances in Information and Communications Technology (ICT) and Sensor Technology for Monitoring Water Quality
Abstract
:1. Introduction
2. Sensing Technology for Water Quality Monitoring
2.1. General Sensor-Based Water Quality Monitoring Systems
2.1.1. Physical Monitoring Sensors
2.1.2. Chemical Monitoring Sensors
2.1.3. Optical Remote Sensors
2.2. Current Commercially Available Real-Time Monitoring Sensors
2.3. Electrochemical Detection of Algal Toxins
2.4. Consideration in Water Quality Monitoring Using Sensors
3. Technical Factors in Real-Time Monitoring
3.1. Data Transmission Systems
3.2. Wireless Sensor Technology
4. Advanced Data Analysis with Machine Learning for Water Quality Analysis
5. Future of ICT Research for Water Quality Monitoring
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, Y.; Zhang, C.; Gao, X.; Wang, L. Long-term variations of water quality in a reservoir in China. Water Sci. Technol. 2012, 65, 1454–1460. [Google Scholar] [CrossRef] [PubMed]
- Geetha, S.; Gouthami, S. Internet of things enabled real time water quality monitoring system. Smart Water 2016, 2, 1. [Google Scholar] [CrossRef]
- Nazeer, M.; Nichol, J.E. Development and application of a remote sensing-based Chlorophyll-a concentration prediction model for complex coastal waters of Hong Kong. J. Hydrol. 2016, 532, 80–89. [Google Scholar] [CrossRef]
- Japitana, M.; Burce, M. A Satellite-based Remote Sensing Technique for Surface Water Quality Estimation. Eng. Technol. Appl. Sci. Res. 2019, 9, 3965–3970. [Google Scholar]
- Wong, B.P.; Kerkez, B. Real-time environmental sensor data: An application to water quality using web services. Environ. Model. Softw. 2016, 84, 505–517. [Google Scholar] [CrossRef]
- Sansalone, J.J.; Cristina, C.M. First flush concepts for suspended and dissolved solids in small impervious watersheds. J. Environ. Eng. 2004, 130, 1301–1314. [Google Scholar] [CrossRef]
- Schaeffer, B.A.; Schaeffer, K.G.; Keith, D.; Lunetta, R.S.; Conmy, R.; Gould, R.W. Barriers to adopting satellite remote sensing for water quality management. Int. J. Remote Sens. 2013, 34, 7534–7544. [Google Scholar] [CrossRef]
- Beck, R.; Xu, M.; Zhan, S.; Liu, H.; Johansen, R.; Tong, S.; Yang, B.; Shu, S.; Wu, Q.; Wang, S. Comparison of satellite reflectance algorithms for estimating phycocyanin values and cyanobacterial total biovolume in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations. Remote Sens. 2017, 9, 538. [Google Scholar] [CrossRef] [Green Version]
- Vander Woude, A.; Ruberg, S.; Johengen, T.; Miller, R.; Stuart, D. Spatial and temporal scales of variability of cyanobacteria harmful algal blooms from NOAA GLERL airborne hyperspectral imagery. J. Great Lakes Res. 2019, 45, 536–546. [Google Scholar] [CrossRef]
- Lekki, J.; Ruberg, S.; Binding, C.; Anderson, R.; Vander Woude, A. Airborne hyperspectral and satellite imaging of harmful algal blooms in the Great Lakes Region: Successes in sensing algal blooms. J. Great Lakes Res. 2019, 45, 405–412. [Google Scholar] [CrossRef]
- Zhenan, L.; Kai, W.; Bo, L. Sensor-Network based Intelligent Water Quality Monitoring and Control. Int. J. Adv. Res. Comput. Eng. Technol. 2013, 2, 1659–1662. [Google Scholar]
- Jin, N.; Ma, R.; Lv, Y.; Lou, X.; Wei, Q. A novel design of water environment monitoring system based on wsn. In Proceedings of the 2010 International Conference on Computer Design and Applications, Qinhuangdao, China, 25–27 June 2010; pp. 593–597. [Google Scholar]
- Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Zhang, J.; Howard, K.; Langston, C.; Vasiloff, S.; Kaney, B.; Arthur, A.; Van Cooten, S.; Kelleher, K.; Kitzmiller, D.; Ding, F. National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans. Bull. Am. Meteorol. Soc. 2011, 92, 1321–1338. [Google Scholar] [CrossRef] [Green Version]
- Vijayakumar, N.; Ramya, R. The real time monitoring of water quality in IoT environment. In Proceedings of the 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 19–20 March 2015; pp. 1–5. [Google Scholar]
