Drought and Ecological Flows in the Lower Guadiana River Basin (Southwest Iberian Peninsula)
Abstract
:1. Introduction
2. The Lower Guadiana River Basin
3. Data Collection and Synthesis
4. Drought Events Evaluation: Standardized Precipitation Index SPI
5. Seasonal and Interannual Analysis of Ecological Flows
6. Results and Discussion
6.1. Characterization of Hydrological Drought Rvents
6.2. About the Ecological Flows Regime
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arthington, A.H. Environmental Flows: Saving Rivers in the Third Millennium, 1st ed.; University of California Press: Oakland, CA, USA, 2012. [Google Scholar]
- Global Water Partnership. Integrated Water Resources Management; TAC Background Paper nº 4: Stockholm, Sweden, 2000. [Google Scholar]
- Zingraff-Hamed, A.; Noack, M.; Greulich, S.; Schwarzwälder, K.; Pauleit, S.; Wantzen, K.M. Model-based evaluation of the effects of river discharge modulations on physical fish habitat quality. Water 2018, 10, 374. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.F.; Portela, M.M.; Pulido-Calvo, I. Spring drought forecasting in mainland Portugal based on large-scale climatic indices. Ingeniería del Agua 2015, 19, 211–227. [Google Scholar] [CrossRef] [Green Version]
- Cavus, Y.; Aksoy, H. Spatial drought characterization for Seyhan River Basin in the Mediterranean Region of Turkey. Water 2019, 11, 1331. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.F.; Pulido-Calvo, I.; Portela, M.M. Drought modelling methods. In Handbook of Drought and Water Scarcity: Principles of Drought and Water Scarcity; CRC Press, Taylor & Francis Group: Boca Ratón, FL, USA, 2017; Volume 10, pp. 147–165. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scale. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993; pp. 179–184. [Google Scholar]
- Eslamian, S.; Eslamian, F. Handbook of Drought and Water Scarcity: Principles of Drought and Water Scarcity; CRC Press, Taylor & Francis Group: Boca Ratón, FL, USA, 2017. [Google Scholar]
- Hayes, M.J.; Svoboda, M.D.; Wilhite, D.A.; Vanyarkho, O.V. Monitoring the 1996 drought using the Standardized Precipitation Index. Bull. Am. Meteorol. Soc. 1999, 80, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Tsakiris, G.; Vangelis, H. Towards a drought watch system based on spatial SPI. Water Resour. Manag. 2004, 18, 1–12. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M. Spatial and temporal analysis of droughts in the Iberian Peninsula (1910–2000). Hydrol. Sci. J. 2006, 51, 83–97. [Google Scholar] [CrossRef]
- Santos, J.F.; Pulido-Calvo, I.; Portela, M.M. Spatial and temporal variability of droughts in Portugal. Water Resour. Res. 2010, 46, W03503. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Natura 2000 Protecting Europe’s Biodiversity; Information Press: Oxford, UK, 2008. [Google Scholar]
- Guimarães, M.E.; Mascarenhas, A.; Sousa, C.; Boski, T.; Ponce-Dentinho, T. The impact of water quality changes on the socio-economic system of the Guadiana Estuary: An assessment of management options. Ecol. Soc. 2012, 17, 38. [Google Scholar] [CrossRef] [Green Version]
- Moura, D.; Gomes, A.; Mendes, I.; Aníbal, J. Guadiana River Estuary. Investigating the Past, Present and Future; Centre for Marine and Environmental Research (CIMA), University of Algarve: Faro, Portugal, 2017. [Google Scholar]
- Pulido-Calvo, I.; Gutiérrez-Estrada, J.C.; Sanz-Fernández, V.; Fernández de Villarán, R. Compatibilidad cuantitativa de los distintos usos del agua en la Subcuenca Transfronteriza del Bajo Guadiana. In Informe técnico de la Acción A1.1 del Proyecto VALAGUA (VALorização Ambiental e gestão integrada da agua e dos hábitats no baixo GUAdiana transfronteiriço-0007_VALAGUA_5_P) del Programa INTERREG VA España-Portugal (POCTEP) 2014–2020; 2018; Available online: https://www.valagua.com/es-descargas-tecnicas (accessed on 26 February 2020).
