Evaluation of Water Quality in Ialomita River Basin in Relationship with Land Cover Patterns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Monitoring of Water Physicochemical Parameters
2.3. Expected Mean Concentration Model
2.4. Soil and Water Assessment Tool (SWAT) Model
2.5. Statistical Analysis
3. Results
3.1. Expected Mean Concentration (EMC) Modeling for the Ialomita River Basin
3.2. Water Quality Assessment in the Lower Part of the Ialomita River Basin
3.3. Application of SWAT Model and Water-Quality Assessment in the Upper Part of the Ialomita River Basin
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UN-Water. Towards a Worldwide Assessment of Freshwater Quality—A UN-Water Analytical Brief 2016. Available online: https://www.unwater.org/app/uploads/2017/05/UN_Water_Analytical_Brief_20161111_02_web_pages.pdf (accessed on 20 December 2019).
- Borchardt, D.; Bogardi, J.J.; Ibisch, R.B. (Eds.) Integrated Water Resources Management: Concept, Research and Implementation; Springer: Basel, The Switzerland, 2016; p. 781. [Google Scholar]
- Stoner, E.W.; Albrey Arrington, D. Nutrient inputs from an urbanized landscape may drive water quality degradation. Sustain. Water Qual. Ecol. 2017, 9–10, 136–150. [Google Scholar] [CrossRef]
- Amblard, L. Collective action for water quality management in agriculture: The case of drinking water source protection in France. Glob. Environ. Chang. 2019, 58, 101970. [Google Scholar] [CrossRef]
- Szopińska, M.; Szumińska, D.; Polkowska, Ż.; Machowiak, K.; Lehmann, S.; Chmiel, S. The chemistry of river–lake systems in the context of permafrost occurrence (Mongolia, Valley of the Lakes). Part I. Analysis of ion and trace metal concentrations. Sediment. Geol. 2016, 340, 74–83. [Google Scholar] [CrossRef]
- Kosek, K.; Polkowska, Ż. Determination of selected chemical parameters in surface water samples collected from the Revelva catchment (Hornsund fjord, Svalbard). Mon. für Chem.-Chem. Mon. 2016, 147, 1401–1405. [Google Scholar] [CrossRef] [Green Version]
- Popa, C.L.; Bretcan, P.; Radulescu, C.; Carstea, E.M.; Tanislav, D.; Dontu, S.I.; Dulama, I.D. Spatial distribution of groundwater quality in connection with the surrounding land use and anthropogenic activity in rural areas. Acta Montan. Slovaca 2019, 24, 73–87. [Google Scholar]
- Melland, A.R.; Fenton, O.; Jordan, P. Effects of agricultural land management changes on surface water quality: A review of meso-scale catchment research. Environ. Sci. Policy 2018, 84, 19–25. [Google Scholar]
- Dunea, D.; Iordache, S.; Radulescu, C.; Pohoata, A.; Dulama, I.D. A multidimensional approach to the influence of wind on the variations of particulate matter and associated heavy metals in Ploiesti City, Romania. Rom. J. Phys. 2016, 61, 1354–1368. [Google Scholar]
- Costache, A.; Sencovici, M. Influence of the socio-demographic variables on environmental perception. Case study: Targoviste (Dambovita county, Romania). In Proceedings of the 15th International Multidisciplinary Scientific Geoconference (SGEM) Ecology, Economics, Education and Legislation, Albena, Bulgaria, 18–24 June 2015; Volume I, pp. 431–438. [Google Scholar]
- Sencovici, M.; Costache, A. Methods and means of evaluating the perception concerning the environmental condition. Case study: The urban ecosystem of Targoviste (Romania). Int. Multidiscip. Sci. GeoConference: SGEM: Surv. Geol. Min. Ecol. Manag. 2012, 5, 571. [Google Scholar]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture (Solaw)—Managing Systems at Risk; Food and Agriculture Organization of the United Nations: Rome and Earthscan: London, UK, 2011. [Google Scholar]
- Ruman, M.; Polkowska, Ż.; Zygmunt, B. Processes and the Resulting Water Quality in the Medium-Size Turawa Storage Reservoir after 60-Year Usage. Water Qual. 2017, 377. [Google Scholar] [CrossRef] [Green Version]
- Syed, A.T.; Jodoin, R.S. Estimation of nonpoint-source loads of total nitrogen, total phosphorous, and total suspended solids in the Black, Belle, and Pine River basins, Michigan, by use of the PLOAD model. In U.S. Geological Survey Scientific Investigations Report 2006-5071; U.S. Geological Survey, 1 December 2016; 42p, Available online: https://doi.org/10.3133/sir20065071 (accessed on 20 December 2019).