- Zhou, J.; Wang, Y.; Xiao, F.; Wang, Y.; Sun, L. Water Quality Prediction Method Based on IGRA and LSTM. Water 2018, 10, 1148. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Peng, F.; Niu, B.; Li, G.; Wu, J.; Miao, Z. Water quality prediction model combining sparse auto-encoder and LSTM network. IFAC-PapersOnLine 2018, 51, 831–836. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Chen, K.; Wang, Y.; Liu, L. Water quality prediction method based on LSTM neural network. In Proceedings of the 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Nanjing, China, 24–26 November 2017; pp. 1–5. [Google Scholar]
- Adamo, F.; Attivissimo, F.; Carducci, C.G.C.; Lanzolla, A.M.L. A smart sensor network for sea water quality monitoring. IEEE Sens. J. 2014, 15, 2514–2522. [Google Scholar] [CrossRef]
- Rode, M.; Wade, A.J.; Cohen, M.J.; Hensley, R.T.; Bowes, M.J.; Kirchner, J.W.; Arhonditsis, G.B.; Jordan, P.; Kronvang, B.; Halliday, S.J. Sensors in the Stream: The High-frequency Wave of the Present; ACS Publications: Washington, DC, USA, 2016. [Google Scholar]
- Udy, J.; Gall, M.; Longstaff, B.; Moore, K.; Roelfsema, C.; Spooner, D.; Albert, S. Water quality monitoring: A combined approach to investigate gradients of change in the Great Barrier Reef, Australia. Mar. Pollut. Bull. 2005, 51, 224–238. [Google Scholar] [CrossRef]
- Nikhil, R.; Rajender, R.; Dushyantha, G.; Jagadevi, N. Smart Water Quality Monitoring System Using IoT Environment. Int. J. Innov. Eng. Technol. 2018, 10, 074–078. [Google Scholar]
- Mills, G.; Fones, G. A review of in situ methods and sensors for monitoring the marine environment. Sens. Rev. 2012, 32, 17–28. [Google Scholar] [CrossRef]
- Postolache, O.; Girão, P.S.; Pereira, J.M.D. Water quality monitoring and associated distributed measurement systems: An Overview. Water Qual. Monit. Assess. 2012, 25–57. [Google Scholar]
- Leigh, C.; Kandanaarachchi, S.; McGree, J.M.; Hyndman, R.J.; Alsibai, O.; Mengersen, K.; Peterson, E.E. Predicting Sediment and Nutrient Concentrations in Rivers Using High Frequency Water Quality Surrogates. arXiv 2018, arXiv:1810.12499. [Google Scholar]
- Korostynska, O.; Mason, A.; Al-Shamma’a, A. Monitoring of nitrates and phosphates in wastewater: Current technologies and further challenges. Int. J. Smart Sens. Intell. Syst. 2012, 5, 149–176. [Google Scholar] [CrossRef] [Green Version]
- Cloete, N.A.; Malekian, R.; Nair, L. Design of smart sensors for real-time water quality monitoring. IEEE Access 2016, 4, 3975–3990. [Google Scholar] [CrossRef]
- Lee, W.H.; Lee, J.-H.; Choi, W.-H.; Hosni, A.A.; Papautsky, I.; Bishop, P.L. Needle-type environmental microsensors: Design, construction and uses of microelectrodes and multi-analyte MEMS sensor arrays. Meas. Sci. Technol. 2011, 22, 042001. [Google Scholar] [CrossRef]
- Lee, W.H.; Seo, Y.; Bishop, P.L. Characteristics of a cobalt-based phosphate microelectrode for in situ monitoring of phosphate and its biological application. Sens. Actuators B Chem. 2009, 137, 121–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Lee, W.H.; Bishop, P.L.; Papautsky, I. A cobalt-coated needle-type microelectrode array sensor for in situ monitoring of phosphate. J. Micromech. Microeng. 2009, 19, 025022. [Google Scholar] [CrossRef]
- Jaywant, S.A.; Arif, K.M. A Comprehensive Review of Microfluidic Water Quality Monitoring Sensors. Sensors 2019, 19, 4781. [Google Scholar] [CrossRef] [Green Version]
- Chebud, Y.; Naja, G.M.; Rivero, R.G.; Melesse, A.M. Water quality monitoring using remote sensing and an artificial neural network. Water Air Soil Pollut. 2012, 223, 4875–4887. [Google Scholar] [CrossRef]
- Lambrou, T.P.; Anastasiou, C.C.; Panayiotou, C.G.; Polycarpou, M.M. A low-cost sensor network for real-time monitoring and contamination detection in drinking water distribution systems. IEEE Sens. J. 2014, 14, 2765–2772. [Google Scholar] [CrossRef]
- Ritter, C.; Cottingham, M.; Leventhal, J.; Mickelson, A. Remote delay tolerant water quality montoring. In Proceedings of the IEEE Global Humanitarian Technology Conference (GHTC), San Jose, CA, USA, 10–13 October 2014; pp. 462–468. [Google Scholar]
- USEPA. The Quality of Our Nation’s Waters—A Summary of the National Water Quality Inventory: 1998 Report to Congress; US Environmental Protection Agency: Washington, DC, USA, 2000.