- Hildenbrand, A. La cooperación transfronteriza entre Andalucía-Algarve-Alentejo en el proyecto ANDALBAGUA (POCTEP 2007-2013)—El reto de lograr un desarrollo territorial coherente a ambos lados de la frontera. In I Congreso Territorial del Noroeste Ibérico; UNED: Ponferrada, Spain, 2012. [Google Scholar]
- Hernández-Ramírez, J. Obstáculos a la gobernanza turística en la frontera del Bajo Guadiana. Revista Investigaciones Turísticas 2017, 13, 140–163. [Google Scholar] [CrossRef] [Green Version]
- ONU. Transformar Nuestro Mundo: La Agenda 2030 para el Desarrollo Sostenible; Resolución aprobada por la Asamblea General el 25 de septiembre de 2015, A/RES/70/1; Naciones Unidas: New York, NY, USA, 2015. [Google Scholar]
- PGRHG. Plano de Gestão de Região Hidrográfica do Guadiana (RH7); Agência Portuguesa do Ambiente: Lisbon, Portugal, 2016.
- PHDHG. Plan Hidrológico de la parte española de la Demarcación Hidrográfica del Guadiana 2016–2021; Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2016.
- Monteiro, J.P.; Costa, L.; González-Rey, F.; Olías, M.; Rosa-Rodríguez, J.M.; Fialho, A. Relatório de compatibilização quantitativa dos usos da água e identificação de limitações à sua qualidade na Sub-Bacia do Baixo Guadiana. In Informe técnico de la Acción A1 del Proyecto VALAGUA (VALorização Ambiental e gestão integrada da agua e dos hábitats no baixo GUAdiana transfronteiriço-0007_VALAGUA_5_P) del Programa INTERREG VA España-Portugal (POCTEP) 2014-2020; 2018; Available online: https://www.valagua.com/downloads-tecnicos (accessed on 26 February 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; Version 3.3.2; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Hyndman, R.J.; Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 2008, 26, 1–22. [Google Scholar]
- Hyndman, R.; Athanasopoulos, G.; Bergmeir, C.; Caceres, G.; Chhay, L.; O’Hara-Wild, M.; Petropoulos, F.; Razbash, S.; Wang, E.; Yasmeen, F. Package forecast: Forecasting Functions for Time Series and Linear Models, R package version 8.4; 2018. Available online: http://pkg.robjhyndman.com/forecast (accessed on 26 February 2020).
- Hothorn, T.; Zeileis, A.; Farebrother, R.W.; Cummins, C.; Millo, G.; Mitchell, D. Lmtest: Testing linear Regression Models. R package. 2017. Available online: https://CRAN.R-project.org/package=lmtest (accessed on 26 February 2020).
- Trapletti, A.; Hornik, K.; LeBaron, B. Tseries: Time Series Analysis and Computational Finance. R package. 2017. Available online: https://cran.r-project.org/web/packages/tseries/) (accessed on 26 February 2020).
- WMO (World Meteorological Organization). Standardized Precipitation Index. User Guide; WMO-Nº 1090: Geneva, Switzerland, 2012. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index–SPEI. J. Clim. 2010, 23, 1696. [Google Scholar] [CrossRef] [Green Version]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef] [Green Version]
- Beguería, S.; Vicente-Serrano, S.M. Package ‘SPEI’: Calculation of the Standardised Precipitation-Evapotranspiration Index. R package. 2017. Available online: http://sac.csic.es/spei (accessed on 26 February 2020).
