Trends in Ozonation Disinfection By-Products—Occurrence, Analysis and Toxicity of Carboxylic Acids
Abstract
:1. Introduction
2. Precursors of CABPs
3. Formation and occurrence of CABPs in Drinking Water
3.1. Parameters Effecting the Formation of CABPs
3.1.1. Ozone Dose and Organic Carbon
3.1.2. Temperature
3.2. Occurrence of CABPs
4. Analytical Quantification of CABPs
5. Toxicity of CABPs
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McGuire, M.J. Eight revolutions in the history of US drinking water disinfection. J. Am. Water Work. Assoc. 2006, 98, 123–149. [Google Scholar] [CrossRef]
- Hrudey, S.E. Chlorination disinfection by-products, public health risk tradeoffs and me. Water Res. 2009, 43, 2057–2092. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuijsen, M.J.; Toledano, M.B.; Eaton, N.E.; Fawell, J.; Elliott, P. Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: A review. Occup. Environ. Med. 2000, 57, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Somani, S.; Ingole, N.; Principal, I.; Ghatkhed, A. Alternative approach to chlorination for disinfection of drinking water an overview. Int. J. Adv. Eng. Res. Stud. 2011, 1, 47–50. [Google Scholar]
- Hua, G.; Reckhow, D.A. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants. Water Res. 2007, 41, 1667–1678. [Google Scholar] [CrossRef] [PubMed]
- Le Pauloue, J.; Langlais, B. State-of-the-art of ozonation in France. J. Int. Ozone Assoc. 1999. [Google Scholar] [CrossRef]
- Loeb, B.L.; Thompson, C.M.; Drago, J.; Takahara, H.; Baig, S. Worldwide ozone capacity for treatment of drinking water and wastewater: A review. Ozone Sci. Eng. 2012, 34, 64–77. [Google Scholar] [CrossRef]
- Liu, X.; Liu, R.; Zhu, B.; Ruan, T.; Jiang, G. Characterization of carbonyl disinfection by-products during ozonation, chlorination and chloramination of dissolved organic matters. Environ. Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Richardson, S.D.; Thruston, A.D.; Caughran, T.V.; Chen, P.H.; Collette, T.W.; Floyd, T.L.; Schenck, K.M.; Lykins, B.W.; Sun, G.-R.; Majetich, G. Identification of new ozone disinfection byproducts in drinking water. Environ. Sci. Technol. 1999, 33, 3368–3377. [Google Scholar] [CrossRef]
- Park, K.-Y.; Choi, S.-Y.; Lee, S.-H.; Kweon, J.-H.; Song, J.-H. Comparison of formation of disinfection by-products by chlorination and ozonation of wastewater effluents and their toxicity to Daphnia magna. Environ. Pollut. 2016, 215, 314–321. [Google Scholar] [CrossRef]
- LoPachin, R.M.; Gavin, T. Molecular mechanisms of aldehyde toxicity: A chemical perspective. Chem. Res. Toxicol. 2014, 27, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Cui, C.; Yu, S. Exploring the pathways of aromatic carboxylic acids in ozone solutions. Rsc Adv. 2017, 7, 34339–34347. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Tang, X.; Kim, J.; Korshin, G.V. Formation of aldehydes and carboxylic acids in ozonated surface water and wastewater: A clear relationship with fluorescence changes. Chemosphere 2015, 125, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, D.; Xu, X.; Wang, Z. Formation of known and unknown disinfection by-products from natural organic matter fractions during chlorination, chloramination and ozonation. Sci. Total Environ. 2017, 587, 177–184. [Google Scholar] [CrossRef] [PubMed]
- McDonald, S.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Analytical chemistry of freshwater humic substances. Anal. Chim. Acta 2004, 527, 105–124. [Google Scholar] [CrossRef]
- Hammes, F.; Salhi, E.; Köster, O.; Kaiser, H.-P.; Egli, T.; Von Gunten, U. Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon (AOC) formation during the ozonation of drinking water. Water Res. 2006, 40, 2275–2286. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, T.; Ma, J.; Chen, Z. Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water. J. Hazard. Mater. 2009, 162, 140–145. [Google Scholar] [CrossRef]
- Kusakabe, K.; Aso, S.; Hayashi, J.-I.; Isomura, K.; Morooka, S. Decomposition of humic acid and reduction of trihalomethane formation potential in water by ozone with u.v. irradiation. Water Res. 1990, 24, 781–785. [Google Scholar] [CrossRef]
- Krasner, S.; Coffey, B.; Hacker, P.; Hwang, C.; Kuo, C.; Mofidi, A.; Sclimenti, M. The effect of ozonation and biofiltration on NOM. In Proceedings of the Natural Organic Workshop (Influence of Natural Organic Matter Characteristics on Drinking Water Treatment and Quality, La Verne, CA, USA, 18–19 Septembre 1996. [Google Scholar]
- Richardson, S.D. Disinfection by-products and other emerging contaminants in drinking water. Trac Trends Anal. Chem. 2003, 22, 666–684. [Google Scholar] [CrossRef]
- Miltner, R.J.; Shukairy, H.M.; Summers, R.S. Disinfection by-product formation and control by ozonation and biotreatment. J. Am. Water Work. Assoc. 1992, 84, 53–62. [Google Scholar] [CrossRef]
- Xie, Y.; Reckhow, D.A. Formation of ketoacids in ozonated drinking water. J. Int. Ozone Assoc. 1992. [Google Scholar] [CrossRef]
