Occurrence and Fate of Heavy Metals in Municipal Wastewater in Heilongjiang Province, China: A Monthly Reconnaissance from 2015 to 2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Analytical Methodology
2.3. Material Flow Analysis
2.4. Data Sources
2.5. Statistical Analysis
3. Results and Discussion
3.1. Occurrence of Heavy Metals in Municipal Wastewater
3.2. Removal Ratios
3.3. Variations of Heavy Metals Flux
3.4. Material Flows from Municipal Wastewater to Sinks
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.-H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef] [PubMed]
- IARC (International Agency for Research on Cancer). Monographs—Cadmium; IARC: Lyon, France, 1993. [Google Scholar]
- Waalkes, M.P.; Misra, R.R.; Chang, L.W. Toxicology of Metals; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- El-Kady, A.A.; Abdel-Wahhab, M.A. Occurrence of trace metals in foodstuffs and their health impact. Trends Food Sci. Technol. 2018, 75, 36–45. [Google Scholar] [CrossRef]
- Al-Saleh, I.; Al-Rouqi, R.; Elkhatib, R.; Abduljabbar, M.; Al-Rajudi, T. Risk assessment of environmental exposure to heavy metals in mothers and their respective infants. Int. J. Hyg. Environ. Health 2017, 220, 1252–1278. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Yang, W.; Zhou, X.; Liu, L.; Gu, J.; Wang, W.; Zou, J.; Tian, T.; Peng, P.; Liao, B. Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. Int. J. Environ. Res. Public Health 2016, 13, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, M. Toxicity and carcinogenicity of Cr (VI) in animal models and humans. Crit. Rev. Toxicol. 1997, 27, 431–442. [Google Scholar] [CrossRef]
- Soghoian, S.; Sinert, R. Heavy Metal Toxicity. Available online: http://emedicine.medscape.com/article/814960-overview (accessed on 24 August 2018).
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metals toxicity and the environment. EXS 2012, 101, 133–164. [Google Scholar]
- Outridge, P.M.; Mason, R.P.; Wang, F.; Guerrero, S.; Heimburger-Boavida, L.E. Updated global and oceanic mercury budgets for the united nations global mercury assessment 2018. Environ. Sci. Technol. 2018, 52, 11466–11477. [Google Scholar] [CrossRef]
- Wai, K.; Wu, S.; Li, X.; Jaffe, D.A.; Perry, K.D. Global atmospheric transport and source-receptor relationships for arsenic. Environ. Sci. Technol. 2016, 50, 3714–3720. [Google Scholar] [CrossRef]
- Nriagu, J.O.; Pacyna, J.M. Quantitative assessment of worldwide contamination of air, water and soils by trace-metals. Nature 1988, 333, 134–139. [Google Scholar] [CrossRef]
- Kristensen, L.J. Quantification of atmospheric lead emissions from 70 years of leaded petrol consumption in Australia. Atmos. Environ. 2015, 111, 195–201. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Li, G.; Wu, Y.; Hao, J.; Pirrone, N.; Sprovieri, F.; Ancora, M. Mercury emission and speciation of coal-fired power plants in China. Atmos. Chem. Phys. 2010, 10, 1183–1192. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Hu, S.; Syed-Hassan, S.S.A.; Xiao, Y.; Wang, Y.; Xu, J.; Jiang, L.; Su, S.; Xiang, J. Effects of reaction conditions on the emission behaviors of arsenic, cadmium and lead during sewage sludge pyrolysis. Bioresour. Technol. 2017, 236, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Han, F.X.X.; Su, Y.; Monts, D.L.; Plodinec, M.J.; Banin, A.; Triplett, G.E. Assessment of global industrial-age anthropogenic arsenic contamination. Naturwissenschaften 2003, 90, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Mason, R.P.; Fitzgerald, W.F.; Morel, F.M.M. The biogeochemical cycling of elemental mercury—Anthropogenic influences. Geochim. Cosmochim. Acta 1994, 58, 3191–3198. [Google Scholar] [CrossRef]