- Zeleňáková, M.; Harabinová, S.; Mésároš, P.; Abd-Elhamid, H.; Purcz, P. Modelling of Erosion and Transport Processes. Water 2019, 11, 2604. [Google Scholar] [CrossRef] [Green Version]
- Dunea, D.; Iordache, Ş. Time series analysis of the heavy metals loaded wastewaters resulted from chromium electroplating process. Environ. Eng. Manag. J. (EEMJ) 2011, 10, 469–482. [Google Scholar]
- Echeverría, C.; Guiomar, R.-P.; Puertes, C.; Samaniego, L.; Barrett, B.; Francés, F. Assessment of Remotely Sensed Near-Surface Soil Moisture for Distributed Eco-Hydrological Model Implementation. Water 2019, 11, 2613. [Google Scholar] [CrossRef] [Green Version]
- National Administration of Romanian Waters. The Management Plan of The Buzau-Ialomita Hydrographic Area. Available online: http://www.rowater.ro/ (accessed on 20 December 2019).
- Romanian Ministry of the Environment; Aquaproiect, S.A. The Atlas of Water Cadaster from Romania; Romanian Ministry of the Environment: Bucuresti, Romania, 1992. (In Romanian)
- Dunea, D.; Tanislav, D.; Stoica, A.; Bretcan, P.; Muratoreanu, G.; Frasin, L.N.; Alexandrescu, D.; Iliescu, N. ECO-PRACT: A project for developing the research competences of students regarding the monitoring of floristic composition in mountain grasslands. J. Sci. Arts 2018, 18, 225–238. [Google Scholar]
- Diaconu, D.C.; Andronache, I.; Ahammer, H.; Ciobotaru, A.M.; Zelenakova, M.; Dinescu, R.; Pozdnyakov, A.V.; Chupikova, S.A. Fractal drainage model-a new approach to determinate the complexity of watershed. Acta Montan. Slovaca 2017, 22, 12–21. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation, Version 2009. Temple, Texas Water Resources Institute: USDA-ARS Grassland, Soil and Water Research Laboratory, 2011. Available online: http://swat.tamu.edu/media/99192/swat2009-theory.pdf (accessed on 20 December 2019).
- Abbaspour, K.C. SWAT-CUP 2012. SWAT Calibration and Uncertainty Program—A User Manual, 2013. Available online: https://swat.tamu.edu/media/114860/usermanual_swatcup.pdf (accessed on 20 December 2019).