- Griffini, O.; Bao, M.; Barbieri, K.; Burrini, D.; Santianni, D.; Pantani, F. Formation and removal of biodegradable ozonation by-products during ozonation-biofiltration treatment: Pilot-scale evaluation. J. Int. Ozone Assoc. 1999. [Google Scholar] [CrossRef]
- Can, Z.S.; Gurol, M. Formaldehyde formation during ozonation of drinking water. Ozone Sci. Eng. 2003, 25, 41–51. [Google Scholar] [CrossRef]
- Huang, W.-J.; Chen, L.-Y.; Peng, H.-S. Effect of NOM characteristics on brominated organics formation by ozonation. Environ. Int. 2004, 29, 1049–1055. [Google Scholar] [CrossRef]
- Huang, W.-J.; Fang, G.-C.; Wang, C.-C. The determination and fate of disinfection by-products from ozonation of polluted raw water. Sci. Total Environ. 2005, 345, 261–272. [Google Scholar] [CrossRef]
- Langlais, B.; Reckhow, D.A.; Brink, D.R. Ozone in Water Treatment: Application and Engineering; Routledge: Abingdon, UK, 2019. [Google Scholar]
- Kozyatnyk, I.; Świetlik, J.; Raczyk-Stanisławiak, U.; Dąbrowska, A.; Klymenko, N.; Nawrocki, J. Influence of oxidation on fulvic acids composition and biodegradability. Chemosphere 2013, 92, 1335–1342. [Google Scholar] [CrossRef]
- Glaze, W.H.; Koga, E.C.R.; Cancilla, D. Application of Closed Loop Stripping and XAD Resin Adsorption for the Determination of ozone by-products from natural water. Biohazards Drink. Water Treat. 1988, 1, 201. [Google Scholar]
- Porter, P. A Comparison of Ozonation Systems with Respect to Disinfection by-Product Formation and Microbial Inactivation; National Library of Canada = Bibliothèque nationale du Canada: Ottawa, ON, Canada, 2000. [Google Scholar]
- Peldszus, S.; Huck, P.M.; Andrews, S.A. Determination of short-chain aliphathic, oxo-and hydroxy-acids in drinking water at low microgram per liter concentrations. J. Chromatogr. A 1996, 723, 27–34. [Google Scholar] [CrossRef]
- Kuo, C.-Y. Improved application of ion chromatographic determination of carboxylic acids in ozonated drinking water. J. Chromatogr. A 1998, 804, 265–272. [Google Scholar] [CrossRef]
- Gagnon, G.A.; Booth, S.D.; Peldszus, S.; Mutti, D.; Smith, F.; Huck, P.M. Carboxylic acids: Formation and removal in full-scale plants. J. Am. Water Work. Assoc. 1997, 89, 88–97. [Google Scholar] [CrossRef]
- Richardson, S.D.; Caughran, T.V.; Poiger, T.; Guo, Y.; Crumley, F.G. Application of DNPH derivatization with LC/MS to the identification of polar carbonyl disinfection byproducts in drinking water. Ozone Sci. Eng. 2000, 22, 653–675. [Google Scholar] [CrossRef]
- Nawrocki, J.; Świetlik, J.; Raczyk-Stanisławiak, U.; Dąbrowska, A.; Biłozor, S.; Ilecki, W. Influence of ozonation conditions on aldehyde and carboxylic acid formation. Ozone Sci. Eng. 2003, 25, 53–62. [Google Scholar] [CrossRef]
- Jurado-Sánchez, B.; Ballesteros, E.; Gallego, M. Occurrence of carboxylic acids in different steps of two drinking-water treatment plants using different disinfectants. Water Res. 2014, 51, 186–197. [Google Scholar] [CrossRef]
- Richardson, S.; Thruston, A.; Caughran, T.; Chen, P.; Collette, T.; Schenck, K.; Lykins, B.; Rav-Acha, C.; Glezer, V. Identification of new drinking water disinfection by-products from ozone, chlorine dioxide, chloramine and chlorine. Water Air Soil Pollut. 2000, 123, 95–102. [Google Scholar] [CrossRef]
- Jurado-Sánchez, B.; Ballesteros, E.; Gallego, M. Determination of carboxylic acids in water by gas chromatography–mass spectrometry after continuous extraction and derivatisation. Talanta 2012, 93, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Cui, C.; Yu, S. Seasonal evaluation of disinfection by-products throughout two full-scale drinking water treatment plants. Chemosphere 2017, 179, 290–297. [Google Scholar] [CrossRef]
- Faria, P.C.C.; Órfão, J.J.M.; Pereira, M.F.R. Activated carbon catalytic ozonation of oxamic and oxalic acids. Appl. Catal. B Environ. 2008, 79, 237–243. [Google Scholar] [CrossRef]
- Kuo, C.-Y.; Krasner, S.W.; Davis, M.K.; Minera, R.A.; Amy, G.L. Water Disinfection and Natural Organic Matter: Characterization and Control (ACS Symposium Series, No. 649); American Chemical Society: Washington, DC, USA, 1996; p. 350. [Google Scholar]
- Beale, R.; Liss, P.; Nightingale, P. First oceanic measurements of ethanol and propanol. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Kuo, P.P.; Chian, E.S.; Chang, B.J. Identification of end products resulting from ozonation and chlorination of organic compounds commonly found in water. Environ. Sci. Technol. 1977, 11, 1177–1181. [Google Scholar] [CrossRef]
- Jurado-Sánchez, B.; Ballesteros, E.; Gallego, M. Determination of carboxylic acids in water by gas chromatography using several detectors after flow preconcentration. J. Chromatogr. A 2010, 1217, 7440–7447. [Google Scholar] [CrossRef]
