Hydrological Foundation as a Basis for a Holistic Environmental Flow Assessment of Tropical Highland Rivers in Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Data Collection
2.2.1. Precipitation
2.2.2. Stream Flow
2.3. Literature Review, Field Observation and Discussions
2.4. Data Analysis
2.4.1. Precipitation and Evapotranspiration Analysis
2.4.2. Flow Analysis Using IHA Software
2.4.3. Environmental Flow Components Threshold Values Setting
2.4.4. Flow Components and Needs
2.4.5. Irrigation Area Mapping and NDVI Analysis
3. Results and Discussion
3.1. Precipitation
3.2. Flow Indices
3.2.1. Monthly Flows
3.2.2. Low and High Flows
Low Flow
High Flow
3.3. Environmental Flow Components (EFC), Durations and Timing
Environmental Flow Components
Flow Duration and Timing of Environmental Flow Components
3.4. Flow Components and Needs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef] [Green Version]
- McClain, M.E. Balancing water resources development and environmental sustainability in Africa: A review of recent research findings and applications. Ambio 2013, 42, 549–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pahl-Wostl, C.; Arthington, A.; Bogardi, J.; Bunn, S.; Hoff, H.; Lebel, L.; Nikitina, E.; Palmer, M.; Poff, L.N.; Richards, K.; et al. Environmental flows and water governance: Managing sustainable water uses. Curr. Opin. Environ. Sustain. 2013, 5, 341–351. [Google Scholar] [CrossRef]
- Reitberger, B.; McCartney, M. Concepts of Environmental Flow Assessment and Challenges in the Blue Nile Basin, Ethiopia, in Nile River Basin; Springer: Berlin/Heidelberg, Germany, 2011; pp. 337–358. [Google Scholar]
- Arthington, A.H.; Naiman, R.J.; McClain, M.E.; Nilsson, C. Preserving the biodiversity and ecological services of rivers: New challenges and research opportunities. Freshw. Biol. 2010, 55, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Caissie, D.; El-Jabi, N.; Hébert, C. Comparison of hydrologically based instream flow methods using a resampling technique. Can. J. Civ. Eng. 2007, 34, 66–74. [Google Scholar] [CrossRef]
- Hughes, D.A.; Hannart, P. A desktop model used to provide an initial estimate of the ecological instream flow requirements of rivers in South Africa. J. Hydrol. 2003, 270, 167–181. [Google Scholar] [CrossRef]
- Tharme, R.E. A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 2003, 19, 397–441. [Google Scholar] [CrossRef]
- Hughes, D. Providing hydrological information and data analysis tools for the determination of ecological instream flow requirements for South African rivers. J. Hydrol. 2001, 241, 140–151. [Google Scholar] [CrossRef]
- King, J.M.; Tharme, R.E.; De Villiers, M. Environmental Flow Assessments for Rivers: Manual for the Building Block Methodology; Water Research Commission: Pretoria, South Africa, 2000. [Google Scholar]
- Zalewski, M.; Negussie, Y.Z.; Urbaniak, M. Ecohydrology for Ethiopia—Regulation of water biota interactions for sustainable water resources and ecosystem services for societies. Ecohydrol. Hydrobiol. 2010, 10, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Poff, N.L.; Richter, B.D.; Arthington, A.H.; Bunn, S.E.; Naiman, R.J.; Kendy, E.; Acreman, M.; Apse, C.; Bledsoe, B.P.; Freeman, M.C.; et al. The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards. Freshw. Biol. 2010, 55, 147–170. [Google Scholar] [CrossRef] [Green Version]
- Poff, N.L.; Allan, J.D. Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 1995, 76, 606–627. [Google Scholar] [CrossRef]
- NBI, Preparation of NBI Guidance Document on Environmental Flows: Nile E-Flows Framework Technical Implementation Manual; HYDROC GmbH: Siegum, Germany, 2016.