- Boxall, A.B.; Kolpin, D.W.; Halling-Sørensen, B.; Tolls, J. Are veterinary medicines causing environmental risks? Environ. Sci. Technol. 2003, 37, 286A–294A. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Li, Y.; Chen, C.-E.; Sweetman, A.J.; Zhang, H.; Jones, K.C. DGT passive sampling for quantitative in situ measurements of compounds from household and personal care products in waters. Environ. Sci. Technol. 2017, 51, 13274–13281. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.; Sullivan, T.; Kinsella, B.; Furey, A.; Regan, F. Occurrence of selected metals in wastewater effluent and surface water in Ireland. Anal. Lett. 2016, 50, 724–737. [Google Scholar] [CrossRef]
- Du, P.; Thai, P.K.; Bai, Y.; Zhou, Z.; Xu, Z.; Zhang, X.; Wang, J.; Zhang, C.; Hao, F.; Li, X. Monitoring consumption of methadone and heroin in major Chinese cities by wastewater-based epidemiology. Drug Alcohol Depend. 2019, 205, 107532. [Google Scholar] [CrossRef]
- Du, P.; Zhou, Z.; Huang, H.; Han, S.; Xu, Z.; Bai, Y.; Li, X. Estimating population exposure to phthalate esters in major Chinese cities through wastewater-based epidemiology. Sci. Total Environ. 2018, 643, 1602–1609. [Google Scholar] [CrossRef]
- Lei, K.; Zhu, Y.; Chen, W.; Pan, H.-Y.; Cao, Y.-X.; Zhang, X.; Guo, B.-B.; Sweetman, A.; Lin, C.-Y.; Ouyang, W.; et al. Spatial and seasonal variations of antibiotics in river waters in the Haihe river catchment in China and ecotoxicological risk assessment. Environ. Int. 2019, 130, 104919. [Google Scholar] [CrossRef]
- Liu, M.; Du, P.; Yu, C.; He, Y.; Zhang, H.; Sun, X.; Lin, H.; Luo, Y.; Xie, H.; Guo, J.; et al. Increases of total mercury and methylmercury releases from municipal sewage into environment in China and implications. Environ. Sci. Technol. 2018, 52, 124–134. [Google Scholar] [CrossRef] [PubMed]
- HBS (Heilongjiang Bureau of Statistics). Heilongjiang Statistical Yearbook 2018; China Statistics Press: Beijing, China, 2018. [Google Scholar]
- Du, P.; Li, K.; Li, J.; Xu, Z.; Fu, X.; Yang, J.; Zhang, H.; Li, X. Methamphetamine and ketamine use in major Chinese cities, a nationwide reconnaissance through sewage-based epidemiology. Water Res. 2015, 84, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Silalahi, J.; Tampubolon, S.D.R.; Sagala, M.R.M.; Saraswati, I.N.; Silalahi, Y.C.E. Analysis of arsenic in raw and cooked rice by atomic absorption spectrophotometer. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Banda Aceh, Indonesia, 26–27 September 2018; Volume 205. [Google Scholar]
- Brombach, C.C.; Chen, B.; Corns, W.T.; Feldmann, J.; Krupp, E.M. Methylmercury in water samples at the pg/L level by online preconcentration liquid chromatography cold vapor-atomic fluorescence spectrometry. Spectrochim. Acta B 2015, 105, 103–108. [Google Scholar] [CrossRef]
- Brunner, P.H.; Rechberger, H. Handbook of Material Flow Analysis: For Environmental, Resource, and Waste Engineers, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Chen, Y.; Zang, L.; Shen, G.; Liu, M.; Du, W.; Fei, J.; Yang, L.; Chen, L.; Wang, X.; Liu, W.; et al. Resolution of the ongoing challenge of estimating nonpoint source neonicotinoid pollution in the Yangtze River basin using a modified mass balance approach. Environ. Sci. Technol. 2019, 53, 2539–2548. [Google Scholar] [CrossRef]