- Rompa, M.; Kremer, E.; Zygmunt, B. Derivatisation in gas chromatographic determination of acidic herbicides in aqueous environmental samples. Anal. Bioanal. Chem. 2003, 377, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Adams, M.; Pawliszyn, J. Determination of fatty acids using solid phase microextraction. Anal. Chem. 1995, 67, 4396–4403. [Google Scholar] [CrossRef]
- Pan, L.; Pawliszyn, J. Derivatization/solid-phase microextraction: New approach to polar analytes. Anal. Chem. 1997, 69, 196–205. [Google Scholar] [CrossRef]
- Wert, E.C.; Rosario-Ortiz, F.L.; Drury, D.D.; Snyder, S.A. Formation of oxidation byproducts from ozonation of wastewater. Water Res. 2007, 41, 1481–1490. [Google Scholar] [CrossRef]
- Glaze, W.H.; Koga, M.; Cancilla, D.; Wang, K.; McGuire, M.J.; Liang, S.; Davis, M.K.; Tate, C.H.; Aieta, E.M. Evaluation of ozonation by-products from two California surface waters. J. Am. Water Work. Assoc. 1989, 81, 66–73. [Google Scholar] [CrossRef]
- Richardson, S.D.; Thruston, A.D.; Collette, T.W.; Patterson, K.S.; Lykins, B.W.; Majetich, G.; Zhang, Y. Multispectral identification of chlorine dioxide disinfection byproducts in drinking water. Environ. Sci. Technol. 1994, 28, 592–599. [Google Scholar] [CrossRef]
- Peldszus, S.; Huck, P.M.; Andrews, S.A. Quantitative determination of oxalate and other organic acids in drinking water at low μg/l concentrations. J. Chromatogr. A 1998, 793, 198–203. [Google Scholar] [CrossRef]
- Yo, S.-P. Analysis of volatile fatty acids in wastewater collected from a pig farm by a solid phase microextraction method. Chemosphere 1999, 38, 823–834. [Google Scholar] [CrossRef]
- Cruwys, J.; Dinsdale, R.; Hawkes, F.; Hawkes, D. Development of a static headspace gas chromatographic procedure for the routine analysis of volatile fatty acids in wastewaters. J. Chromatogr. A 2002, 945, 195–209. [Google Scholar] [CrossRef]
- Abalos, M.; Bayona, J. Application of gas chromatography coupled to chemical ionisation mass spectrometry following headspace solid-phase microextraction for the determination of free volatile fatty acids in aqueous samples. J. Chromatogr. A 2000, 891, 287–294. [Google Scholar] [CrossRef]
- Abalos, M.; Bayona, J.; Pawliszyn, J. Development of a headspace solid-phase microextraction procedure for the determination of free volatile fatty acids in waste waters. J. Chromatogr. A 2000, 873, 107–115. [Google Scholar] [CrossRef]
- Ohta, K.; Ohashi, M.; Jin, J.-Y.; Takeuchi, T.; Fujimoto, C.; Choi, S.-H.; Ryoo, J.-J.; Lee, K.-P. Separation of aliphatic carboxylic acids and benzenecarboxylic acids by ion-exclusion chromatography with various cation-exchange resin columns and sulfuric acid as eluent. J. Chromatogr. A 2003, 997, 117–125. [Google Scholar] [CrossRef]
- Li, C.; Wang, D.; Li, N.; Luo, Q.; Xu, X.; Wang, Z. Identifying unknown by-products in drinking water using comprehensive two-dimensional gas chromatography–quadrupole mass spectrometry and in silico toxicity assessment. Chemosphere 2016, 163, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Makoś, P.; Fernandes, A.; Boczkaj, G. Method for the determination of carboxylic acids in industrial effluents using dispersive liquid-liquid microextraction with injection port derivatization gas chromatography–mass spectrometry. J. Chromatogr. A 2017, 1517, 26–34. [Google Scholar] [CrossRef]
- Makoś, P.; Fernandes, A.; Przyjazny, A.; Boczkaj, G. Sample preparation procedure using extraction and derivatization of carboxylic acids from aqueous samples by means of deep eutectic solvents for gas chromatographic-mass spectrometric analysis. J. Chromatogr. A 2018, 1555, 10–19. [Google Scholar] [CrossRef]
- Zoeteman, B.; Hrubec, J.; De Greef, E.; Kool, H. Mutagenic activity associated with by-products of drinking water disinfection by chlorine, chlorine dioxide, ozone and UV-irradiation. Environ. Health Perspect. 1982, 46, 197–205. [Google Scholar] [CrossRef]
- Kool, H.; Hrubec, J. The Influence of an Ozone, Chlorine and Chlorine Dioxide Treatment on Mutagentic Activity in (Drinking) Water; Taylor & Francis: Abingdon, UK, 1986. [Google Scholar]
- Moudgal, C.J.; Lipscomb, J.C.; Bruce, R.M. Potential health effects of drinking water disinfection by-products using quantitative structure toxicity relationship. Toxicology 2000, 147, 109–131. [Google Scholar] [CrossRef]
- McKnight, A.; Reckhow, D.A. Reactions of ozonation byproducts with chlorine and chloramines. In Proceedings of the Conference proceedings, AWWA Annual Conference, Vancouver, BC, Canada, 18–22 June 1992. [Google Scholar]
- Chu, C.; Lu, C. Effects of oxalic acid on the regrowth of heterotrophic bacteria in the distributed drinking water. Chemosphere 2004, 57, 531–539. [Google Scholar] [CrossRef]
- Van der Kooij, D.; Hijnen, W. Substrate utilization by an oxalate-consuming Spirillum species in relation to its growth in ozonated water. Appl. Environ. Microbiol. 1984, 47, 551–559. [Google Scholar] [CrossRef] [Green Version]
- CAMEO Chemicals. Available online: https://cameochemicals.noaa.gov/react/3 (accessed on 15 January 2019).