- Guttman, N.B. Accepting the Standardized Precipitation Index: A calculation algorithm. J. Am. Water Resour. Assoc. 1999, 35, 311–322. [Google Scholar] [CrossRef]
- Tharme, R.E. A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 2003, 19, 397–441. [Google Scholar] [CrossRef]
- Marsh, T.J.; Cole, G.; Wilby, R. Major droughts in England and Wales, 1800–2006. Weather 2007, 62, 87–93. [Google Scholar] [CrossRef]
- Folland, C.K.; Hannaford, J.; Bloomfield, J.P.; Kendon, M.; Svensson, C.; Marchant, B.P.; Prior, J.; Wallace, E. Multi-annual droughts in the English Lowlands: A review of their characteristics and climate drivers in the winter half-year. Hydrol. Earth Syst. Sci. 2015, 19, 2353–2375. [Google Scholar] [CrossRef] [Green Version]
- Coll, J.R.; Aguilar, E.; Ashcroft, L. Drought variability and change across the Iberian Peninsula. Theor. Appl. Climatol. 2017, 130, 901–916. [Google Scholar] [CrossRef] [Green Version]
- García-Valdecasas, M.; Romero, E.; Gámiz-Fortis, S.R.; Castro-Díez, Y.; Esteban, M.J. Understanding the drought phenomenon in the Iberian Peninsula. In Drought: Detection and Solutions (edited by Gabrijel Ondrasek); IntechOpen: London, UK, 2020; Volume 8. [Google Scholar]
- Sánchez-Carrillo, S.; Álvarez-Cobelas, M. Climate and hydrologic trends: Climate change versus hydrologic overexploitation as determinants of the fluctuating wetland hydrology. In Ecology of Threatened Semi-Arid Wetlands: Long-Term Research in Las Tablas de Daimiel (edited by Salvador Sánchez-Carrillo and David Angeler); Springer: Dordrecht, Netherlands, 2010; Volume 3, pp. 45–84. [Google Scholar]
- Gallart, F.; Prat, N.; García-Roger, E.M.; Latron, J.; Rieradevall, M.; Llorens, P.; Barberá, G.G.; Brito, D.; De Girolamo, A.M.; Lo Porto, A.; et al. A novel approach to analysing the regimes of temporary streams in relation to their controls on the composition and structure of aquatic biota. Hydrol. Earth Syst. Sci. 2012, 16, 3165–3182. [Google Scholar] [CrossRef] [Green Version]
- Parasiewicz, P.; Ryan, K.; Vezza, P.; Comoglio, C.; Ballestero, T.; Rogers, J.N. Use of quantitative habitat models for establishing performance metrics in river restoration planning. Ecohydrology 2013, 6, 668–678. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; Baeza-Sanz, D.; Herrera-Grao, T.; Gallego-Bernad, M.S.; La Calle-Marcos, A. PROYECTO Q-CLIMA. Caudales Ecológicos: Valoración de Experiencias en las Cuencas Españolas y Propuestas Adaptativas Frente al Cambio Climático; Fundación Nueva Cultura del Agua: Zaragoza, Spain, 2018. [Google Scholar]
- Li, J.; Qin, H.; Pei, S.; Yao, L.; Wen, W.; Yi, L.; Zhou, J.; Tang, L. Analysis of an ecological flow regime during the Ctenopharyngodon Idella spawning period based on reservoir operations. Water 2019, 11, 2034. [Google Scholar] [CrossRef] [Green Version]