- Churkina, G. Modeling the carbon cycle of urban systems. Ecol. Model. 2008, 216, 107–113. [Google Scholar] [CrossRef]
- Liu, M.; Xie, H.; He, Y.; Zhang, Q.; Sun, X.; Yu, C.; Chen, L.; Zhang, W.; Zhang, Q.; Wang, X. Sources and transport of methylmercury in the Yangtze River and the impact of the Three Gorges Dam. Water Res. 2019, 166, 115042. [Google Scholar] [CrossRef] [PubMed]
- Beltran, A.; Marce, R.M.; Cormack, P.A.G.; Borrull, F. Synthetic approaches to parabens molecularly imprinted polymers and their applications to the solid-phase extraction of river water samples. Anal. Chim. Acta 2010, 677, 72–78. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, W.; Chen, L.; Chen, C.; Ou, L.; Tong, Y.; Wei, W.; Long, W.; Wang, X. Mercury emissions from waste combustion in China from 2004 to 2010. Atmos. Environ. 2012, 62, 359–366. [Google Scholar] [CrossRef]
- Wang, R.; Tao, S.; Wang, W.; Liu, J.; Shen, H.; Shen, G.; Wang, B.; Liu, X.; Li, W.; Huang, Y.; et al. Black carbon emissions in china from 1949 to 2050. Environ. Sci. Technol. 2012, 46, 7595–7603. [Google Scholar] [CrossRef]
- Li, M.M.; Gao, Z.Y.; Dong, C.Y.; Wu, M.Q.; Yan, J.; Cao, J.; Ma, W.J.; Wang, J.; Gong, Y.L.; Xu, J.; et al. Contemporary blood lead levels of children aged 0–84 months in China: A national cross-sectional study. Environ. Int. 2020, 134, 105288. [Google Scholar] [CrossRef]
- Li, L.; Mao, Y.; Li, Y.; Ma, Y.; Wang, X.; Song, D. Fate of heavy metals in the carrousel oxidation ditch wastewater treatment process. J. Saf. Environ. 2014, 14, 217–223. (In Chinese) [Google Scholar]
- Lu, J.; Chen, L.; Zhao, X. Study on the variation of heavy metals in the traditional municipal activated sludge wastewater treatment process. Environ. Pollut. Control 2008, 30, 29–32. (In Chinese) [Google Scholar]
- Luo, L.; Kang, D.; Wang, X. Removal and fate of typical heavy metals in municipal wastewater treatment process. J. Saf. Environ. 2010, 10, 52–55. (In Chinese) [Google Scholar]
- Yang, Q.; Chang, X.; Liu, Y.; Zhao, M.; Han, J. Analysis of heavy metals removal through A2/O process of municipal wastewater treatment in Yantai City. Environ. Sci. Technol. 2009, 32, 143–145. (In Chinese) [Google Scholar]
- Carletti, G.; Fatone, F.; Bolzonella, D.; Cecchi, F. Occurrence and fate of heavy metals in large wastewater treatment plants treating municipal and industrial wastewaters. Water Sci. Technol. 2008, 57, 1329–1336. [Google Scholar] [CrossRef] [PubMed]
- Buzier, R.; Tusseau-Vuillemin, M.-H.; Meriadec, C.M.D.; Rousselot, O.; Mouchel, J.-M. Trace metal speciation and fluxes within a major French wastewater treatment plant: Impact of the successive treatments stages. Chemosphere 2006, 65, 2419–2426. [Google Scholar] [CrossRef] [PubMed]
- Karvelas, M.; Katsoyiannis, A.; Samara, C. Occurrence and fate of heavy metals in the wastewater treatment process. Chemosphere 2003, 53, 1201–1210. [Google Scholar] [CrossRef]
- Chipasa, K.B. Accumulation and fate of selected heavy metals in a biological wastewater treatment system. Waste Manag. 2003, 23, 135–143. [Google Scholar] [CrossRef]
- Goldstone, M.E.; Atkinson, C.; Kirk, P.W.W.; Lester, J.N. The behavior of heavy-metals during waste-water treatment. III. Mercury and arsenic. Sci. Total Environ. 1990, 95, 271–294. [Google Scholar] [CrossRef]