- Jensen, D.W.; Steel, E.A.; Fullerton, A.H.; Pess, G.R. Impact of fine sediment on egg-to-fry survival of Pacific salmon: A meta-analysis of published studies. Rev. Fish. Sci. 2009, 17, 348–359. [Google Scholar] [CrossRef]
- Yue, R.; Ying, T. A water quality monitoring system based on wireless sensor network & solar power supply. In Proceedings of the 2011 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems, Kunming, China, 20–23 March 2011; pp. 126–129. [Google Scholar]
- Hassan, H.H.; Badr, I.H.; Abdel-Fatah, H.T.; Elfeky, E.M.; Abdel-Aziz, A.M. Low cost chemical oxygen demand sensor based on electrodeposited nano-copper film. Arab. J. Chem. 2018, 11, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Badr, I.H.; Hassan, H.H.; Hamed, E.; Abdel-Aziz, A.M. Sensitive and Green Method for Determination of Chemical Oxygen Demand Using a Nano-copper Based Electrochemical Sensor. Electroanalysis 2017, 29, 2401–2409. [Google Scholar] [CrossRef]
- Miller, M.P.; Tesoriero, A.J.; Capel, P.D.; Pellerin, B.A.; Hyer, K.E.; Burns, D.A. Quantifying watershed-scale groundwater loading and in-stream fate of nitrate using high-frequency water quality data. Water Resour. Res. 2016, 52, 330–347. [Google Scholar] [CrossRef]
- Pellerin, B.A.; Downing, B.D.; Kendall, C.; Dahlgren, R.A.; Kraus, T.E.; Saraceno, J.; Spencer, R.G.; Bergamaschi, B.A. Assessing the sources and magnitude of diurnal nitrate variability in the San Joaquin River (California) with an in situ optical nitrate sensor and dual nitrate isotopes. Freshw. Biol. 2009, 54, 376–387. [Google Scholar] [CrossRef]
- Pellerin, B.A.; Bergamaschi, B.A.; Gilliom, R.J.; Crawford, C.G.; Saraceno, J.; Frederick, C.P.; Downing, B.D.; Murphy, J.C. Mississippi River nitrate loads from high frequency sensor measurements and regression-based load estimation. Environ. Sci. Technol. 2014, 48, 12612–12619. [Google Scholar] [CrossRef] [Green Version]
- Pellerin, B.A.; Stauffer, B.A.; Young, D.A.; Sullivan, D.J.; Bricker, S.B.; Walbridge, M.R.; Clyde, G.A.; Shaw, D.M. Emerging tools for continuous nutrient monitoring networks: Sensors advancing science and water resources protection. J. Am. Water Resour. Assoc. 2016, 52, 993–1008. [Google Scholar] [CrossRef]
- Binding, C.; Greenberg, T.; McCullough, G.; Watson, S.; Page, E. An analysis of satellite-derived chlorophyll and algal bloom indices on Lake Winnipeg. J. Great Lakes Res. 2018, 44, 436–446. [Google Scholar] [CrossRef]
- Hu, C.; Lee, Z.; Franz, B. Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res. Oceans 2012, 117, C01011. [Google Scholar] [CrossRef] [Green Version]
- Asai, R.; Horiguchi, Y.; Yoshida, A.; McNiven, S.; Tahira, P.; Ikebukuro, K.; Uchiyama, S.; Masuda, Y.; Karube, I. Detection of phycobilin pigments and their seasonal change in Lake Kasumigaura using a sensitive in situ fluorometric sensor. Anal. Lett. 2001, 34, 2521–2533. [Google Scholar] [CrossRef]
- Srivastava, A.; Singh, S.; Ahn, C.-Y.; Oh, H.-M.; Asthana, R.K. Monitoring approaches for a toxic cyanobacterial bloom. Environ. Sci. Technol. 2013, 47, 8999–9013. [Google Scholar] [CrossRef]
- Wynne, T.T.; Stumpf, R.P.; Tomlinson, M.C.; Dyble, J. Characterizing a cyanobacterial bloom in western Lake Erie using satellite imagery and meteorological data. Limnol. Oceanogr. 2010, 55, 2025–2036. [Google Scholar] [CrossRef] [Green Version]
- Urquhart, E.A.; Schaeffer, B.A.; Stumpf, R.P.; Loftin, K.A.; Werdell, P.J. A method for examining temporal changes in cyanobacterial harmful algal bloom spatial extent using satellite remote sensing. Harmful Algae 2017, 67, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Randolph, K.; Wilson, J.; Tedesco, L.; Li, L.; Pascual, D.L.; Soyeux, E. Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin. Remote Sens. Environ. 2008, 112, 4009–4019. [Google Scholar] [CrossRef]
- Park, Y.; Pyo, J.; Kwon, Y.S.; Cha, Y.; Lee, H.; Kang, T.; Cho, K.H. Evaluating physico-chemical influences on cyanobacterial blooms using hyperspectral images in inland water, Korea. Water Res. 2017, 126, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Boon, J.D.; Brubaker, J.M. Acoustic-microwave water level sensor comparisons in an estuarine environment. In Proceedings of the OCEANS, Quebec City, QC, Canada, 15–18 September 2008; pp. 1–5. [Google Scholar]
- Turnipseed, D.P.; Sauer, V.B. Discharge Measurements at Gaging Stations; 2328–7055; US Geological Survey: Reston, VA, USA, 2010.
- Chanson, H. Acoustic Doppler Velocimetry (ADV) in the Field and in Laboratory: Practical Experiences. Proceeddings of the International Meeting on Measurements and Hydraulics of Sewer, Brisbane, Austria, 19–25 August 2008; pp. 49–66. [Google Scholar]
- Lee, K.-H.; Ishikawa, T.; McNiven, S.; Nomura, Y.; Sasaki, S.; Arikawa, Y.; Karube, I. Chemical oxygen demand sensor employing a thin layer electrochemical cell. Anal. Chim. Acta 1999, 386, 211–220. [Google Scholar] [CrossRef]
- Yang, J.; Chen, J.; Zhou, Y.; Wu, K. A nano-copper electrochemical sensor for sensitive detection of chemical oxygen demand. Sens. Actuators B Chem. 2011, 153, 78–82. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Zheng, L.; Xian, Y.; Jin, L. Rh2O3/Ti electrode preparation using laser anneal and its application to the determination of chemical oxygen demand. Meas. Sci. Technol. 2006, 17, 1995. [Google Scholar] [CrossRef]
- Cao, J.; Chu, Z.; Du, Y.; Hou, Z.; Wang, S. Phytoplankton dynamics and their relationship with environmental variables of Lake Poyang. Hydrol. Res. 2016, 47, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Bende-Michl, U.; Verburg, K.; Cresswell, H.P. High-frequency nutrient monitoring to infer seasonal patterns in catchment source availability, mobilisation and delivery. Environ. Monit. Assess. 2013, 185, 9191–9219. [Google Scholar] [CrossRef]
- Brooks, B.W.; Lazorchak, J.M.; Howard, M.D.; Johnson, M.V.V.; Morton, S.L.; Perkins, D.A.; Reavie, E.D.; Scott, G.I.; Smith, S.A.; Steevens, J.A. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ. Toxicol. Chem. 2016, 35, 6–13. [Google Scholar] [CrossRef]
- Grattan, L.M.; Holobaugh, S.; Morris, J.G., Jr. Harmful algal blooms and public health. Harmful Algae 2016, 57, 2–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gobler, C.J.; Doherty, O.M.; Hattenrath-Lehmann, T.K.; Griffith, A.W.; Kang, Y.; Litaker, R.W. Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. Proc. Natl. Acad. Sci. USA 2017, 114, 4975–4980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dove, A.; Chapra, S.C. Long-term trends of nutrients and trophic response variables for the G reat L akes. Limnol. Oceanogr. 2015, 60, 696–721. [Google Scholar] [CrossRef]
- Wood, S.A.; Hamilton, D.P.; Paul, W.J.; Safi, K.A.; Williamson, W.M. New Zealand Guidelines for Cyanobacteria in Recreational Fresh Waters: Interim Guidelines; Ministry for the Environment and Ministry of Health: Wellington, New Zealand, 2009.