- Sandvik. Available online: https://www.materials.sandvik/en/materials-center/corrosion-tables/2019 (accessed on 15 January 2019).
Location | Ozonation Conditions and Water Characteristics | Carboxylic Acids (CAs) | Experiment Type | Estimated Concentrations of CAs | Ref. | ||
---|---|---|---|---|---|---|---|
Raw Water (Total: Minimum to Maximum) | Ozonated Water (Total: Minimum to Maximum) | ||||||
1 | Los Angeles Aqueduct filtration plant, California, US | Ozone dose: 1mg/L; TOC: 1.1–1.9 mg/L; total alkalinity: 113–123 mg/L as CaCO3. | Hexanoic acid, heptanoic acid, benoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, pentadecanoic acid, tetradecanoic acid, 9-hexadecenoic acid, hexadecenoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, eicosanoic acid, Heneicosanoic acid, docosanoic acid, tricosanoic acid, tetracosanoic acid | Full scale | 32–3975 ng/L (12482 ng/L) | 20–1705 ng/L (6954 ng/L) | [29] |
2 | Los Angeles Aqueduct Water (LAAW), California, US | Ozone dose: 0.22 mg ozone/L-min; flow rate: 1.0 L/min; TOC: 1.6 mg/L; alkalinity- 120 mg as CaCO3/L. | Hexanoic acid, heptanoic acid, benoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, pentadecanoic acid, tetradecanoic acid, 9-hexadecenoic acid, hexadecenoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, eicosanoic acid, Heneicosanoic acid, docosanoic acid, tricosanoic acid, tetracosanoic acid | Batch scale | 0.9–793 ng/L (2498.7 ng/L) | 21–341 ng/L (1111 ng/L) | [29] |
3 | State Project Water (SPW), California, US | Ozone dose: 0.22 mg ozone/L-min; flow rate: 1.0 L/min; TOC: 2.6 mg/L; alkalinity- 84–88 as CaCO3/L. | Heptanoic acid, decanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, 9-hexadecenoic acid, hexadecenoic acid, heptadecanoic acid, octadecanoic acid | Batch scale | 75–1900 ng/L (4855 ng/L) | 46–1600 ng/L (4448) ng/L | |
4 | Anconella plant in Florence (Arno River water), Italy | 0.7–1.6 mgO3/mgC; DOC: 0.73–2.39 mg/L; alkalinity: 148-235 mg/L as HCO3. | Glyoxylic acid, pyruvic acid, keto malonic acid | Batch scale | No data | 20–112 µg/L | [23] |
5 | Britannia Water Purification Facility, Ottawa, Ontario, Canada | Summer water matrix; TOC: 3.7 mg/L; ozone dose: 0.1–0.5 mg/min; alkalinity: 9.2 as CaCO3/L; pH: 6; experimental temperature: 22 °C. | Formic acid, acetic acid, glycolic acid, pyruvic acid | Full scale | No data | 659.8–873 (1102) µg/L | [30] |
Fall water matrix; TOC: 2.8 mg/L; ozone dose: 0.1–0.5 mg/min; alkalinity: 10 as CaCO3/L; pH: 6; experimental temperature: 11 °C. | No data | 196.5–244.8 (327) µg/L | |||||
6 | Water treatment plant, Ontario, Canada | No data | Acetic acid, glycolic acid, butyric acid, formic acid, ketobutyric acid, pyruvic acid | Full scale | No data | 1–277 µg/L (522) | [31] |
7 | California state project water | Ozone dose: 1.6 mg/L; pH: 8.3. | Acetic acid, propionic acid, formic acid, pyruvic acid, glyoxylic acid, oxalic acid and ketomalonic acid. | Full scale | No data | 3.7–210.3 µg/L | [32] |
8 | The Mannheim Water Treatment Plant in Kitchener, Ontario, Canada | Ozone dose: 1.8–4 mg/L; organic carbon: 4–6.3 mg/L; temperature: 2.8-22 °C; alkalinity: 140-320 mg/L as CaCO3. | Acetic acid, glycolic acid, formic acid, butyric acid, pyruvic acid, α-ketobutyric acid | Full scale | Less than detection limits | 18–271 µg/L | [33] |
9 | Valdosta Water Treatment Plant, Valdosta, GA (Treats ground water) | TOC: 1.0 mg/L; Ozone dose: 3.0 mg/L; contact time: 90 sec. | Glyoxylic acid, pyruvic acid | Batch scale | No data | Identified | [34] |
10 | Lanier Water Treatment Plant, Gwinnett County | TOC: 1.2 mg/L; Ozone diose: 0.5 mg/L; contact time: 4 min. | Glyoxylic acid, pyruvic acid, ketomanoic acid Oxaloacetic acid | Full scale | No data | Identified | |
11 | Poznań Water Treatment and Sewage Co. | TOC: 3.8–6.5 mg/L; pH: 7.06–7.48; alkalinity: −3.35-4.30 mval/L; ozone dose: 40–60 mg/L. | Formic and oxalic acid | Full scale | No data | 1–480 µg/L | [35] |
