Generating Regional Models for Estimating the Peak Flows and Environmental Flows Magnitude for the Bulgarian-Greek Rhodope Mountain Range Torrential Watersheds
Abstract
:1. Introduction
2. Study Area and Datasets Description
3. Materials and Methods
3.1. Peak Flow and Environmental Flow Assessment
3.2. Peak Flow and Environmental Flow Regional Models’ Generation
4. Results and Discussion
4.1. Peak Flow and Environmental Flow Computation
4.2. Hydrologic and Sediment Yield Modeling
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Campbell, A.J.; Sidle, R.C. Prediction of peak flows on small watersheds in Oregon for use in culvert design. J. Am. Water Resour. As. 1984, 20, 9–14. [Google Scholar] [CrossRef]
- Myronidis, D.; Stathis, D.; Sapountzis, M. Post-Evaluation of Flood Hazards Induced by Former Artificial Interventions along a Coastal Mediterranean Settlement. J. Hydrol. Eng. 2016, 21, 05016022. [Google Scholar] [CrossRef]
- Myronidis, D.; Fotakis, D. Utilizing 3D solid modeling tools for simplified designing of a small concrete Gravity Dam. IJSAMI 2015, 1, 351–357. [Google Scholar] [CrossRef]
- Myronidis, D.; Emmanouloudis, D.; Arampatzis, G. Research on the contribution of Small Hydroelectric Plants (SHP) as development projects to the energy balance of Greece. J. Environ. Prot. Ecol. 2008, 9, 614–626. Available online: https://docs.google.com/a/jepe-journal.info/viewer?a=v&pid=sites&srcid=amVwZS1qb3VybmFsLmluZm98amVwZS1qb3VybmFsfGd4OjY4ZGU3YWM4NGMzNmQxODg (accessed on 12 February 2020).
- Castellarin, A.; Kohnová, S.; Gaál, L.; Fleig, A.; Salinas, J.L.; Toumazis, A.; Kjeldsen, T.R.; Macdonald, N. Review of Applied-Statistical Methods for Flood-Frequency Analysis in Europe. Cost Action ES0901, Working Group 2 Report. 2012, pp. 1–130. Available online: http://nora.nerc.ac.uk/id/eprint/19286 (accessed on 12 February 2020).
- Myronidis, D.; Ioannou, K. Forecasting the Urban Expansion Effects on the Design Storm Hydrograph and Sediment Yield using Artificial Neural Networks. Water 2019, 11, 31. [Google Scholar] [CrossRef] [Green Version]
- Hodgkins, G.A.; Martin, G.R. Estimating the Magnitude of Peak Flows for Streams in Kentucky for Selected Recurrence Intervals. U.S. Geological Survey, Water-Resources Investigations. Report 3–4180; 2003. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjRzpvO0svnAhWDzKQKHd0nCO0QFjAAegQIAxAB&url=https%3A%2F%2Fpubs.usgs.gov%2Fwri%2Fwri034180%2Fpdf%2Fwri034180.pdf&usg=AOvVaw0-YS5RR1NbgKAKP68QE2B9 (accessed on 12 February 2020).
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef] [Green Version]
- Gleick, P.H.; Allen, L.; Christian-Smith, J.; Cohen, M.J.; Cooley, H.; Heberger, M.; Morrison, J.; Palaniappan, M.; Schulte, P. The World’s Water Volume 7-the Biennial Report on Freshwater Resources; Island Press: Washington, DC, USA, 2012; pp. 1–440. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef]
- Tharme, R.E. A global perspective on environmental flow assessment: Emerging trends in the developments and applications of environmental flow methodologies for rivers. River Res. Appl. 2003, 19, 397–441. [Google Scholar] [CrossRef]
- Pastor, A.V.; Ludwig, F.; Biemans, H.; Hoff, H.; Kabat, P. Accounting for environmental flow requirements in global water assessments. Hydrol. Earth Syst. Sci. 2014, 18, 5041–5059. [Google Scholar] [CrossRef] [Green Version]
- Linnansaari, T.; Monk, W.A.; Baird, D.J.; Curry, R.A. Review of Approaches and Methods to Assess Environmental Flows across Canada and Internationally. Canadian Science Advisory Secretariat, Research Document 2012/039. 2012. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwjShtSHpJLoAhXLzMQBHc7jAwAQFjABegQICRAB&url=https%3A%2F%2Fwaves-vagues.dfo-mpo.gc.ca%2FLibrary%2F348885.pdf&usg=AOvVaw1b6Qu0-J3o9eXDuEp3Jgs7 (accessed on 11 March 2020).