- Alemayehu, T.; McCartney, M.; Kebede, S. The water resource implications of planned development in the Lake Tana catchment, Ethiopia. Ecohydrol. Hydrobiol. 2010, 10, 211–221. [Google Scholar] [CrossRef]
- Awulachew, S.B. Water Resources and Irrigation Development in Ethiopia; Iwmi: Colombo, Sri Lanka, 2007; Volume 123. [Google Scholar]
- Setegn, S.G.; Rayner, D.; Melesse, A.M.; Dargahi, B.; Srinivasan, R. Impact of climate change on the hydroclimatology of Lake Tana Basin, Ethiopia. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Belete, M.A. Modeling and Analysis of Lake Tana Sub Basin Water Resources Systems, Ethiopia; Univ. Agrar-und Umweltwiss: Rostock, Germany, 2014. [Google Scholar]
- Duan, W.; He, B.; Takara, K.; Luo, P.; Nover, D.; Hu, M. Impacts of climate change on the hydro-climatology of the upper Ishikari river basin, Japan. Environ. Earth Sci. 2017, 76, 490. [Google Scholar] [CrossRef]
- Zou, S.; Jilili, A.; Duan, W.; De Maeyer, P.; Van De Voorde, T. Human and Natural Impacts on the Water Resources in the Syr Darya River Basin, Central Asia. Sustainability 2019, 11, 3084. [Google Scholar] [CrossRef] [Green Version]
- Abebe, W.B.; Douven, W.J.A.M.; McCartney, M.; Leentvaar, J. EIA Implementation and Follow Up: A Case Study of Koga Irrigation and Watershed Management Project ETHIOPIA; Unesco-IHE: Delft, The Netherlands, 2007. [Google Scholar]
- Anteneh, W.; Getahun, A.; Dejen, E.; Sibbing, F.A.; Nagelkerke, L.A.J.; De Graaf, M.; Wudneh, T.; Vijverberg, J.; Palstra, A.P. Spawning migrations of the endemic Labeobarbus (Cyprinidae, Teleostei) species of Lake Tana, Ethiopia: Status and threats. J. Fish Biol. 2012, 81, 750–765. [Google Scholar] [CrossRef] [PubMed]
- Dejen, E.; Anteneh, W.; Vijverberg, J. The decline of The Lake Tana (Ethiopia) fisheries: Causes and possible solutions. Land Degrad. Dev. 2017, 28, 1842–1851. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.; He, B.; Nover, D.; Yang, G.; Chen, W.; Meng, H.; Zou, S.; Liu, C. Water quality assessment and pollution source identification of the eastern Poyang Lake Basin using multivariate statistical methods. Sustainability 2016, 8, 133. [Google Scholar] [CrossRef] [Green Version]
- Dagnew, D.C.; Guzman, C.D.; Zegeye, A.D.; Akal, A.T.; Moges, M.A.; Tebebu, T.Y.; Mekuria, W.; Ayana, E.K.; Tilahun, S.A.; Steenhuis, T.S. Sediment loss patterns in the sub-humid ethiopian highlands. Land Degrad. Dev. 2017, 28, 1795–1805. [Google Scholar] [CrossRef]
- Abebe, W.B.; GMichael, T.; Leggesse, E.S.; Beyene, B.S.; Nigate, F. Climate of Lake Tana Basin. In Social and Ecological System Dynamics; Springer: Berlin/Heidelberg, Germany, 2017; pp. 51–58. [Google Scholar]
- Atnafu, N.; Dejen, E.; Vijverberg, J. Assessment of the Ecological Status and Threats of Welala and Shesher Wetlands, Lake Tana Sub-basin (Ethiopia). J. Water Resour. Prot. 2011, 3, 540–547. [Google Scholar] [CrossRef] [Green Version]
- Karlberg, L.; Hoff, H.; Amsalu, T.; Andersson, K.; Binnington, T.; Flores-López, F.; de Bruin, A.; Gebrehiwot, S.; Gedif, A.B.; Heide, F.Z.; et al. Tackling complexity: Understanding the food-energy-environment nexus in Ethiopia’s Lake Tana sub-basin. Water Altern. 2015, 8, 710–734. [Google Scholar]
- Nagelkerke, L.; Sibbing, F.A. The Barbs of Lake Tana, Ethiopia: Morphological Diversity and Its Implications for Taxonomy, Trophic Resource Partitioning, and Fisheries. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1997. [Google Scholar]