- Goldstone, M.E.; Kirk, P.W.W.; Lester, J.N. The behavior of heavy-metals during waste-water treatment. I. Cadmium, chromium and copper. Sci. Total Environ. 1990, 95, 233–252. [Google Scholar] [CrossRef]
- Goldstone, M.E.; Kirk, P.W.W.; Lester, J.N. The behavior of heavy-metals during waste-water treatment. II. Lead, nickel and zinc. Sci. Total Environ. 1990, 95, 253–270. [Google Scholar] [CrossRef]
- Choubert, J.M.; Pomies, M.; Ruel, S.M.; Coquery, M. Influent concentrations and removal performances of metals through municipal wastewater treatment processes. Water Sci. Technol. 2011, 63, 1967–1973. [Google Scholar] [CrossRef] [PubMed]
- Joshua, D.I.; Abeykoon, S.; Watanabe, I.; Paszek, L.; Balakrishna, K.; Akiba, M.; Guruge, K.S. Seasonal movement of trace-element discharge in a typical south-Indian suburban community. Water Sci. Technol. 2018, 77, 1035–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Üstün, G.E. Occurrence and removal of metals in urban wastewater treatment plants. J. Hazard. Mater. 2009, 172, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Teijon, G.; Candela, L.; Tamoh, K.; Molina-Diaz, A.; Fernandez-Alba, A.R. Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain). Sci. Total Environ. 2010, 408, 3584–3595. [Google Scholar] [CrossRef] [PubMed]
- Cantinho, P.; Matos, M.; Trancoso, M.A.; Correia dos Santos, M.M. Behaviour and fate of metals in urban wastewater treatment plants: A review. Int. J. Environ. Sci. Technol. 2016, 13, 359–386. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.Q.; Ying, G.G.; Pan, C.G.; Liu, Y.S.; Zhao, J.L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef]
- Liu, X.; Sheng, H.; Jiang, S.; Yuan, Z.; Zhang, C.; Elser, J.J. Intensification of phosphorus cycling in China since the 1600s. Proc. Natl. Acad. Sci. USA 2016, 113, 2609–2614. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Chen, L.; He, Y.; Baumann, Z.; Mason, R.P.; Shen, H.; Yu, C.; Zhang, W.; Zhang, Q.; Wang, X. Impacts of farmed fish consumption and food trade on methylmercury exposure in China. Environ. Int. 2018, 120, 333–344. [Google Scholar] [CrossRef]
- Rothenberg, S.E.; Windham-Myers, L.; Creswell, J.E. Rice methylmercury exposure and mitigation: A comprehensive review. Environ. Res. 2014, 133, 407–423. [Google Scholar] [CrossRef] [Green Version]
- Hans, M.; Oscar, R. Cadmium in the Environment; Birkhäuser: Basel, Switzerland, 1974. [Google Scholar]
- Mandal, B.K.; Suzuki, K.T. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Shanker, A.K.; Cervantes, C.; Loza-Tavera, H.; Avudainayagam, S. Chromium toxicity in plants. Environ. Int. 2005, 31, 739–753. [Google Scholar] [CrossRef] [PubMed]
- Muchuweti, A.; Birkett, J.W.; Chinyanga, E.; Zvauya, R.; Scrimshaw, M.D.; Lester, J.N. Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe: Implications for human health. Agric. Ecosyst. Environ. 2006, 112, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Agrawal, M. Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere 2007, 67, 2229–2240. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Agrawal, M. Variations in heavy metal accumulation, growth and yield of rice plants grown at different sewage sludge amendment rates. Ecotoxicol. Environ. Saf. 2010, 73, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Borjesson, G.; Kirchmann, H.; Katterer, T. Four Swedish long-term field experiments with sewage sludge reveal a limited effect on soil microbes and on metal uptake by crops. J. Soils Sediments 2014, 14, 164–177. [Google Scholar] [CrossRef] [Green Version]