Parameter | Chanza | Andévalo | Beliche | Odeleite |
---|---|---|---|---|
Capacity (hm3) | 341 | 634 | 48 | 130 |
Municipal district | El Granado (Huelva, Spain) | Puebla de Guzmán (Huelva, Spain) | Castro Marim (Faro, Portugal) | Castro Marim (Faro, Portugal) |
Latitude | 37°33′ N | 37°37′ N | 37°16′ N | 37°19′ N |
Longitude | 7°31′ W | 7°24′ W | 7°30′ W | 7°31′ W |
Denomination (control network) | E3-01 (SAIH Guadiana *) | E3-10 (SAIH Guadiana *) | 30L/02A (SNIRH **) | 30L/01A (SNIRH **) |
Full operation year | 1985 | 2002 | 1986 | 1996 |
Water consumptive uses | Irrigation | Irrigation | Irrigation | Irrigation |
Urban uses | Urban uses | Urban uses | Urban uses | |
Industrial uses | Industrial uses | Industrial uses | Industrial uses | |
Hydropower |
Station | Denomination (Control Network) | Latitude/Longitude | Daily Mean Flow (; VC) (Max; Min) | Years |
---|---|---|---|---|
Albahacar | 4173 (ROEA) | 37°43′ N 7°19′ W | (0.46 m3/s; 7.35) (246.26 m3/s; 0 m3/s) | 1969–2004 |
Chanza in Aroche | 4158 (ROEA) | 37°58′ N 6°57′ W | (0.50 m3/s; 3.16) (47.00 m3/s; 0 m3/s) | 1960–2006 |
Chanza in Rosal Frontera | 4176 (ROEA) | 37°57′ N 7°12′ W | (1.26 m3/s; 4.12) (138.50 m3/s; 0 m3/s) | 1969–2002 |
Cóbica | 4161 (ROEA) | 37°38′ N 7°15′ W | (0.40 m3/s; 12.60) (285.00 m3/s; 0 m3/s) | 1969–2004 2008–2010 |
Malagón | 4172 (ROEA) | 37°41′ N 7°16′ W | (1.65 m3/s; 7.79) (778.08 m3/s; 0 m3/s) | 1969–2004 2007–2010 |
Pulo do Lobo | 27L/01H (SNIRH) | 37°48′ N 7°37′ W | (140.34 m3/s; 2.86) (7752.53 m3/s; 0 m3/s) | 1946–2000 1990–2018 |
Monte dos Fortes (Ribeira de Odeleite) | 29L/01H (SNIRH) | 37°20′ N 7°37′ W | (2.40 m3/s; 4.07) (350.43 m3/s; 0 m3/s) | 1960–2001 1990–2018 |
Station | Denomination | Latitude/Longitude | Precipitation [; VC] (Max; Min) | Years |
---|---|---|---|---|
Alcoutim | 29M/01UG | 37°27′ N 7°28′ W | (42.18 mm/month; 1.31) (411.6 mm/month; 0) | 1976–2017 |
Azinhal | 30M/04U | 37°15′ N 7°27′ W | (35.54 mm/month; 1.60) (324.4 mm/month; 0) | 1981–1985 |
Barragem do Beliche | 30M/06G | 37°16′ N 7°30′ W | (45.89 mm/month; 1.09) (300.4 mm/month; 0) | 2001–2016 |
Castro Marim | 30M/03UG | 37°12′ N 7°26′ W | (40.81 mm/month; 1.37) (398.2 mm/month; 0) | 1981–2016 |
Cortes Pereiras | 29L/02U | 37°28′ N 7°30′ W | (40.84 mm/month; 1.39) (380.7 mm/month; 0) | 1980–2001 |
Figueirais | 30M/01G | 37°14′ N 7°29′ W | (45.27 mm/month; 1.26) (322.7 mm/month; 0) | 1936–1984 |
Mértola | 28L/01UG | 37°38′ N 7°39′ W | (35.23 mm/month; 1.23) (301.6 mm/month; 0) | 1932–2017 |
Mesquita | 28L/02UG | 37°32′ N 7°32′ W | (34.97 mm/month; 1.34) (351.0 mm/month; 0) | 1981–2016 |
Minas de São Domingos | 27M/02U | 37°39′ N 7°30′ W | (43.55 mm/month; 1.10) (313.4 mm/month; 0) | 1900–1968 |
Santa Iria | 26L/02UG | 37°52′ N 7°33′ W | (37.04 mm/month; 1.26) (278.3 mm/month; 0) | 1981–2017 |