- Langmuir, D.; Jacobson, R.L. Specific-ion electrode determination of nitrate in some fresh waters and sewage effluents. Environ. Sci. Technol. 1970, 4, 834–838. [Google Scholar] [CrossRef]
- Gilbert, M.; Needoba, J.; Koch, C.; Barnard, A.; Baptista, A. Nutrient loading and transformations in the Columbia River Estuary determined by high-resolution in situ sensors. Estuaries Coasts 2013, 36, 708–727. [Google Scholar] [CrossRef]
- Miller, M.P.; Tesoriero, A.J.; Hood, K.; Terziotti, S.; Wolock, D.M. Estimating discharge and nonpoint source nitrate loading to streams from three end-member pathways using high-frequency water quality data. Water Resour. Res. 2017, 53, 10201–10216. [Google Scholar] [CrossRef] [Green Version]
- Tomlinson, M.C.; Stumpf, R.P.; Wynne, T.T.; Dupuy, D.; Burks, R.; Hendrickson, J.; Fulton III, R.S. Relating chlorophyll from cyanobacteria-dominated inland waters to a MERIS bloom index. Remote Sens. Lett. 2016, 7, 141–149. [Google Scholar] [CrossRef]
- Canfield, D.E., Jr.; Bachmann, R.W.; Hoyer, M.V. Long-term chlorophyll trends in Florida lakes. J. Aquat. Plant Manag. 2018, 56, 47–56. [Google Scholar]
- Ahn, C.-Y.; Joung, S.-H.; Yoon, S.-K.; Oh, H.-M. Alternative alert system for cyanobacterial bloom, using phycocyanin as a level determinant. J. Microbiol. 2007, 45, 98–104. [Google Scholar]
- Clark, J.M.; Schaeffer, B.A.; Darling, J.A.; Urquhart, E.A.; Johnston, J.M.; Ignatius, A.R.; Myer, M.H.; Loftin, K.A.; Werdell, P.J.; Stumpf, R.P. Satellite monitoring of cyanobacterial harmful algal bloom frequency in recreational waters and drinking water sources. Ecol. Indic. 2017, 80, 84–95. [Google Scholar] [CrossRef]
- Zibordi, G.; Berthon, J.-F.; Mélin, F.; D’Alimonte, D. Cross-site consistent in situ measurements for satellite ocean color applications: The BiOMaP radiometric dataset. Remote Sens. Environ. 2011, 115, 2104–2115. [Google Scholar] [CrossRef]
- Lee, H.; Kang, T.; Nam, G.; Ha, R.; Cho, K. Remote Estimation Models for Deriving Chlorophyll-a Concentration using Optical Properties in Turbid Inland Waters: Application and Valuation. J. Korean Soc. Water Environ. 2015, 31, 272–285. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, L.; Song, K.; Li, Y.; Tedesco, L.P.; Shi, K.; Li, Z. An inversion model for deriving inherent optical properties of inland waters: Establishment, validation and application. Remote Sens. Environ. 2013, 135, 150–166. [Google Scholar] [CrossRef]
- O’Flynn, B.; Martinez-Catala, R.; Harte, S.; O’Mathuna, C.; Cleary, J.; Slater, C.; Regan, F.; Diamond, D.; Murphy, H. SmartCoast: A wireless sensor network for water quality monitoring. In Proceedings of the 32nd IEEE Conference on Local Computer Networks (LCN), Dublin, Ireland, 15–18 October 2007; pp. 815–816. [Google Scholar]
- Guillet, A.; Vena, A.; Perret, E.; Tedjini, S. Design of a chipless RFID sensor for water level detection. In Proceedings of the 2012 15 International Symposium on Antenna Technology and Applied Electromagnetics, Toulouse, France, 25–28 June 2012; pp. 1–4. [Google Scholar]
- Voulgaris, G.; Trowbridge, J.H. Evaluation of the acoustic Doppler velocimeter (ADV) for turbulence measurements. J. Atmos. Ocean. Technol. 1998, 15, 272–289. [Google Scholar] [CrossRef] [Green Version]
- Christodoulou, S.; Agathokleous, A.; Kounoudes, A.; Milis, M. Wireless sensor networks for water loss detection. Eur. Water 2010, 30, 41–48. [Google Scholar]
- Wong, B.P.; Kerkez, B. Adaptive measurements of urban runoff quality. Water Resour. Res. 2016, 52, 8986–9000. [Google Scholar] [CrossRef]
- Wong, B.P.; Kerkez, B. Adaptive, Decentralized, and Real-Time Sampling Strategies for Resource Constrained Hydraulic and Hydrologic Sensor Networks; CUNY Academic Works: New York City, NY, USA, 2014. [Google Scholar]
- Wong, B.; Kerkez, B. Real-Time Control of Urban Headwater Catchments through Linear Feedback: Performance, Analysis, and Site Selection. Water Resour. Res. 2018, 54, 7309–7330. [Google Scholar] [CrossRef]
- Han, C.; Doepke, A.; Cho, W.; Likodimos, V.; de la Cruz, A.A.; Back, T.; Heineman, W.R.; Halsall, H.B.; Shanov, V.N.; Schulz, M.J. multiwalled-carbon-nanotube-based biosensor for monitoring microcystin-LR in sources of drinking water supplies. Adv. Funct. Mater. 2013, 23, 1807–1816. [Google Scholar] [CrossRef]
- Campàs, M.; Marty, J.-L. Highly sensitive amperometric immunosensors for microcystin detection in algae. Biosens. Bioelectron. 2007, 22, 1034–1040. [Google Scholar] [CrossRef]
- Zeck, A.; Eikenberg, A.; Weller, M.G.; Niessner, R. Highly sensitive immunoassay based on a monoclonal antibody specific for [4-arginine] microcystins. Anal. Chim. Acta 2001, 441, 1–13. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, J.; Xu, C.; Ding, L.; Ju, H. Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR. Anal. Chem. 2010, 82, 1117–1122. [Google Scholar] [CrossRef] [PubMed]