- Goshu, G.; Tewabe, D.; Adugna, B.T. Spatial and temporal distribution of commercially important fish species of Lake Tana, Ethiopia. Ecohydrol. Hydrobiol. 2010, 10, 231–240. [Google Scholar] [CrossRef]
- Shitaw, T.; Medehin, S.G.; Anteneh, W. Spatio-temporal distribution of Labeobarbus species in Lake Tana. Int. J. Fish. Aquat. Stud. 2018, 6, 562–570. [Google Scholar]
- Ameha, A.; Assefa, A. The Fate of The Barbus of Gumara River, Ethiopia. SINET Ethiop. J. Sci. 2002, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Aynalem, S.; Bekele, A. Species composition, relative abundance and distribution of bird fauna of riverine and wetland habitats of Infranz and Yiganda at southern tip of Lake Tana, Ethiopia. Trop. Ecol. 2008, 49, 199. [Google Scholar]
- Zur Heide, F. Feasibility Study for a Lake Tana Biosphere Reserve, Ethiopia; Bundesamt für Naturschutz, BfN: Bonn, Germany, 2012. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Mann, H.B. Non-parametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar]
- Running, S.; Mu, Q.; Zhao, M. MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500 m SIN Grid V006; NASA EOSDIS Land Processes DAAC: Washington, DC, USA, 2017. [Google Scholar]
- The Nature Conservancy. Indicators of Hydrologic Alteration Version 7.1 User’s Manual; The Nature Conservancy: Virginia, VA, USA, 2009. [Google Scholar]
- Williams, G.P. Bank-full discharge of rivers. Water Resour. Res. 1978, 14, 1141–1154. [Google Scholar] [CrossRef]
- Nigatu, T.A.; Zimale, F.A.; Tilahun, S.A.; Abebe, W.B.; Behulu, Y.M.; Tegegn, B.A.; Steenhuis, T.S. Rating Curves for Infrequently Calibrated River Gauging Stations at the Rivers in Lake Tana Basin, Ethiopia. Water 2020, in press. [Google Scholar]
- DePhilip, M.; Moberg, T. Ecosystem Flow Recommendations for the Susquehanna River Basin; The Nature Conservancy: Harrisburg, PA, USA, 2010. [Google Scholar]
- ADSWE. Upper Rib Large Scale Irrigation Project, Volume IV: Irrigation Agronomy; Amhara National Regional State, Bureau of Water, Irrigation & Energy Development: Bahir Dar, Ethiopia, 2018. [Google Scholar]
- Dejen, E.; Vreven, E. Habitat Use and Downstream Migration of 0+ Juveniles of the Migratory Riverine Spawning Labeobarbus Species (Cypriniformes: Cyprinidae) of Lake Tana (Ethiopia). In Proceedings of the Fifth International Conference of the Pan African Fish and Fisheries Association (PAFFA5), Bujumbura, Burundi, 16–20 September 2013. [Google Scholar]
- Gebremedhin, S.; Getahun, A.; Anteneh, W.; Bruneel, S.; Goethals, P. A Drivers-Pressure-State-Impact-Responses Framework to Support the Sustainability of Fish and Fisheries in Lake Tana, Ethiopia. Sustainbility 2018, 10, 2957. [Google Scholar] [CrossRef] [Green Version]
- Enku, T.; Tadesse, A.; Yilak, D.L.; Gessesse, A.A.; Addisie, M.B.; Abate, M.; Zimale, F.A.; Moges, M.A.; Tilahun, S.A.; Steenhuis, T.S. Biohydrology of low flows in the humid Ethiopian highlands: The Gilgel Abay catchment. Biologia 2014, 69, 1502–1509. [Google Scholar] [CrossRef]
- Mhiret, D.A.; Dagnew, D.C.; Alemie, T.C.; Guzman, C.D.; Tilahun, S.A.; Zaitchik, B.F.; Steenhuis, T.S. Impact of Soil Conservation and Eucalyptus on Hydrology and Soil Loss in the Ethiopian Highlands. Water 2019, 11, 2299. [Google Scholar] [CrossRef] [Green Version]
- Enku, T.M.; Ayana, A.M.; Tilahun, E.K.; Mengiste, S.A.; Abate, M.; Steenhuis, T.S. Groundwater use of a small eucalyptus patch during the dry monsoon phase. Bioloigia 2020, in press. [Google Scholar]