Sapal de Odeleitte (Ex. Fonte do Penedo) | 29M/02UG | 37°19′ N 7°28′ W | (38.28 mm/month; 1.02) (162.8 mm/month; 0) | 2002–2016 |
Serpa | 26L/01UG | 37°56′ N 7°36′ W | (43.98 mm/month; 1.16) (388.7 mm/month; 0) | 1932–2011 |
Station | Denomination | Latitude/Longitude | Precipitation (; VC) (Max; Min) | Years | |
---|---|---|---|---|---|
Aroche (Las Cefiñas) | 4523E | 37°57′ N 6°51′ W | (66.25 mm/month; 1.11) (439.0 mm/month; 0) | 1968–2017 | |
Ayamonte (Telégrafos) | 4549A | 37°13′ N 7°24′ W | (40.50 mm/month; 1.35) (378.0 mm/month; 0) | 1949–1985 | |
Cabezas Rubias | 4536 | 37°43′ N 7°05′ W | (55.21 mm/month; 1.21) (441.6 mm/month; 0) | 1964–2017 | |
Cartaya (Pemares) | 4554E | 37°13′ N 7°07′ W | (50.56 mm/month; 1.39) (459.5 mm/month; 0) | 1987–2014 | |
Cerro Andeválo (El Cóbico) | 4585 | 37°43′ N 7°02′ W | (54.59 mm/month; 1.21) (468.5 mm/month; 0) | 1964–2017 | |
El Almendro (La Burrilla) | 4595 | 37°31′ N 7°11′ W | (56.00 mm/month; 1.27) (470.0 mm/month; 0) | 1962–1984 | |
El Granado | 4542 | 37°31′ N 7°25′ W | (46.25 mm/month; 1.23) (409.5 mm/month; 0) | 1964–2017 | |
El Granado (Bocachanza) | 4541U | 37°33′ N 7°31′ W | (42.25 mm/month; 1.22) (380.1 mm/month; 0) | 1976–2017 | |
Gibraleón | 4603 | 37°22′ N 6°58′ W | (47.96 mm/month; 1.29) (394.7 mm/month; 0) | 1965–2012 | |
Isla Cristina (Cañada Corcho) | 4546M | 37°13′ N 7°17′ W | (47.38 mm/month; 1.34) (391.2 mm/month; 0) | 1989–2013 | |
Lepe (Valdeluz) | 4546I | 37°14′ N 7°15′ W | (49.33 mm/month; 1.40) (470.5 mm/month; 0) | 1989–2006 | |
Paymogo | 4538 | 37°44′ N 7°20′ W | (53.37 mm/month; 1.27) (381.6 mm/month; 0) | 1952–1984 | |
Presa de Sancho | 4602 | 37°44′ N 7°20′ W | (51.46 mm/month; 1.26) (377.5 mm/month; 0) | 1961–1992 | |
Presa del Piedras | 4549S | 37°21′ N 7°15′ W | (43.98 mm/month; 1.31) (407.5 mm/month; 0) | 1972–1992 | |
Puebla de Guzmán (Herrerias) | 4535 | 37°36′ N 7°17′ W | (42.75 mm/month; 1.20) (318.0 mm/month; 0) | 1966–2017 | |
Punta Umbría | 4555 | 37°10′ N 6°57′ W | (39.25 mm/month; 1.38) (380.0 mm/month; 0) | 1988–2017 | |
Rosal de la Frontera | 4531 | 37°58′ N 7°13′ W | (50.28 mm/month; 1.11) (312.0 mm/month; 0) | 1966–1982 | |
San Bartolomé de la Torre | 4599 | 37°26′ N 7°06′ W | (49.19 mm/month; 1.27) (373.4 mm/month; 0) | 1963–1989 | |
San Silvestre de Guzmán (Labrados) | 4544E | 37°22′ N 7°24′ W | (45.72 mm/month; 1.30) (465.6 mm/month; 0) | 1980–2016 | |
Sanlúcar de Guadiana | 4543 | 37°28′ N 7°28′ W | (40.58 mm/month; 1.28) (334.4 mm/month; 0) | 1961–1986 | |
Santa Bárbara de Casa | 4537 | 37°47′ N 7°11′ W | (62.31 mm/month; 1.10) (399.0 mm/month; 0) | 1952–1981 | |
Valdelamusa (Minas) | 4583 | 37°47′ N 6°52′ W | (66.66 mm/month; 1.17) (477.0 mm/month; 0) | 1972–1992 | |