- Frost, H.L.; Ketchum, L.H. Trace metal concentration in durum wheat from application of sewage sludge and commercial fertilizer. Adv. Environ. Res. 2000, 4, 347–355. [Google Scholar] [CrossRef]
- McBride, M.B. Toxic metal accumulation from agricultural use of sludge—Are usepa regulations protective. J. Envrion. Qual. 1995, 24, 5–18. [Google Scholar] [CrossRef]
- Li, Z.P.; Han, F.X.; Su, Y.; Zhang, T.L.; Sun, B.; Monts, D.L.; Plodinec, M.J. Assessment of soil organic and carbonate carbon storage in China. Geoderma 2007, 138, 119–126. [Google Scholar] [CrossRef]
- Tang, H.; Qiu, J.; Van Ranst, E.; Li, C. Estimations of soil organic carbon storage in cropland of China based on DNDC model. Geoderma 2006, 134, 200–206. [Google Scholar] [CrossRef]
- Shangguan, W.; Dai, Y.; Liu, B.; Zhu, A.; Duan, Q.; Wu, L.; Ji, D.; Ye, A.; Yuan, H.; Zhang, Q.; et al. A China data set of soil properties for land surface modeling. J. Adv. Model. Earth Syst. 2013, 5, 212–224. [Google Scholar] [CrossRef]
- Kashem, M.A.; Singh, B.R. Metal availability in contaminated soils: I. Effects of floodingand organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutr. Cycl. Agroecosyst. 2001, 61, 247–255. [Google Scholar] [CrossRef]
- Yin, Y.J.; Allen, H.E.; Li, Y.M.; Huang, C.P.; Sanders, P.F. Adsorption of mercury(II) by soil: Effects of pH, chloride, and organic matter. J. Environ. Qual. 1996, 25, 837–844. [Google Scholar] [CrossRef]
- Zeng, F.; Ali, S.; Zhang, H.; Ouyang, Y.; Qiu, B.; Wu, F.; Zhang, G. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ. Pollut. 2011, 159, 84–91. [Google Scholar] [CrossRef] [PubMed]
- NBS (National Bureau of Statistics). China Environment Yearbook 2015; National Bureau of Statistics: Beijing, China, 2015. [Google Scholar]
- Deng, C.; Xie, H.; Ye, X.; Zhang, H.; Liu, M.; Tong, Y.; Ou, L.; Yuan, W.; Zhang, W.; Wang, X. Mercury risk assessment combining internal and external exposure methods for a population living near a municipal solid waste incinerator. Environ. Pollut. 2016, 219, 1060–1068. [Google Scholar] [CrossRef] [PubMed]
- Bakis, R.; Tuncan, A. An investigation of heavy metal and migration through groundwater from the landfill area of Eskisehir in Turkey. Environ. Monit. Assess. 2011, 176, 87–98. [Google Scholar] [CrossRef]
- Kanmani, S.R.G. Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site. Appl. Water Sci. 2013, 3, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Oluyemi, E.A.; Feuyit, G.; Oyekunle, J.A.O.; Ogunfowokan, A.O. Seasonal variations in heavy metal concentrations in soil and some selected crops at a landfill in Nigeria. Afr. J. Environ. Sci. Technol. 2008, 2, 89–96. [Google Scholar]
- Pastor, J.; Hernandez, A.J. Heavy metals, salts and organic residues in old solid urban waste landfills and surface waters in their discharge areas: Determinants for restoring their impact. J. Environ. Manag. 2012, 95, S42–S49. [Google Scholar] [CrossRef]
Heavy Metals | n | DF a (%) | Min | Median | Max | Mean ± STD | |
---|---|---|---|---|---|---|---|
μg/L | |||||||
Influent | Pb | 641 | 100.0 | 44 | 140 | 940 | 160 ± 100 |
Cd | 641 | 100.0 | 7.0 | 13 | 78 | 15 ± 9.0 | |
Cr | 649 | 100.0 | 88 | 160 | 650 | 170 ± 64 | |
Hg | 651 | 99.8 | <LOD | 0.54 | 38 | 0.67 ± 1.5 | |
As | 650 | 99.7 | <LOD | 5.6 | 95 | 6.2 ± 4.8 | |