- Liu, B.M.; Collick, A.S.; Zeleke, G.; Adgo, E.; Easton, Z.M.; Steenhuis, T.S. Rainfall-discharge relationships for a monsoonal climate in the Ethiopian highlands. Hydrol. Process. Int. J. 2008, 22, 1059–1067. [Google Scholar] [CrossRef]
- Tilahun, S.A.; Ayana, E.K.; Guzman, C.D.; Dagnew, D.C.; Zegeye, A.D.; Tebebu, T.Y.; Yitaferu, B.; Steenhuis, T.S. Revisiting storm runoff processes in the upper Blue Nile basin: The Debre Mawi watershed. Catena 2016, 143, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Ameha, A.; Abdissa, B.; Mekonnen, T. Abundance, Length-Weight Relationships and Breeding Season of Claries Gariepinus (Toleostei: Clariidae) in Lake Tana Ethiopia. SINET Ethiop. J. Sci. 2006, 29, 17–176. [Google Scholar]
- Wudneh, T. Biology and Management of Fish Stocks in Bahir Dar Gulf, Lake Tana, Ethiopia; WUR: Wageningen, The Netherlands, 1998. [Google Scholar]
- Dejen Dresilign, E. Ecology and Potential for Fishery of the Small Barbs (Cyprinidae, Teleostei) of Lake Tana, Ethiopia. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2003. [Google Scholar]
- Tewabe, D. Spatial and Temporal Distributions and Some Biological Aspects of Commercially Important Fish Species of Lake Tana, Ethiopia. J. Coast. Life Med. 2014, 2, 589–595. [Google Scholar]
- Nagelkerke, L.A.; Sibbing, F.A. The large barbs (Barbus spp., Cyprinidae, Teleostei) of Lake Tana (Ethiopia), with a description of a new species, Barbus osseensis. Neth. J. Zool. 2000, 50, 179–214. [Google Scholar] [CrossRef]
- De Graaf, M.; Machiels, M.A.; Wudneh, T.; Sibbing, F. Declining stocks of Lake Tana’s endemic Barbus species flock (Pisces, Cyprinidae): Natural variation or human impact? Biol. Conserv. 2004, 116, 277–287. [Google Scholar] [CrossRef]
- Endreny, T.A.; Kwon, P.; Williamson, T.N.; Evans, R. Reduced Soil Macropores and Forest Cover Reduce Warm-Season Baseflow below Ecological Thresholds in the Upper Delaware River Basin. J. Am. Water Resour. Assoc. 2019, 55, 1268–1287. [Google Scholar] [CrossRef]
- McManamay, R.A.; Orth, D.J.; Dolloff, C.A.; Mathews, D.C. Application of the ELOHA framework to regulated rivers in the Upper Tennessee River Basin: A case study. Environ. Manag. 2013, 51, 1210–1235. [Google Scholar] [CrossRef] [Green Version]
- McClain, M.E.; Subalusky, A.L.; Anderson, E.P.; Dessu, S.B.; Melesse, A.M.; Ndomba, P.M.; Mtamba, J.O.; Tamatamah, R.A.; Mligo, C. Comparing flow regime, channel hydraulics, and biological communities to infer flow–ecology relationships in the Mara River of Kenya and Tanzania. Hydrol. Sci. J. 2014, 59, 801–819. [Google Scholar] [CrossRef]
Months | Median Flow (Q50), m3 s−1 | Coefficient of Disp.; (Q75–Q25)/Q50 | Months | Median Flow (Q50), m3 s−1 | Coeff. of Disp. (Q75–Q25)/Q50 |
---|---|---|---|---|---|
January | 9.7 | 1.3 | August | 236 | 0.3 |
February | 5.9 | 1.7 | September | 151 | 0.4 |
March | 4.0 | 1.7 | October | 65.9 | 0.9 |
April | 4.2 | 1.3 | November | 31.2 | 1.4 |
May | 4.7 | 1.7 | December | 16.5 | 1.5 |
June | 13.3 | 1.0 | |||
July | 123.6 | 0.5 |
Duration | Median (Q50) | Coeff. of Disp.; (Q75-Q25)/Q50 | Duration | Median (Q50) | Coeff. of Disp.; (Q75-Q25)/Q50 |
---|---|---|---|---|---|
1-day maximum | 335 | 0.49 | 1-day minimum | 1.62 | 1.89 |
3-day maximum | 316 | 0.41 | 3-day minimum | 1.70 | 1.85 |
7-day maximum | 293 | 0.41 | 7-day minimum | 1.71 | 1.91 |