Villablanca | 4546 | 37°18′ N 7°20′ W | (52.08 mm/month; 1.26) (422.7 mm/month; 0) | 1964–2012 | |
Villanueva de los Castillejos (Toril Nuevo) | 4549O | 37°27′ N 7°13′ W | (50.71 mm/month; 1.25) (417.0 mm/month; 0) | 1972–1992 |
Month | Current Ecological Flows (hm3/month) | Years of Non-Compliance |
---|---|---|
October | 0.018 | 1970, 1973, 1974, 1975, 1976, 1977, 1983, 1992, 1997, 2000 |
November | 0.064 | 1971, 1974, 1975, 1976, 1977, 1981, 1992 |
December | 0.054 | 1976 |
January | 0.049 | 1976, 1977 |
February | 0.119 | 2000 |
March | 0.103 | - |
April | 0.112 | 1993, 1995, 1999 |
Month | Current Ecological Flows (hm3/month) | Years of Non-Compliance |
---|---|---|
October | 24 | 1946, 1948, 1950, 1951, 1954, 1983, 1994, 2002 |
November | 49 | 1946, 1947, 1948, 1950, 1952, 1953, 1954, 1956, 1957, 1958, 1973, 1974, 1975, 1980, 1981, 1985, 1986, 1991, 1992, 1995, 2000, 2002, 2005 |
December | 51 | 1946, 1954, 1956, 1957, 1974, 1975, 1980, 1985, 1986, 1991, 1993, 1999, 2005, 2008 |
January | 51 | 1954, 1976, 1977, 1981, 1992, 1993, 1995, 1999, 2000, 2009 |
February | 47 | 1949, 1981, 1983, 1989, 1992, 1993, 1995, 1999, 2000, 2002, 2008 |
March | 51 | 1949, 1976, 1981, 1982, 1983, 1989, 1992, 1993, 1997, 1999, 2000, 2005, 2008 |
April | 34 | 1981, 1982, 1983, 1992, 1993, 1994, 1995, 1999 |
May | 35 | 1949, 1950, 1954, 1955, 1958, 1981, 1982, 1983, 1991, 1992, 1993, 1994, 1995, 2002, 2003, 2009 |
June | 24 | 1949, 1950, 1953, 1954, 1955, 1958, 1959, 1976, 1981, 1982, 1983, 1986, 1987, 1993, 1994, 1995, 1996, 1999, 2000, 2002, 2003, 2009 |
July | 16 | 1947, 1949, 1950, 1951, 1953, 1954, 1955, 1957, 1959, 1981, 1982, 1983, 1993, 1994, 1995, 1996, 1999, 2003, 2009 |
August | 16 | 1947, 1948, 1949, 1950, 1951, 1952, 1953, 1954, 1982, 1983, 1993, 1994, 1995, 2003 |
September | 16 | 1947, 1948, 1950, 1951, 1953, 1954, 1983, 1993, 1994, 1995, 2002, 2003 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulido-Calvo, I.; Gutiérrez-Estrada, J.C.; Sanz-Fernández, V. Drought and Ecological Flows in the Lower Guadiana River Basin (Southwest Iberian Peninsula). Water 2020, 12, 677. https://doi.org/10.3390/w12030677
Pulido-Calvo I, Gutiérrez-Estrada JC, Sanz-Fernández V. Drought and Ecological Flows in the Lower Guadiana River Basin (Southwest Iberian Peninsula). Water. 2020; 12(3):677. https://doi.org/10.3390/w12030677
Chicago/Turabian StylePulido-Calvo, Inmaculada, Juan Carlos Gutiérrez-Estrada, and Víctor Sanz-Fernández. 2020. "Drought and Ecological Flows in the Lower Guadiana River Basin (Southwest Iberian Peninsula)" Water 12, no. 3: 677. https://doi.org/10.3390/w12030677
APA StylePulido-Calvo, I., Gutiérrez-Estrada, J. C., & Sanz-Fernández, V. (2020). Drought and Ecological Flows in the Lower Guadiana River Basin (Southwest Iberian Peninsula). Water, 12(3), 677. https://doi.org/10.3390/w12030677