- Nagata, S.; Soutome, H.; Tsutsumi, T.; Hasegawa, A.; Sekijima, M.; Sugamata, M.; Harada, K.I.; Suganuma, M.; Ueno, Y. Novel monoclonal antibodies against microcystin and their protective activity for hepatotoxicity. Nat. Toxins 1995, 3, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Adamovský, O.; Bláhová, L.; Kohoutek, J.; Oravec, M.; Bláha, L. Comparison of antibodies commonly used in ELISA for microcystin analyses in natural waters. Bull. -VÚRH Vodňany 2011, 47, 5–11. [Google Scholar]
- Trinchet, I.; Djediat, C.; Huet, H.; Dao, S.P.; Edery, M. Pathological modifications following sub-chronic exposure of medaka fish (Oryzias latipes) to microcystin-LR. Reprod. Toxicol. 2011, 32, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.-W.; He, M.; Shi, H.-C. A highly specific immunoassay for microcystin-LR detection based on a monoclonal antibody. Anal. Chim. Acta 2007, 603, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Lindner, P.; Molz, R.; Yacoub-George, E.; Dürkop, A.; Wolf, H. Development of a highly sensitive inhibition immunoassay for microcystin-LR. Anal. Chim. Acta 2004, 521, 37–44. [Google Scholar] [CrossRef]
- Pavanello, G.; Faimali, M.; Pittore, M.; Mollica, A.; Mollica, A.; Mollica, A. Exploiting a new electrochemical sensor for biofilm monitoring and water treatment optimization. Water Res. 2011, 45, 1651–1658. [Google Scholar] [CrossRef]
- Turolla, A.; Di Mauro, M.; Mezzera, L.; Antonelli, M.; Carminati, M. Development of a miniaturized and selective impedance sensor for real-time slime monitoring in pipes and tanks. Sens. Actuators B Chem. 2019, 281, 288–295. [Google Scholar] [CrossRef]
- Haji Gholizadeh, M.; Melesse, A.M.; Reddi, L. Spaceborne and airborne sensors in water quality assessment. Int. J. Remote Sens. 2016, 37, 3143–3180. [Google Scholar] [CrossRef]
- Dörnhöfer, K.; Oppelt, N. Remote sensing for lake research and monitoring–Recent advances. Ecol. Indic. 2016, 64, 105–122. [Google Scholar] [CrossRef]
- He, B.; Oki, K.; Wang, Y.; Oki, T. Using remotely sensed imagery to estimate potential annual pollutant loads in river basins. Water Sci. Technol. 2009, 60, 2009–2015. [Google Scholar] [CrossRef] [PubMed]
- Olmanson, L.G.; Brezonik, P.L.; Bauer, M.E. Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: The Mississippi River and its tributaries in Minnesota. Remote Sens. Environ. 2013, 130, 254–265. [Google Scholar] [CrossRef]
- Hafeez, S.; Wong, M.S.; Abbas, S.; Kwok, C.Y.; Nichol, J.; Lee, K.H.; Tang, D.; Pun, L. Detection and Monitoring of Marine Pollution Using Remote Sensing Technologies. In Monitoring of Marine Pollution; IntechOpen Limited: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, J.C.; Zimba, P.V.; Everitt, J.H. Remote sensing techniques to assess water quality. Photogramm. Eng. Remote Sens. 2003, 69, 695–704. [Google Scholar] [CrossRef] [Green Version]
- Zielinski, O.; Busch, J.A.; Cembella, A.D.; Daly, K.L.; Engelbrektsson, J.; Hannides, A.K.; Schmidt, H. Detecting marine hazardous substances and organisms: Sensors for pollutants, toxins, and pathogens. Ocean Sci. 2009, 5, 329. [Google Scholar] [CrossRef] [Green Version]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Han, D. Water quality monitoring in smart city: A pilot project. Autom. Constr. 2018, 89, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-P.; Chou, C.-T.; Jau, J.-S.; Sandnes, F.E. Water quality monitoring with ubiquitous computing. In Proceedings of the 2010 7th International Conference on Ubiquitous Intelligence & Computing and 7th International Conference on Autonomic & Trusted Computing, Xian, China, 26–29 October 2010; pp. 70–75. [Google Scholar]
- Liu, Y.; Liang, Y.; Liu, S.; Rosenblum, D.S.; Zheng, Y. Predicting urban water quality with ubiquitous data. arXiv 2016, arXiv:1610.09462. [Google Scholar]
- Hassan, Q. Demystifying cloud computing. J. Def. Softw. Eng. 2011, 1, 16–21. [Google Scholar]
- Greenfield, A. Everyware: The Dawning Age of Ubiquitous Computing; New Riders: Boston, MA, USA, 2010. [Google Scholar]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef] [Green Version]
- Malik, H.; Szwilski, A. Towards monitoring the water quality using hierarchal routing protocol for wireless sensor networks. Procedia Comput. Sci. 2016, 98, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Han, H.H.; Kim, J. Toward An IoT-based Water and Environment Management System: Opportunities, Challenges, and Policy Options. Res. Rep. 2016, 2016, 19–20. [Google Scholar]
- Varma, V.K. Wireless Fidelity—WiFi; Originally published on the IEEE Emerging Technology portal; IEEE: Piscataway, NJ, USA, 2006. [Google Scholar]
- Mahmoud, M.S.; Mohamad, A.A. A Study of Efficient Power Consumption Wireless Communication Techniques/Modules for Internet of Things (IoT) Applications. Adv. Intern. Things 2016, 6, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low power wide area networks: An overview. IEEE Commun. Surv. Tutor. 2017, 19, 855–873. [Google Scholar] [CrossRef] [Green Version]