- Ramos, V.; Formigo, N.; Maia, R. Ecological flows and the Water Framework Directive implementation: An effective coevolution? Eur. Water 2017, 60, 423–432. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwiUpOKztsznAhWEolwKHRh5CpIQFjAAegQIBBAB&url=https%3A%2F%2Fwww.ewra.net%2Few%2Fpdf%2FEW_2017_60_58.pdf&usg=AOvVaw0WNELSglMQCdJAs5eym3cf (accessed on 12 February 2020).
- E.U. Ecological Flows in the Implementation of the Water Framework Directive; Technical Report 086; Office for Official Publications of the European Communities: Luxembourg, 2015; Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwiu7Y_YtsznAhVbi1wKHdyZAF8QFjAAegQIBhAB&url=https%3A%2F%2Fcircabc.europa.eu%2Fsd%2Fa%2F4063d635-957b-4b6f-bfd4-b51b0acb2570%2FGuidance%2520No%252031%2520-%2520Ecological%2520flows%2520%2528final%2520version%2529.pdf&usg=AOvVaw0Cg-qtzKRjzl_ebqNrFTN8 (accessed on 12 February 2020).
- Patsialis, T.; Skoulikaris, C.H.; Ganoulis, J. Ecological Flow for Integrated Planning of Small Hydropower Plants: A Case Study from Greece. In Proceedings of the FRIEND-Water, Hanoi, Vietnam, February 2014; Available online: https://iahs.info/uploads/dms/16633.84-469-474-363-13-Paper-98-Patsialis-et-al.pdf (accessed on 11 March 2020).
- Kotoulas, D. Management of Torrents; Publication of the Aristotle University of Thessaloniki: Thessaloniki, Greece, 1997; pp. 1–669. (In Greek) [Google Scholar]
- Iliadis, L.; Maris, F.; Tsataltzinos, T. An Innovative Decision Support System Using Fuzzy Reasoning for the Estimation of Mountainous Watersheds Torrential Risk: The Cases of Lakes Koroneia and Volvi. In Proceedings of the IUFRO Conference, Edinburgh, Scotland, 2018; Available online: https://nanopdf.com/download/an-innovative-decision-support-system-using-fuzzy-reasoning-for-the-mountainous_pdf (accessed on 11 March 2020).
- Ancey, C. Debris flows. In Environmental Geomechanics; Delage, P., Schrefler, B., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Ristić, R.; Kostadinov, S.; Abolmasov, B.; Dragićević, S.; Trivan, G.; Radić, B.; Trifunović, M.; Radosavljević, Z. Torrential floods and town and country planning in Serbia. Nat. Hazards Earth Syst. Sci. 2012, 12, 23–35. [Google Scholar] [CrossRef]
- Water Resources Council. Guidelines for Determining Flood Flow Frequency–Bulletin 17B of the Hydrology Subcommittee. U.S. Geological Survey, Office of Water-Data Coordination, 1982; 183p. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwi11Lyzgs7nAhVIiqQKHZoRDnMQFjABegQIBBAB&url=https%3A%2F%2Fwater.usgs.gov%2Fosw%2Fbulletin17b%2Fdl_flow.pdf&usg=AOvVaw2XGH_z_q5WHOLNT-95ViHD (accessed on 12 February 2020).
- Mays, L.W. Water Resources Engineering, 2nd ed.; Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 1–920. [Google Scholar]
- Amin, M.T.; Rizwan, M.; Alazba, A.A. A best-fit probability distribution for the estimation of rainfall in northern regions of Pakistan. Open Life Sci. 2016, 11, 432–440. [Google Scholar] [CrossRef]
- Kamal, V.; Mukherjee, S.; Singh, P.; Sen, R.; Vishwakarma, C.A.; Sajadi, P.; Asthana, H.; Rena, V. Flood frequency analysis of Ganga river at Haridwar and Garhmukteshwar. Appl. Water Sci. 2017, 7, 1979–1986. [Google Scholar] [CrossRef] [Green Version]
- Toranjian, A.; Marofi, S. Evaluation of statistical distributions to analyze the pollution of Cd and Pb in urban runoff. Water Sci. Technol. 2017, 75, 2072–2082. [Google Scholar] [CrossRef]
- Tennant, D.L. Instream Flow Regimens for Fish, Wildlife, Recreation and Related Environmental Resources. Fisheries 1976, 1, 6–10. [Google Scholar] [CrossRef]
- Karakoyun, Y.; Dönmez, A.H.; Yumurtac, Z. Comparison of environmental flow assessment methods with a case study on a runoff river–type hydropower plant using hydrological methods. Environ. Monit. Assess 2018, 12, 722. [Google Scholar] [CrossRef]
- Pallant, J. SPSS Survival Manual: A Step by Step Guide to Data Analysis Using Spss; Open University Press/McGraw-Hill 2: London, UK, 2010; pp. 1–33. [Google Scholar]
- Griffis, V.W.; Stedinger, J.R. The use of GLS regression in regional hydrologic analyses. J. Hydrol. 2007, 344, 82–95. [Google Scholar] [CrossRef]
- Maris, F.; Kitikidou, K.; Paparrizos, S.; Potouridis, S. Stream flowquantile regression modelling using land use information in the Sperchios river basin (Central Greece). Carpath J. Earth Environ. 2014, 9, 5–10. Available online: http://www.ubm.ro/sites/CJEES/viewTopic.php?topicId=390 (accessed on 12 February 2020).