- Dunea, D.; Iordache, Ş.; Pohoaţă, A.; Cosmin, M. Prediction of nutrient loads from wastewater effluents on Ialomita River water quality using SWAT model support. Ann. Food Sci. Technol. 2013, 14, 356–365. [Google Scholar]
- Wang, R.; Yuan, Y.; Yen, H.; Grieneisen, M.; Arnold, J.; Wang, D.; Wang, C.; Zhang, M. A review of pesticide fate and transport simulation at watershed level using SWAT: Current status and research concerns. Sci. Total Environ. 2019, 669, 512–526. [Google Scholar] [CrossRef]
- Chun, J.A.; Baik, J.; Kim, D.; Choi, M. A comparative assessment of SWAT-model-based evapotranspiration against regional-scale estimates. Ecol. Eng. 2018, 122, 1–9. [Google Scholar] [CrossRef]
- Francesconi, W.; Srinivasan, R.; Pérez-Miñana, E.; Willcock, S.P.; Quintero, M. Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: A systematic review. J. Hydrol. 2016, 535, 625–636. [Google Scholar] [CrossRef]
- Niraula, R.; Kalin, L.; Srivastava, P.; Anderson, C.J. Identifying critical source areas of nonpoint source pollution with SWAT and GWLF. Ecol. Model. 2013, 268, 123–133. [Google Scholar] [CrossRef]
- Naramngam, S.; Tong, S.T.Y. Environmental and economic implications of various conservative agricultural practices in the Upper Little Miami River basin. Agric. Water Manag. 2013, 119, 65–79. [Google Scholar] [CrossRef]
- Sommerlot, A.R.; Nejadhashemi, A.P.; Woznicki, S.A.; Prohaska, M.D. Evaluating the impact of field-scale management strategies on sediment transport to the watershed outlet. J. Environ. Manag. 2013, 128, 735–748. [Google Scholar] [CrossRef] [PubMed]
- Einheuser, M.D.; Nejadhashemi, A.P.; Woznicki, S.A. Simulating stream health sensitivity to landscape changes due to bioenergy crops expansion. Biomass Bioenergy 2013, 58, 198–209. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Leta, O.T.; De Fraine, B.; van Griensven, A.; Bauwens, W. OpenMI-based integrated sediment transport modelling of the river Zenne, Belgium. Environ. Model. Softw. 2013, 47, 193–206. [Google Scholar]
- Santra, P.; Das, B.S. Modeling runoff from an agricultural watershed of western catchment of Chilika lake through ArcSWAT. J. Hydro-Environ. Res. 2013. [Google Scholar] [CrossRef]
- Kim, J.; Choi, J.; Choi, C.; Park, S. Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea. Sci. Total Environ. 2013, 452–453, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Ficklin, D.L.; Liu, X.; Zhang, M. Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach. Sci. Total Environ. 2013, 450–451, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Bălteanu, D.; Micu, D.; Costache, A.; Diana, D.; Persu, M. Socio-economic vulnerability to floods and flash-floods in the bend subcarpathians, Romania. Int. Multidiscip. Sci. GeoConference Surv. Geol. Min. Ecol. Manag. 2015, 1, 577–584. [Google Scholar]
- Oprea, M.; Dunea, D. SBC-MEDIU: A multi-expert system for environmental diagnosis. Environ. Eng. Manag. J. (EEMJ) 2010, 9, 205–213. [Google Scholar]
- Diaconu, D.C.; Andronache, I.; Pintilii, R.-D.; Bretcan, P.; Simion, A.G.; Draghici, C.C.; Gruia, K.A.; Grecu, A.; Marin, M.; Peptenatu, D. Using fractal fragmentation and compaction index in analysis of the deforestation process in Bucegi Mountains Group, Romania. Carpathian J. Earth Environ. Sci. 2019, 14, 431–438. [Google Scholar]
- Costache, A.; Sencovici, M.; Murarescu, O. Land use and land cover change in Dambovita county, Romania (1990–2012). In Proceedings of the 14th SGEM GeoConference on Ecology, Economics, Education and Legislation, Albena, Bulgaria, 19–25 June 2014; Volume 1, pp. 405–412, ISBN 978-619-7105-17-9. [Google Scholar]
- Water Quality Standards: SR EN ISO 5667-1: 2007, Water Quality. Sampling. Part 1: General Guide for Establishing Programs and Sampling Techniques; SR EN ISO 5667-3: 2013, Water Quality. Sampling. Part 3: Conservation and Handling of Water Samples; SR ISO 5667-6/1997, Water Quality. Sampling. Part 6: Guide for Sampling of Rivers and Streams; SR EN ISO 5667-6: 2017, Water Quality. Sampling. Part 6: Guide for Sampling of Rivers and Streams; SR EN ISO 5667-14: 2017, Water Quality. Sampling. Part 14: Guide for Quality Assurance and Quality Control in the Collection and Treatment of Water in the Environment. Available online: https://www.iso.org/publication-list.html (accessed on 20 December 2019).