12 | Feng-San Reservoir, Taiwan | DOC: 3.0–3.5 mg/l; ozone dose: 0.5–11 mg/mg DOC | Propanoic acid, Benzoic acid, Octanoic acid, Nonanoic acid, 7-Nonenoic acid, Undecanoic acid, Dodecanoic acid, Tridecanoic acid, Teradecanoic acid, Pentadecanoic acid, Hexadecanoic acid, n-Octadecenoic acid, Nonanedioic acid | Batch scale | Identified | Identified | [26] |
13 | Mississippi River water | TOC- 2.7 2.6, 3.7 and 3.0 mg/L; alkalinity: 102, 110, 112 and 140 mg/L; ozone dose: 2.1, 4.3, 3.0 and 4.3 mg/L. | 2-methylpropanoic acid, butanoic acid, 3-methylbutanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, phenylacetic acid, benzoic acid, ethanedioic acid, propanedioic acid, butanedioic acid, 2-ethyl-3-methylmaleic acid, tert-butylmaleic acid, pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, nonanedioic acid, decanedioic acid, undecanedioic acid, tridecanedioic acid, phthalic acid, isophthalic acid, terephthalic acid, 1,2,4-benzenetricarboxylic acid, 1,3,5-benzenetricarboxylic acid, 1,2,4,5- benzenetetracarboxylic acid, 1,2,3,4-benzenetetracarboxylic acid, 1,2,3,5-benzenetetracarboxylic acid | Batch scale | Identified | Identified | [9] |
14 | surface water treatment plant located in SE Spain | Ozonation and chlorination | 18 (Spring) | Full scale | 0.02–20 (35.76) µg/L | 0.52–75 (268) µg/L | [36] |
18+o-Toluic acid (winter) | 0.02–25 (59.5) µg/L | 0.72–100 (467.7) µg/L | |||||
Acetic acid, butyric acid, decanoic acid, dodecanoic acid, glycolic acid, propanoic acid (summer) | 0.04–2.4 (3.2) µg/L | 0.13–3.6 (5.5) µg/L | |||||
15 | Full-scale ozone treatment plant in Valdosta, GA; pilot ozonation plant in Jefferson Parish, LA | Ozone dose of 2:1 (ozone:dissolved organic carbon) | 2-methyl propanoic acid, butanoic acid, 3-methyl butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, phenylacetic acid, benzoic acid, ethanedioic acid, propanedioic acid, butanedioic acid, 2-ethyl-3-methyl maleic acid, tert-butyl maleic acid, pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, nonanedioic acid, decanedioic acid, undecanedioic acid, tridecanedioic acid, phthalic acid, isophthalic acid, terephthalic acid, 1,2,4-benzenetricarboxylic acid, 1,3,5-benzenetricarboxylic acid, 1,2,4,5-benzenetetracarboxylic acid, 1,2,3,4-benzenetetracarboxylic acid, 1,2,3,5-benzenetetracarboxylic acid | Full scale | No data | Identified | [37] |
16 | Full-scale drinking water treatment plants located in Spain | Ozone and chlorine treatment | Acetic acid, Propionic acid, Butyric acid, 2-Methylbutyric acid, Hexanoic acid, Decanoic acid, Dodecanoic acid, Oleic acid, Oxalic acid, Pyruvic acid, Glycolic acid, Benzoic acid, o-Toluic acid, m-Toluic acid, p-Toluic acid, Phenylacetic acid, Salicylic acid, 3-Hydroxybenzoic acid, 2-Nitrobenzoic acid, 4-Nitrobenzoic acid, Phthalic acid, 1,2,3-Benzenetricarboxylic acid | Full scale | 44.87–95.47 µg/L | 937–1827 µg/L | [38] |
16 | Natural surface water, Lake Washington | DOC: 1.6 mg/L; ozone dose: 5.0 mg/L; contact time: 30 min. | Acetic acid, formic acid, oxalic acid | Batch scale | No data | 970 µg/L | [13] |
17 | Lake water, Lake Zurich | DOC: 1.2–1.4 mg/L; ozone dose: 2 ± 0.1 mg/L; pH: 7.9–8.0; alkalinity: 2.6 mmol/L; contact time: 3.5 min. | Acetic acid, formic acid, oxalic acid, pyruvic acid, glyoxalic acid | Batch scale | No data | 50 µg/L | [16] |
Lake water, Lake Greifensee | pH = 8.6–8.7; DOC = 3.9–4.0 mg/L; alkalinity = 2.6 mmol/L; ozone dose: 2 ± 0.1 mg/L; contact time: 3.5 min. | Acetic acid, formic acid, oxalic acid, pyruvic acid, glyoxalic acid | Batch scale | No data | 150 µg/L | ||
Drinking water treatment facility, Lengg, Zurich, Switzerland | Ozone dose 1.1 mg/L; contact time: 50 min. | Acetic acid, formic acid, oxalic acid, pyruvic acid, glyoxalic acid | Full scale | 0–4 µg/L (7 µg/L) | 0–7 µg/L (12.5 µg/L) | ||