- Petajajarvi, J.; Mikhaylov, K.; Roivainen, A.; Hanninen, T.; Pettissalo, M. On the coverage of LPWANs: Range evaluation and channel attenuation model for LoRa technology. In Proceedings of the 2015 14th International Conference on ITS Telecommunications (ITST), Copenhagen, Denmark, 2–4 December 2015; pp. 55–59. [Google Scholar]
- Saravanan, M.; Das, A.; Iyer, V. Smart water grid management using LPWAN IoT technology. In Proceedings of the 2017 Global Internet of Things Summit (GIoTS), Geneva, Switzerland, 6–9 June 2017; pp. 1–6. [Google Scholar]
- Di Gennaro, P.; Lofú, D.; Vitanio, D.; Tedeschi, P.; Boccadoro, P. WaterS: A Sigfox-compliant prototype for water monitoring. Internet Technol. Lett. 2019, 2, e74. [Google Scholar] [CrossRef] [Green Version]
- Castronova, A.M.; Goodall, J.L.; Elag, M.M. Models as web services using the open geospatial consortium (ogc) web processing service (wps) standard. Environ. Model. Softw. 2013, 41, 72–83. [Google Scholar] [CrossRef]
- Čolaković, A.; Hadžialić, M. Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues. Comput. Netw. 2018, 144, 17–39. [Google Scholar] [CrossRef]
- Saravanan, K.; Anusuya, E.; Kumar, R. Real-time water quality monitoring using Internet of Things in SCADA. Environ. Monit. Assess. 2018, 190, 556. [Google Scholar] [CrossRef]
- Xu, X.; Liu, Y.; Liu, S.; Li, J.; Guo, G.; Smith, K. Real-time detection of potable-reclaimed water pipe cross-connection events by conventional water quality sensors using machine learning methods. J. Environ. Manag. 2019, 238, 201–209. [Google Scholar] [CrossRef]
- Chenini, I.; Khemiri, S. Evaluation of ground water quality using multiple linear regression and structural equation modeling. Int. J. Environ. Sci. Technol. 2009, 6, 509–519. [Google Scholar] [CrossRef] [Green Version]
- Chang, H. Spatial analysis of water quality trends in the Han River basin, South Korea. Water Res. 2008, 42, 3285–3304. [Google Scholar] [CrossRef]
- Ahmed, S. Groundwater monitoring network design: Application of Geostatistics with a few Case studies from a granitic aquifer in a semiarid region. Groundw. Hydrol. 2002, 2, 37–57. [Google Scholar]
- Hooshmand, A.; Delghandi, M.; Izadi, A.; Aali, K.A. Application of kriging and cokriging in spatial estimation of groundwater quality parameters. Afr. J. Agric. Res. 2011, 6, 3402–3408. [Google Scholar]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press on Demand: New York, NY, USA, 1997. [Google Scholar]
- Cleveland, W.S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
- Hicks, D.M.; Gomez, B.; Trustrum, N.A. Erosion thresholds and suspended sediment yields, Waipaoa River basin, New Zealand. Water Resour. Res. 2000, 36, 1129–1142. [Google Scholar] [CrossRef]
- Warrick, J.; Madej, M.A.; Goñi, M.; Wheatcroft, R. Trends in the suspended-sediment yields of coastal rivers of northern California, 1955–2010. J. Hydrol. 2013, 489, 108–123. [Google Scholar] [CrossRef]
- Liu, M.; Lu, J. Support vector machine―an alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river? Environ. Sci. Pollut. Res. 2014, 21, 11036–11053. [Google Scholar] [CrossRef] [PubMed]
- Chou, J.-S.; Ho, C.-C.; Hoang, H.-S. Determining quality of water in reservoir using machine learning. Ecol. Inform. 2018, 44, 57–75. [Google Scholar] [CrossRef]
- Chen, X.; Chau, K.-W.; Busari, A. A comparative study of population-based optimization algorithms for downstream river flow forecasting by a hybrid neural network model. Eng. Appl. Artif. Intell. 2015, 46, 258–268. [Google Scholar] [CrossRef]
- Solanki, A.; Agrawal, H.; Khare, K. Predictive Analysis of Water Quality Parameters using Deep Learning. Int. J. Comput. Appl. 2015, 125, 0975–8887. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Lee, D. Improved prediction of harmful algal blooms in four Major South Korea’s Rivers using deep learning models. Int. J. Environ. Res. Public Health 2018, 15, 1322. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, S.Y.; Makhtar, M.; Rozaimee, A.; Aziz, A.A.; Jamal, A.A. Classification model for water quality using machine learning techniques. Int. J. Softw. Eng. Appl. 2015, 9, 45–52. [Google Scholar] [CrossRef]
- Wu, N.; Huang, J.; Schmalz, B.; Fohrer, N. Modeling daily chlorophyll a dynamics in a German lowland river using artificial neural networks and multiple linear regression approaches. Limnology 2014, 15, 47–56. [Google Scholar] [CrossRef]
- Huang, J.; Gao, J.; Zhang, Y. Combination of artificial neural network and clustering techniques for predicting phytoplankton biomass of Lake Poyang, China. Limnology 2015, 16, 179–191. [Google Scholar] [CrossRef]
- Khan, Y.; See, C.S. Predicting and analyzing water quality using Machine Learning: A comprehensive model. In Proceedings of the 2016 IEEE Long Island Systems, Applications and Technology Conference (LISAT), Farmingdale, NY, USA, 29 April 2016; pp. 1–6. [Google Scholar]