- Panda, U.C.; Sundaray, S.K.; Rath, P.; Nayak, B.B.; Bhatta, D. Application of factor and cluster analysis for characterization of river and estuarine water systems—A case study: Mahanadi River (India). J. Hydrol. 2006, 331, 434–445. [Google Scholar] [CrossRef]
- Wang, P.; Yao, J.; Wang, G.; Hao, F.; Shrestha, S.; Xue, B.; Peng, Y.; Xie, G. Exploring the application of artificial intelligence technology for identification of water pollution characteristics and tracing the source of water quality pollutants. Sci. Total Environ. 2019, 693, 133440. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.; Ramsankaran, R. Improving streamflow simulations and forecasting performance of SWAT model by assimilating remotely sensed soil moisture observations. J. Hydrol. 2017, 555, 683–696. [Google Scholar] [CrossRef]
- Petrow, T.; Merz, B. Trends in flood magnitude, frequency and seasonality in Germany in the period 1951–2002. J. Hydrol. 2009, 371, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Dunea, D.; Iordache, Ş. An analysis of high flows from stream hydrographs of Ialomita River at Targoviste gauge station. Ann. Food Sci. Technol. 2014, 14, 154–161. [Google Scholar]
- Ma, T.; Duan, Z.; Lia, R.; Song, X. Enhancing SWAT with remotely sensed LAI for improved modelling of ecohydrological process in subtropics. J. Hydrol. 2019, 570, 802–815. [Google Scholar] [CrossRef] [Green Version]
- Luan, X.; Wu, P.; Sun, S.; Wang, Y.; Gao, X. Quantitative study of the crop production water footprint using the SWAT model. Ecol. Indic. 2018, 89, 1–10. [Google Scholar] [CrossRef]
- Romagnoli, M.; Portapila, M.; Rigalli, A.; Maydana, G.; Burgués, M.; García, C.M. Assessment of the SWAT model to simulate a watershed with limited available data in the Pampas region, Argentina. Sci. Total Environ. 2017, 596–597, 437–450. [Google Scholar] [CrossRef] [Green Version]
- Franklin, J. Mapping Species Distributions—Spatial Inference and Prediction; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Glenn, E.P.; Neale, C.M.U.; Hunsaker, D.J.; Nagler, P.L. Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems. Hydrol. Process. 2011, 25, 4050–4062. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, M.P.; Escuin, S.; Cano, F.; Cifuentes, V.; Padilla, F.L.M.; Tirado, J.L.; Oyonarte, N.; Fernandez, P.; Mateos, L. Monitoring evapotranspiration of irrigated crops using crop coefficients derived from time series of satellite images. II. Application on basin scale. Agric. Water Manag. 2013, 125, 92–104. [Google Scholar] [CrossRef]
- Vuolo, F.; Żółtak, M.; Pipitone, C.; Zappa, L.; Wenng, H.; Immitzer, M.; Atzberger, C.; Weiss, M.; Baret, F. Data service platform for Sentinel-2 surface reflectance and value-added products: System use and examples. Remote Sens. 2016, 8, 938. [Google Scholar] [CrossRef] [Green Version]
No. | River | Hydrometric Station | Watershed Area F (km2) | Watershed Average Altitude H (m a.BS.l) | Hydrological Parameters | ||
---|---|---|---|---|---|---|---|
Multi-Annual Average Discharge Qmma | Maximum Discharge at 1% Probability Qmax 1% | Suspended Sediment Discharge R | |||||
(m3/s) | (m3/s) | (kg/s) | |||||