- Mimikou, M. Regional relationships between basin size and runoff characteristics. Hydrolog. Sci. J. 1984, 29, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Mimikou, M.; Gordios, J. Predicting the mean annual flood and flood quantiles for ungauged catchments in Greece. Hydrolog. Sci. J. 1989, 34, 169–184. [Google Scholar] [CrossRef]
- IBM Corp. Released IBM SPSS Statistics for Windows; Version 23.0; IBM Corp: Armonk, NY, USA, 2015. [Google Scholar]
- Field, A. Discovering Statistics Using SPSS, 2nd ed.; Sage Publications: Southend Oaks, CA, USA, 2005; pp. 1–816. [Google Scholar]
- Zhang, Z.; Balay, J.W.; Bertoldi, K.M.; MaCoy, P.O. Assessment of Water Capacity and Availability from Unregulated Stream Flows Based on Ecological Limits of Hydrologic Alteration (ELOHA) Environmental Flow Standards. River Res. Appl. 2016, 32, 1469–1480. [Google Scholar] [CrossRef]
- Daniil, Ε.Ι.; Michas, S.N.; Nikolaou, K.; Lazaridis, L.S. Systematic approach for ungaged basins’ discharge determination in Western Peloponnese, Greece. Glob. Nest J. 2012, 14, 344–353. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwiio_Dhi87nAhVJuqQKHWK8B38QFjABegQIAhAB&url=https%3A%2F%2Fjournal.gnest.org%2Fsites%2Fdefault%2Ffiles%2FJournal%2520Papers%2F344-353_878_DANIIL_14-3.pdf&usg=AOvVaw1mz_zfpPq7cKh9Th4EBwDl (accessed on 12 February 2020).
- Borisova, D.; Aydarova, Z.; Stefanov, S.; Hristova, N. Extreme values of the flow in the Maritza River Basin (Pazardzhik) for the period 2000–2005 (in Bulgarian). Probl. Geogr. 2015, 1–2, 185–197. [Google Scholar]
- Hristova, N. Statistical analysis of low flow for Archar River Basin. Dir. Sofia Univ. St. Kliment Ohridski 2016, 107, 25–38. [Google Scholar]
- Gerassimov, S.; Bojilova, E. River basin management, Bulgarian case study. Phys. Chem. Earth 2008, 33, 395–402. [Google Scholar] [CrossRef]
- Mimikou, M. Regional analysis of hydrological variables in Greece. In Regionalization in Hydrology Proceedings of the Ljubljana Symposium, Ljubljana, Slovenia, April 1990; No. 191; IAHS Publication: Wallingford, UK, 1990. [Google Scholar]
- Topaloúlu, F. Estimation of Instantaneous Peak Flows in Seyhan River Basin Using Regional Regression Procedures. Turk. J. Agric. For. 2002, 26, 47–55. Available online: https://journals.tubitak.gov.tr/agriculture/issue.htm?id=400 (accessed on 12 February 2020).
- Yordanova, M.; Velev, S.; Drenovski, I. Characteristic features of the physical geographical regions. In Geography of Bulgaria: Physical and Socio-Economic Geography; Kopralev, I., Ed.; BAS: Sofia, Bulgaria, 2002. [Google Scholar]
- BAS. Reference Book of the Rivers in the People’s Republic of Bulgaria; Bulgarian Academy of Sciences; Institute of Meteorology and Hydrology: Sofia, Bulgarian, 1981. (In Bulgarian) [Google Scholar]
- Ivanova, E.K.; Nedkov, R.D.; Ivanova, I.B.; Radeva, K.L. Morpho-hydrographic analyze of Black Sea Catchment Area in Bulgaria. Procedia Environ. Sci. 2012, 14, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Pitlick, J. Relation between peak flows, precipitation, and physiography for five mountainous regions in the western USA. J. Hydrol. 1994, 158, 219–240. [Google Scholar] [CrossRef]
- Selvanathan, S.; Sreetharan, M.; Rand, K.; Smirnov, D.; Choi, J.; Mampara, M. Developing peak discharges for future flood risk studies using IPCC’s cmip5 climate model results and USGS WREG program. J. Am. Water Resour. As. 2016, 52, 979–992. [Google Scholar] [CrossRef]
- Ahn, K.H.; Palmer, R. Regional flood frequency analysis using spatial proximity and basin characteristics: Quantile regression vs. parameter regression technique. J. Hydrol. 2016, 540, 515–526. [Google Scholar] [CrossRef]
- NASA. ASTER Global Digital Elevation Model Version 3, National Aeronautics and Space Administration (NASA). Available online: https://asterweb.jpl.nasa.gov/ (accessed on 12 February 2020).