- Maier, H.R.; Jain, A.; Dandy, G.C.; Sudheer, K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environ. Model. Softw. 2010, 25, 891–909. [Google Scholar] [CrossRef]
- Park, Y.; Cho, K.H.; Park, J.; Cha, S.M.; Kim, J.H. Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea. Sci. Total Environ. 2015, 502, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Lu, J.; Shen, Y. Artificial neural network modelling of concentrations of nitrogen, phosphorus and dissolved oxygen in a non-point source polluted river in Zhejiang Province, southeast China. Hydrol. Process. Int. J. 2010, 24, 290–299. [Google Scholar] [CrossRef]
- Dogan, E.; Sengorur, B.; Koklu, R. Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. J. Environ. Manag. 2009, 90, 1229–1235. [Google Scholar] [CrossRef]
- Huang, J.; Gao, J. An ensemble simulation approach for artificial neural network: An example from chlorophyll a simulation in Lake Poyang, China. Ecol. Inform. 2017, 37, 52–58. [Google Scholar] [CrossRef]
- Singh, K.P.; Basant, N.; Gupta, S. Support vector machines in water quality management. Anal. Chim. Acta 2011, 703, 152–162. [Google Scholar] [CrossRef]
- Muharemi, F.; Logofătu, D.; Leon, F. Machine learning approaches for anomaly detection of water quality on a real-world data set. J. Inf. Telecommun. 2019, 3, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Tan, G.; Yan, J.; Gao, C.; Yang, S. Prediction of water quality time series data based on least squares support vector machine. Procedia Eng. 2012, 31, 1194–1199. [Google Scholar] [CrossRef] [Green Version]
- Mohammadpour, R.; Shaharuddin, S.; Chang, C.K.; Zakaria, N.A.; Ab Ghani, A.; Chan, N.W. Prediction of water quality index in constructed wetlands using support vector machine. Environ. Sci. Pollut. Res. 2015, 22, 6208–6219. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [Google Scholar] [CrossRef] [PubMed]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML), Haifa, Israel, 21–24 June 2010; pp. 807–814. [Google Scholar]
- Hinton, G.E. Deep belief networks. Scholarpedia 2009, 4, 5947. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Karpatne, A.; Willard, J.; Steinbach, M.; Read, J.; Hanson, P.C.; Dugan, H.A.; Kumar, V. Physics guided recurrent neural networks for modeling dynamical systems: Application to monitoring water temperature and quality in lakes. arXiv 2018, arXiv:1810.02880. [Google Scholar]
- García, S.; Luengo, J.; Herrera, F. Data Preprocessing in Data Mining; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Lekki, J.; Anderson, R.; Nguyen, Q.-V.; Demers, J.; Leshkevich, G.; Flatico, J.; Kojima, J. Development of Hyperspectral remote sensing capability for the early detection and monitoring of Harmful Algal Blooms (HABs) in the Great Lakes. In Proceedings of the AIAA Infotech@ Aerospace Conference and AIAA Unmanned... Unlimited Conference, Boston, MA, USA, 19–22 August 2013; p. 1978. [Google Scholar]
- Lekki, J.; Deutsch, E.; Sayers, M.; Bosse, K.; Anderson, R.; Tokars, R.; Sawtell, R. Determining remote sensing spatial resolution requirements for the monitoring of harmful algal blooms in the Great Lakes. J. Great Lakes Res. 2019, 45, 434–443. [Google Scholar] [CrossRef]
- Argent, R.M.; Perraud, J.-M.; Rahman, J.M.; Grayson, R.B.; Podger, G.M. A new approach to water quality modelling and environmental decision support systems. Environ. Model. Softw. 2009, 24, 809–818. [Google Scholar] [CrossRef]
- Kroeze, C.; Gabbert, S.; Hofstra, N.; Koelmans, A.A.; Li, A.; Löhr, A.; Ludwig, F.; Strokal, M.; Verburg, C.; Vermeulen, L. Global modelling of surface water quality: A multi-pollutant approach. Curr. Opin. Environ. Sustain. 2016, 23, 35–45. [Google Scholar] [CrossRef]
- Kanakoudis, V.; Tsitsifli, S. Water Networks Management: New Perspectives. Water 2019, 11, 239. [Google Scholar] [CrossRef] [Green Version]
Content | Parameter | Sensor Type | Ref. |
---|---|---|---|
Basic-item monitoring | pH value, DO concentration, EC, temperature, oxidation-reduction potential, and turbidity | In situ electrodes, colorimetry, conductivity cell, membrane electrode, optical sensor, potentiometric, thermistor, nephelometric, etc. | [2,34,37] |
Organic-compound monitoring | COD | In situ electrochemical sensor | [38,39] |
Nutrient monitoring | Nitrate | Using an optical sensor where nitrate concentration is determined from the relationship between UV light absorbance and nitrate concentration in a water sample | [40,41,42] |
Nitrate, Ammonium, Phosphate | Wet chemistry sensor where the nutrient concentration is measured based on a colorimetric reaction | [43] | |
Harmful algal blooms (HABs) Monitoring | Chl-a | Using satellite images (Chl-a concentration is determined from the empirical relationship between satellite image and Chl-a concentration) | [44,45] |
In situ optical sensor with wireless data transport network | [19] | ||