30-day maximum | 248 | 0.32 | 30-day minimum | 2.36 | 1.91 |
90-day maximum | 183 | 0.37 | 90-day minimum | 4.27 | 1.54 |
Years | (a) | Percent Change in Low Flow | (b) | Percent Change in High Flow |
---|---|---|---|---|
1973–1980 | 3.02 | 432.5 | ||
1981–1990 | 3.19 | 5.7 | 441.3 | 2.0 |
1990–2000 | 1.96 | −38.7 | 384.0 | −13.0 |
2001–2010 | 0.00 | −99.9 | 261.0 | −32.0 |
2011–2018 | 0.00 | - | 263.4 | 0.9 |
S.N. | Fish Species | Migration/Aggregation/Period | Breeding Period/Catch | Habitat/Spawning Places/Location |
---|---|---|---|---|
1 | Labeobarbus spp. | July–October | June–August (min in May, peak spawning in August) | Fast flowing, clear, highly oxygenated water, and gravel-bed streams or rivers; |
L. intermedius | from July–3rd week of September | |||
L. tsanensis | from July–3rd week of September | |||
L. brevicephalus | 3rd week of August–3rd week of September | |||
L. nedgia | 1st week of September–1st week of October | |||
2 | Oreochromis niloticus | June to October (peak in July); (3 months, June–September) | shallow littoral zone | |
3 | Clarias gariepinus | April to July (peaked in June); max catch in Rainy season (peaked in June), min catch in Jan; short breeding period in July; high catch dry season (December-February); the breeding periods (1.5 months, June–July); peak in May | Largest aggregation in Gumara, abundant in the river mouth habitat; found mainly in the deeper open water area | |
4 | Varicorhinus beso | max catch in August, min catch in Sep, Oct and Jan | dominated in the littoral | |
5 | Small barbs | |||
b. humilis | Between March and September | spawn in shallow riverine backwaters during the rainy season | ||
b. tanapelagius | March and September | |||
b. pleurogramma | found only in the flood plain during the rainy season | |||
6 | Large barbs or piscivorous barbs | July to September | breeding period (4 months, mid-June to mid-October) | Gumara river, at Wanzaye. the ‘large’ piscivorous barbs migrate to affluent rivers for spawning |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abebe, W.B.; Tilahun, S.A.; Moges, M.M.; Wondie, A.; Derseh, M.G.; Nigatu, T.A.; Mhiret, D.A.; Steenhuis, T.S.; Camp, M.V.; Walraevens, K.; et al. Hydrological Foundation as a Basis for a Holistic Environmental Flow Assessment of Tropical Highland Rivers in Ethiopia. Water 2020, 12, 547. https://doi.org/10.3390/w12020547
Abebe WB, Tilahun SA, Moges MM, Wondie A, Derseh MG, Nigatu TA, Mhiret DA, Steenhuis TS, Camp MV, Walraevens K, et al. Hydrological Foundation as a Basis for a Holistic Environmental Flow Assessment of Tropical Highland Rivers in Ethiopia. Water. 2020; 12(2):547. https://doi.org/10.3390/w12020547
Chicago/Turabian StyleAbebe, Wubneh B., Seifu A. Tilahun, Michael M. Moges, Ayalew Wondie, Minychl G. Derseh, Teshager A. Nigatu, Demesew A. Mhiret, Tammo S. Steenhuis, Marc Van Camp, Kristine Walraevens, and et al. 2020. "Hydrological Foundation as a Basis for a Holistic Environmental Flow Assessment of Tropical Highland Rivers in Ethiopia" Water 12, no. 2: 547. https://doi.org/10.3390/w12020547
APA StyleAbebe, W. B., Tilahun, S. A., Moges, M. M., Wondie, A., Derseh, M. G., Nigatu, T. A., Mhiret, D. A., Steenhuis, T. S., Camp, M. V., Walraevens, K., & McClain, M. E. (2020). Hydrological Foundation as a Basis for a Holistic Environmental Flow Assessment of Tropical Highland Rivers in Ethiopia. Water, 12(2), 547. https://doi.org/10.3390/w12020547