18 | Drinking water treatment plants located in Taihu Lake Region, China | Ozonation | Spring: Formic acid, oxalic acid, malonic acid, fumaric acid, phthalic acid, benzoic acid, protocatechuic acid, 3-hydroxy benzoic acid | Full scale | ND-154.2 (227.6–345.6) µg/L | ND- 159.7 (483.4-782.56) µg/L | [39] |
Summer: Acetic acid, fumaric acid, benzoic acid, protocatechuic acid, 3-hydroxy benzoic acid | ND-214.16 (344.64–533.31) µg/L | ND-268.3 (311.4–858.5) µg/L | |||||
Autumn: Formic acid, acetic acid, fumaric acid, benzoic acid, protocatechuic acid, 3-hydroxy benzoic acid | ND-212.12 (296.45–633.27) µg/L | ND-158.4 (300–631.76) µg/L | |||||
Winter: Formic acid, oxalic acid, fumaric acid, phthalic acid, benzoic acid, protocatechuic acid, 3-hydroxy benzoic acid | ND-130.75 (241.69–301.22) µg/L | ND-139.65 (304.56–632.68) µg/L |
Carboxylic Acids (CAs) | Instrument Type | Sample Preparation | Detection Limit | References | |
---|---|---|---|---|---|
1 | Acetic, propionic, butyric, valeric, hexanoic, hep tanoic, octanoic, nonanoic, decanoic acid | GC-FID | Solid phase microextraction followed by derivatization (l-pyrenyldiazomethane) | Identified | [46] |
2 | Acetic acid, propionic acid, butyric acid, valeric acid | GC-FID | Solid phase microextraction | 3.1-760 µg/L | [47,48] |
3 | GC-ECD | Derivatization with Pentafluorobenzyl bromide and (pentafluorophenyl)diazoethane | 0.4-0.8 µg/L | ||
4 | 2-methylpropanoic acid, butanoic acid, 3-methylbutanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, phenylacetic acid, benzoic acid, ethanedioic acid, propanedioic acid, butanedioic acid, 2-ethyl-3-methylmaleic acid, tert-butylmaleic acid, pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, nonanedioic acid, decanedioic acid, undecanedioic acid, tridecanedioic acid, phthalic acid, isophthalic acid, terephthalic acid, 1,2,4-benzenetricarboxylic acid, 1,3,5-benzenetricarboxylic acid, 1,2,4,5- benzenetetracarboxylic acid, 1,2,3,4-benzenetetracarboxylic acid, 1,2,3,5-benzenetetracarboxylic acid | GC/MS, fused-silica column | Methylation derivatizations with BF3-methanol | Identified | [9] |
5 | Hexanoic acid, heptanoic acid, benoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, pentadecanoic acid, tetradecanoic acid, 9-hexadecenoic acid, hexadecenoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, eicosanoic acid, Heneicosanoic acid, docosanoic acid, tricosanoic acid, tetracosanoic acid | GC/MS, fused-silica column | Closed loop stripped analysis using Granular activated carbon as cartridge | Quantified | [29] |
6 | Hexanoic acid, heptanoic acid, benoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, pentadecanoic acid, tetradecanoic acid, 9-hexadecenoic acid, hexadecenoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, eicosanoic acid, Heneicosanoic acid, docosanoic acid, tricosanoic acid, tetracosanoic acid | GC/MS, fused-silica column | Non-ionic resin accumulation and methylation using diazomethane-ether solution | Quantified | [49] |
7 | Hexanoic acid, heptanoic acid, benzoic acid, octanoic acid, nonanoic acid, phthalic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, hexadecenoic acid, heptadecanoic acid, octadecanoic acid | GC/FT-IR, Restek Rtx-5 column | Sample concentration by adsorption on Amberlite XAD resins | Quantified | [50] |
8 | Glyoxylic acid, pyruvic acid, ketomalonic acid | GC-ECD, GC-EI, 30-m x 0.32-mm, 0.25-mm SPB-5 capillary column. | PFBHA-diazomethane double derivatization | 0.5 µg/L | [22] |
9 | Formic acid, acetic acid, glycolic acid, pyruvic acid, | IC-DC; Dionex AS 10-25Ox4mm | Direct injection | Quantified | [30] |
10 | Acetic acid, glycolic acid, butyric acid, formic acid, ketobutyric acid, pyruvic acid | IC-CDM; anion-exchange column | Direct injection (large sample loop: 740 µl) | 1 to 5 µg/L | [33] |
11 | Oxalic acid | IC | 740 ml sample loop (direct injection) concentrator column (heart-cut) | 9 μg/L (direct) 6 μg/L (heart-cut) | [51] |