Phycocyanin | In situ fluorometric sensor | [46,47] | |
Cyanobacteria biomass | Using satellite images (Cyanobacteria biomass concentration is determined from the empirical relationship between satellite image and cyanobacteria biomass) | [48,49] | |
HABs monitoring using hyperspectral image (HSI) | Chl-a | Chl-a concentration is determined from the empirical relationship between HSI and Chl-a concentration | [10,50] |
Phycocyanin | Phycocyanin concentration is determined from the empirical relationship between HSI and phycocyanin concentration | [8,50,51] | |
Cyanobacteria biomass | Cyanobacteria biomass concentration is determined from the empirical relationship between HSI and cyanobacteria biomass | [8,10] | |
Physical status for water quantity monitoring | Water level | In situ acoustic sensor where the distance from the surface of the water to bottom is measured from the echoes of the acoustic waves | [52] |
Velocity | Velocity sensor (e.g., ADV) | [53,54] |
Type | Principle | Advantages | Disadvantages |
---|---|---|---|
Ion-selective electrodes (ISE) | Direct potential difference measurements between a working electrode and a reference electrode |
|
|
Optical (UV) sensors | Spectral absorption by a photometer |
|
|
Wet chemical analyzers | Wet chemical colorimetric reaction with detection by photometry |
|
|
Type | Frequency | Estimation | Item | Data Collection | Ref. |
---|---|---|---|---|---|
ANN | Daily | Chl-a | Air temperature, average daily discharge, Cl−, daily precipitation, dissolved inorganic nitrogen, NO3−-N, NH4+-N, NO2−-N, orthophosphate–phosphorus, sulfate, TP | Daily sampling with an automatic device and analyzed in a laboratory once a week | [133] |
Monthly | Chl-a | Monthly–seasonally: water temperature, TP, TN | Field sampling | [134] | |
Daily monitoring of precipitation, sunshine hours, discharge, water level | Daily monitoring in weather stations | ||||
Weekly | Chl-a | Water quality data: Chl-a, PO43−-P, NO3−-N, NH4+-N, water temperature | Weekly field sampling | [137] | |
Meteorological data: solar radiation, wind speed | Daily monitoring in a weather station | ||||
Real-time (6 min) | Turbidity, DO, Chl-a, specific conductance | Chl-a, specific conductance, DO concentration, turbidity Predicting future water quality based on past data for each item | In situ real-time monitoring data of USGS | [135] | |
Daily | Chl-a | Daily meteorological data: for instance, precipitation, sunshine hours Daily hydrological data: for instance, discharge, water level Monthly–seasonal water quality data: Chl-a, water temperature, TP, and TN | Water samples collected from the field and meteorological data collected in a weather station | [140] | |
SVM | Monthly | TN, TP | Flow velocity, DO, water temperature, EC, pH value, turbidity | Used in situ monitoring sensors at the time of water sample collection | [127] |
Monthly–trimonthly: COD, TN, TP, NO3−-N, NH4+-N | Water samples collected in the field and analyzed in a laboratory | ||||
Monthly | BOD | Total alkalinity, pH value, total hardness, total solids, NO3−-N, NH4+-N, Cl−, PO43−-P, K+, Na+, DO, COD, BOD | Water samples collected in the field and analyzed in a laboratory | [141] | |
Weekly | Chl-a | Water quality data: Chl-a, PO43−-P, NO3−-N, NH4+-N, water temperature Meteorological data: solar radiation, wind speed | Water samples collected in the field and analyzed in a laboratory | [137] | |
LSTM | Two weeks–monthly | DO | For instance, TN, TP, NH4+-N, water temperature, DO, pH value | Water samples collected in the field | [16] |
10 min | DO | Water quality data: DO, water temperature, NH4+-N, pH value Meteorological data: atmospheric temperature, air humidity, atmospheric pressure, wind speed | In situ real-time monitoring data | [17] | |
1 min | Anomaly detection of water quality | Chlorine dioxide, pH value, redox potential, EC, turbidity, flow rate, water temperature | In situ real-time monitoring data using sensors | [142] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Kim, K.T.; Lee, W.H. Recent Advances in Information and Communications Technology (ICT) and Sensor Technology for Monitoring Water Quality. Water 2020, 12, 510. https://doi.org/10.3390/w12020510
Park J, Kim KT, Lee WH. Recent Advances in Information and Communications Technology (ICT) and Sensor Technology for Monitoring Water Quality. Water. 2020; 12(2):510. https://doi.org/10.3390/w12020510
Chicago/Turabian StylePark, Jungsu, Keug Tae Kim, and Woo Hyoung Lee. 2020. "Recent Advances in Information and Communications Technology (ICT) and Sensor Technology for Monitoring Water Quality" Water 12, no. 2: 510. https://doi.org/10.3390/w12020510
APA StylePark, J., Kim, K. T., & Lee, W. H. (2020). Recent Advances in Information and Communications Technology (ICT) and Sensor Technology for Monitoring Water Quality. Water, 12(2), 510. https://doi.org/10.3390/w12020510