1 | Ialomita | Baleni-Romani (downstream Targoviste | 901 | 761 | 9.17 | 770 | 16.1 |
2 | Ialomita | Silistea Snagovului (before Dridu reservoir) | 1920 | 515 | 12.4 | 870 | 15.8 |
3 | Prahova | Adancata (near the confluence with Ialomita River) | 3682 | 549 | 27.3 | 1165 | 113 |
4 | Ialomita | Cosereni (near Urziceni) | 6265 | 490 | 42.7 | 1730 | 102 |
5 | Ialomita | Slobozia | 9154 | 365 | 41.7 | 765 | 63 |
Variable | pH | NH4-N | Alkalinity | NO3-N | BOD5 | TSS | DO | PO4-P | Discharge | TDS |
---|---|---|---|---|---|---|---|---|---|---|
Unit | - | mg/L | mmol/L | mg/L | mg/L | mg/L | mg/L | mg/L | m3/s | mg/L |
Mean | 7.60 | 1.20 | 4.12 | 2.60 | 5.50 | 508.32 | 8.87 | 0.09 | 38.60 | 733.69 |
Std. Error of Mean | 0.05 | 0.18 | 0.08 | 0.17 | 0.72 | 68.73 | 0.23 | 0.00 | 3.44 | 13.95 |
Median | 7.70 | 0.25 | 4.00 | 2.12 | 3.58 | 243.50 | 8.90 | 0.08 | 32.70 | 731.00 |
Std. Deviation | 0.48 | 2.30 | 0.89 | 2.11 | 7.67 | 824.75 | 2.48 | 0.06 | 29.00 | 138.10 |
Variance | 0.23 | 5.31 | 0.80 | 4.47 | 58.81 | 680,211.9 | 6.15 | 0.00 | 841.10 | 19,070.7 |
Skewness | −0.77 | 3.41 | 0.32 | 3.21 | 6.80 | 3.15 | 0.27 | 1.26 | 2.00 | 0.23 |
Std. Error of Skewness | 0.23 | 0.19 | 0.23 | 0.20 | 0.23 | 0.20 | 0.22 | 0.20 | 0.29 | 0.24 |
Kurtosis | −0.19 | 13.88 | 0.86 | 15.97 | 58.87 | 10.46 | 0.13 | 2.27 | 5.04 | −0.50 |
Std. Error of Kurtosis | 0.45 | 0.39 | 0.45 | 0.39 | 0.45 | 0.40 | 0.44 | 0.39 | 0.56 | 0.48 |
Range | 1.99 | 14.85 | 4.93 | 17.22 | 74.71 | 4441.80 | 13.24 | 0.31 | 156.78 | 597.80 |
Minimum | 6.41 | 0.02 | 1.34 | 0.08 | 0.01 | 15.20 | 2.72 | 0.00 | 8.22 | 455.20 |
Maximum | 8.40 | 14.87 | 6.27 | 17.30 | 74.71 | 4457.00 | 15.96 | 0.31 | 165 | 1053 |
Factor | Eigenvalue | % Total Variance | Cumulative% |
---|---|---|---|
1 | 2.121 | 26.515 | 26.515 |
2 | 1.472 | 18.401 | 44.916 |
3 | 1.055 | 13.189 | 58.105 |
4 | 1.031 | 12.889 | 70.994 |
Variable | Component | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
pH | −0.775 | 0.039 | −0.089 | 0.158 |
NH4-N | 0.733 | 0.282 | 0.341 | 0.082 |
Alkalinity | 0.033 | 0.847 | −0.244 | 0.058 |
NO3-N | 0.412 | 0.503 | 0.298 | 0.428 |
BOD5 | 0.032 | −0.081 | 0.906 | −0.052 |
TSS | −0.178 | −0.123 | −0.063 | 0.837 |
DO | −0.12 | 0.728 | 0.137 | −0.334 |
PO4-P | 0.709 | −0.127 | −0.223 | −0.053 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dunea, D.; Bretcan, P.; Tanislav, D.; Serban, G.; Teodorescu, R.; Iordache, S.; Petrescu, N.; Tuchiu, E. Evaluation of Water Quality in Ialomita River Basin in Relationship with Land Cover Patterns. Water 2020, 12, 735. https://doi.org/10.3390/w12030735
Dunea D, Bretcan P, Tanislav D, Serban G, Teodorescu R, Iordache S, Petrescu N, Tuchiu E. Evaluation of Water Quality in Ialomita River Basin in Relationship with Land Cover Patterns. Water. 2020; 12(3):735. https://doi.org/10.3390/w12030735
Chicago/Turabian StyleDunea, Daniel, Petre Bretcan, Danut Tanislav, Gheorghe Serban, Razvan Teodorescu, Stefania Iordache, Nicolae Petrescu, and Elena Tuchiu. 2020. "Evaluation of Water Quality in Ialomita River Basin in Relationship with Land Cover Patterns" Water 12, no. 3: 735. https://doi.org/10.3390/w12030735