12 | Acetic acid, propionic acid, formic acid, pyruvic acid, glyoxylic acid, oxalic acid and ketomalonic acid. | IC; Dionex 2000 | hydrogen cartridge (OnGuard-H+, P/N 39596; Dionex) | 2–6 μg/L | [32] |
13 | Glyoxylic acid, pyruvic acid, ketomanoic acid, 5-ketohexanoic acid, oxalacetic acid | LC-MS/MS spectrometer-Electrospray ionization; Supelco Supelcosil C18 LC column | Derivatization with DNPH followed by solid phase extraction using C-18 Empore disk (3M Corp.) | Identified | [34] |
14 | Formic and oxalic acid | Ion chromatography; DIONEX DX-500 system with IonPac AS-9-HC column; conductivity detector | Direct injection | Quantified | [35] |
15 | Glyoxylic acid, acetic acid, oxalic acid, pyruvic acid, 2-methylpropanoic acid, butanoic acid, 3-methylbutanoic acid, benzoic acid, 2-hydroxylbenzoic acid, phthalic acid and nitrobenzoic acid | GC/EI-MS, DB-1 column | Pentafluorobenzylhydroxylamine (PFBHA) derivatization | Quantified | [13,26] |
16 | Acetic acid, Formic acid, Propanoic acid, isobutyric Acid, Butanoic acid, Isovaleric acid, n-Valeric acid, Isocaproic acid, n-Caproic acid, Heptanoic acid | GC/MS; Stablewax DA fused-silica capillary column | Fiber adsorption | 0.03–11.5 mM/L | [52] |
17 | Acetic acid, Propionic acid, Isobutyric acid, n-Butyric acid, Isovaleric acid, n-Valeric acid | HS-GC, a free fatty acid phase (FFAP) fused-silica capillary column | Direct injection | 0.1–4.1 mg/L | [53] |
18 | Acetic acid, Propionic acid, Butyric acid, Valeric acid, Hexanoic acid, Heptanoic acid | GC–CI-MS; GC-FID; a tailor-made capillary column coated with polyethylene glycol modified with nitroterephthalic acid | Headspace solid-phase microextraction using polydimethylsiloxane–Carboxen fiber extraction | 150 µg/L (acetic acid); 2 to 6 µg/L (for remaining CAs)–GC-MS; 675 µg/L (acetic acid); 6–54 µg/L (for remaining CAs)–GC-FID | [54,55] |
19 | Aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, 1 7 caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) | Ion-exclusion chromatography | Different resin extractions: sulfonated silica gel; carboxylated silica gel; sulfonated polymethacrylate resin; carboxylated polymethacrylate resins | Identified | [56] |
20 | Formic, acetic, oxalic acid, malonic acid-ICS; fumaric, protocatechuic, 3-hydroxybenzoic, phthalic and benzoic acid-UHPLC | ICS-2100, Dionex IonPac AS-19 capillary column; ultra-high-performance liquid chromatography, BEH C18 column | SPE: 80 mg of the mixture LiChrolut EN/Supelclean ENVI-18 (1:1) sorbents – UHPLC Direct injection -ICS | Quantified | [39] |
21 | 2-methyl propanoic acid, butanoic acid, 3-methyl butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, phenylacetic acid, benzoic acid, ethanedioic acid, propanedioic acid, butanedioic acid, 2-ethyl-3-methyl maleic acid, tert-butyl maleic acid, pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, nonanedioic acid, decanedioic acid, undecanedioic acid, tridecanedioic acid, phthalic acid, isophthalic acid, terephthalic acid, 1,2,4-benzenetricarboxylic acid, 1,3,5-benzenetricarboxylic acid, 1,2,4,5-benzenetetracarboxylic acid, 1,2,3,4-benzenetetracarboxylic acid, 1,2,3,5-benzenetetracarboxylic acid | GC/EI-MS, DB-5 column; LC/MS, Supelco Supelcosil C18 LC column; GC/IR, Restek Rtx-5 column | Adsorption: XAD resin extraction; Derivalization: pentafluorobenzylhydroxylamine (PFBHA)-GC-MS; 2,4-dinitrophenylhydrazine (DNPH) – LC-MS | Identified | [37] |