Effluent | Pb | 656 | 99.5 | <LOD | 45 | 170 | 45 ± 15 |
Cd | 656 | 99.5 | <LOD | 4.5 | 56 | 5.2 ± 5.1 | |
Cr | 656 | 99.7 | 27 | 58 | 130 | 57 ± 13 | |
Hg | 657 | 99.5 | <LOD | 0.26 | 1.0 | 0.28 ± 0.12 | |
As | 657 | 99.7 | <LOD | 2.4 | 15 | 2.6 ± 1.4 |
Country | No. of MWTPs | As | Cd | Cr | Hg | Pb | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
In a | Ef b | Re c | In | Ef | Re | In | Ef | Re | In | Ef | Re | In | Ef | Re | ||
Italy [41] | 5 | 4.3 | 2.2 | 44.5 | 7.5 | 0.10 | 73 | 41 | 10 | 64 | 1.6 | 0.90 | 33 | 7.1 | 7.6 | 36 |
France [42] | 1 | n.d. d | n.d. | n.d. | 0.60 | <0.20 | >67 | 9.0 | 20 | 50 | n.d. | n.d. | n.d. | 18–20 | <1 | >95 |
Greece [43] | 1 | n.d. | n.d. | n.d. | 3.3 | 1.5 | 55 | 40 | 20 | 50 | n.d. | n.d. | n.d. | 39 | 27 | 31 |
Poland [44] | 1 | n.d. | n.d. | n.d. | 10–20 | n.d. | 10–20 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ~50 | n.d. | 30–40 |
UK [45,46,47] | 1 | 11–13 | 2.0–2.5 | 81 | 1.5–2.0 | 0.25–0.50 | 79 | 35 | 10 | 71 | 2.5 | 0.3 | 90 | 600 | 25 | 96 |
France [48] | 9 | 3.0–10 | n.d. | 20 | ≤3.0 | n.d. | 40–75 | 10–100 | n.d. | ≥75 | n.d. | n.d. | n.d. | 10–100 | n.d. | ≥75 |
Indian [49] | 3 | 1.1 | 0.8 | 30 | n.d. | n.d. | n.d. | 3.5 | 3.1 | 14.00 | n.d. | n.d. | n.d. | 0.20 | 0.10 | 34 |
Turkey [50] | 2 | n.d. | n.d. | n.d. | 11 | 5 | 55 | 1500 | 240 | 77 | n.d. | n.d. | n.d. | 50 | 21 | 58 |
Spain [51] | 1 | n.d. | n.d. | n.d. | 5000 | 5000 | n.d. | n.d. | n.d. | n.d. | 370 | 370 | n.d. | 5.21 | 6.1 | n.d. |
Jiaozuo, China [37] | 1 | 15 | 12.7 | 14 | 1.3 | n.d. | n.d. | 18.2 | 0.4 | 98 | n.d. | n.d. | n.d. | 4.1 | n.d. | n.d. |
Chungking, China [38] | 1 | 1.1 | 0.70 | 33 | 1.2 | 0.58 | 53 | n.d. | n.d. | n.d. | 0.55 | 0.13 | 76 | 18 | 13 | 30 |
Xi’an China [39] | 1 | 0.90 | 0.030 | 97 | n.d. | n.d. | n.d. | 92 | 63 | 31 | 0.43 | 0.06 | 86 | n.d. | n.d. | n.d. |
Yantai, China [40] | 1 | n.d. | n.d. | n.d. | 61 | 6.1 | 90 | 560 | 46 | 92 | 1.5 | 0.11 | 93 | 480 | 48 | 90 |
This study (Heilongjiang, China) | 27 | 6.2 ± 4.8 | 2.6 ± 1.4 | 55 | 15 ± 9.0 | 5.2 ± 5.1 | 64 | 170 ± 64 | 57 ± 13 | 64 | 0.67 ± 1.5 | 0.28 ± 0.12 | 50 | 160 ± 100 | 45 ± 15 | 67 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, P.; Zhang, L.; Ma, Y.; Li, X.; Wang, Z.; Mao, K.; Wang, N.; Li, Y.; He, J.; Zhang, X.; et al. Occurrence and Fate of Heavy Metals in Municipal Wastewater in Heilongjiang Province, China: A Monthly Reconnaissance from 2015 to 2017. Water 2020, 12, 728. https://doi.org/10.3390/w12030728
Du P, Zhang L, Ma Y, Li X, Wang Z, Mao K, Wang N, Li Y, He J, Zhang X, et al. Occurrence and Fate of Heavy Metals in Municipal Wastewater in Heilongjiang Province, China: A Monthly Reconnaissance from 2015 to 2017. Water. 2020; 12(3):728. https://doi.org/10.3390/w12030728
Chicago/Turabian StyleDu, Peng, Lingrong Zhang, Yuntao Ma, Xinyue Li, Zhenglu Wang, Kang Mao, Na Wang, Ying Li, Jia He, Xuan Zhang, and et al. 2020. "Occurrence and Fate of Heavy Metals in Municipal Wastewater in Heilongjiang Province, China: A Monthly Reconnaissance from 2015 to 2017" Water 12, no. 3: 728. https://doi.org/10.3390/w12030728
APA StyleDu, P., Zhang, L., Ma, Y., Li, X., Wang, Z., Mao, K., Wang, N., Li, Y., He, J., Zhang, X., Hao, F., Li, X., Liu, M., & Wang, X. (2020). Occurrence and Fate of Heavy Metals in Municipal Wastewater in Heilongjiang Province, China: A Monthly Reconnaissance from 2015 to 2017. Water, 12(3), 728. https://doi.org/10.3390/w12030728