22 | Acetic acid, Propionic acid, Butyric acid, 2-Methylbutyric acid, Valeric acid, Isovaleric acid, Hexanoic acid, Octanoic acid, Nonanoic acid, Decanoic acid, Dodecanoic acid, Myristic acid, Palmitic acid, Heptadecanoic acid, Stearic acid, Oleic acid, Linoleic acid, Oxalic acid, Pyruvic acid, Glycolic acid, Succinic acid, Fumaric acid, Benzoic acid, o-Toluic acid, m-Toluic acid, p-Toluic acid, Phenylacetic acid, Salicylic acid, 3-Hydroxybenzoic acid, 2-Nitrobenzoic acid, 3-Nitrobenzoic acid, 4-Nitrobenzoic acid, 3,4-Dihydroxybenzoic acid, Phthalic acid, 1,2,3-Benzenetricarboxylic acid | GC-MS, DB-5 MS fused-silica capillary column | Solid phase extraction followed by microwave-assisted derivatization: mixture of LiChrolut EN/Supelclean ENVI-18 (1:1) sorbents for SPE and N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane (TMCS) for derivatization | 0.6–15 ng/L | [36,38,57] |
23 | Acetic acid, Propionic acid, Butyric acid, 2-Methylbutyric acid, Pentanoic acid, Hexanoic acid, Octanoic acid, Nonanoic acid, Decanoic acid, Dodecanoic acid, Myristic acid, Palmitic acid, Heptadecanoic acid, Stearic acid, Oleic acid, Linoleic acid, Benzoic acid, o-Toluic acid, m-Toluic acid, p-Toluic acid, Phenylacetic acid, Phthalic acid | GC–EI-MS, poly-ethylene glycol column | SPE: 80 mg of LiChrolut EN/Supelclean ENVI-18 (1:1) | Identified and quantified | [44] |
24 | Benzoic acid, 2-methylbenzoic acid, 4-methylbenzoic acid, 2,4-dimethylbenzoic acid, 4-tert-butylbenzoic acid, 2-hydroxybenzoic acid, propanoic acid, butyric acid, 2-ethylhexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, 10-undecylenic acid, dodecanoic acid | GC–MS, Rxi-624Sil MS | Ion-pair dispersive liquid-liquid microextraction and derivatization method: chloroform and isopropanol as disperser solvent and derivatized by Tetrabutylammonium hydrogensulfate (0.2 M) | 6.9 to 1120 μg/L | [58] |
25 | Propanoic acid, butanoic acid, heptanoic acid, 2-ethylhexanoic acid, octanoic acid, benzoic acid, nonanoic acid, 2-methylbenzoic acid, 2-hydroxybenzoic acid, 4-methylbenzoic acid, decanoic acid, 2-chlorobenzoic acid (IS), 2,4-dimethylbenzoic acid, 10-undecylenic acid, 4-tert-butylbenzoic acid, dodecanoic acid. | GC-MS, Rxi-624Sil MS (60 m × 0.25 mm × 1.40 μm) | liquid-liquid microextraction: derivatized by adding tetrabutylammonium hydrogen sulfate (TBA-HSO4) | 6.9–1120 μg/L | |
26 | Benzoic acid, 2-methylbenzoic acid, 4-methylbenzoic acid, 2,4-dimethylbenzoic acid, 4-butylbenzoic-tert-butylbenzoic acid, 2-hydroxybenzoic acid, octanoic acid, nonanoic acid, decanoic acid, 10-undecylenic acid, dodecanoic acid | GC-MS, HP-5 MS (30 m × 0.25 mm × 0.25 μm) capillary column | liquid-liquid microextraction and derivatizing: DES (Choline chloride: 4-Methyl phenol (1: 2)) extracting solvent/derivatizing agent | 1.7–8.3 μg/L | [59] |
27 | 3-ketobutanoic acid, 3-methyl-2- ketobutanoic acid, 9-oxononanoic acid | Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), ESI mode | D0/D5-GRP reagents | Identified | [8] |
28 | Formic acid acetic acid glycolic acid, oxalic acid, pyruvic acid, glyoxylic acid, ketobutyric acid and ketomalonic acid | ICS-3000 ion chromatograph | Direct injection | 1 mg/L | [13] |
29 | Oxalic and oxamic acids | HPLC, C18 column (250 mm × 4.6 mm) | Direct injection | Not reported | [40] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulicharla, R.; Proulx, F.; Behmel, S.; Sérodes, J.-B.; Rodriguez, M.J. Trends in Ozonation Disinfection By-Products—Occurrence, Analysis and Toxicity of Carboxylic Acids. Water 2020, 12, 756. https://doi.org/10.3390/w12030756
Pulicharla R, Proulx F, Behmel S, Sérodes J-B, Rodriguez MJ. Trends in Ozonation Disinfection By-Products—Occurrence, Analysis and Toxicity of Carboxylic Acids. Water. 2020; 12(3):756. https://doi.org/10.3390/w12030756
Chicago/Turabian StylePulicharla, Rama, François Proulx, Sonja Behmel, Jean-B. Sérodes, and Manuel J. Rodriguez. 2020. "Trends in Ozonation Disinfection By-Products—Occurrence, Analysis and Toxicity of Carboxylic Acids" Water 12, no. 3: 756. https://doi.org/10.3390/w12030756
APA StylePulicharla, R., Proulx, F., Behmel, S., Sérodes, J.-B., & Rodriguez, M. J. (2020). Trends in Ozonation Disinfection By-Products—Occurrence, Analysis and Toxicity of Carboxylic Acids. Water, 12(3), 756. https://doi.org/10.3390/w12030756