- Pawar, D.C.; Hire, P. Flood Frequency Analysis of the Mahi Basin by Using Log Pearson Type III Probability Distribution. Hydrospatial Anal. 2018, 2, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Stephens, M.A. EDF Statistics for Goodness of Fit and Some Comparisons. J. Am. Stat. Assoc. 1974, 69, 730–737. [Google Scholar] [CrossRef]
- Abdullah, J.; Muhammad, N.S.; Mohamad Sharif, N.A. Estimation of Peak Discharges Using Flood Frequency Analysis and Hydrological Modeling System. In Proceedings of the International Symposium on Flood Research and Management; Tahir, W., Abu, B.P., Wahid, M., Mohd, N.S., Lee, W., Eds.; Springer: Singapore, 2015; pp. 129–139. [Google Scholar]
- Liu, J.; Liu, Q.; Yang, H. Assessing water scarcity by simultaneously considering environmental flow requirements, water quantity, and water quality. Ecol Indic. 2016, 60, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.K.; Kumar, V.; Purohit, R.C.; Kothari, M.; Dashora, P.K. Application of principal component analysis in grouping geomorphic parameters for hydrologic modelling. Water Resour. Manag. 2009, 23, 325–339. [Google Scholar] [CrossRef]
- Bartlett, M.S. A note on the multiplying factors for various chi square approximations. J. R. Stat. Soc. 1954, 16, 296–298. Available online: https://www.jstor.org/stable/2984057 (accessed on 12 February 2020).
- Kaiser, H. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Azid, A.; Juahir, H.; Toriman, M.E.; Kamarudin, M.K.A.; Saudi, A.S.M.; Hasnam, C.N.C.; Aziz, N.A.A.; Azaman, F.; Latif, M.T.; Zainuddin, S.F.M.; et al. Prediction of the level of air pollution using principal component analysis and artificial neural network techniques: A case study in Malaysia. Water Air Soil Pollut. 2014, 225, 2063. [Google Scholar] [CrossRef]
- Mooi, E.; Sarstedt, M.A. Concise Guide to Market Research: The Process, Data, and Methods Using Ibm Spss Statistics; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Wiatkowski, M.; Wiatkowska, B. Changes in the flow and quality of water in the dam reservoir of the Mała Panew catchment (South Poland) characterized by multidimensional data analysis. Arch. Environ. Prot. 2019, 45, 26–41. [Google Scholar] [CrossRef]
- Ward, A.D.; Trimble, S.W. Environmental Hydrology, 2nd ed.; Lewis Publishers: Boca Raton, FL, USA, 2004; pp. 1–475. [Google Scholar]
- Antonopoulos, V.Z.; Papmichail, D.M.; Mitsiou, K.A. Statistical and trend analysis of water quality and quantity data for the Strymon River in Greece. Hydrol. Earth Syst. Sci. 2001, 5, 679–691. [Google Scholar] [CrossRef]
- Amiri, B.J.; Gao, J.; Fohrer, N.; Adamowski, J. Regionalizing time of concentration using landscape structural patterns of catchments. J. Hydrol. Hydromech. 2019, 67, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Koutroulis, A.G.; Tsanis, I.K. A method for estimating flash flood peak discharge in a poorly gauged basin: Case study for the 13–14 January 1994 flood, Giofiros basin, Crete, Greece. J. Hydrol. 2010, 385, 150–164. [Google Scholar] [CrossRef]
- Nanos, N.; Sjöstedt de Luna, S. Fitting diameter distribution models to data from forest inventories with concentric plot design. For. Syst. 2017, 26. Available online: http://revistas.inia.es/index.php/fs/article/view/10486/3630 (accessed on 12 February 2020). [CrossRef] [Green Version]
- Alexakis, D.; Grillakis, M.G.; Koutroulis, A.G.; Agapiou, A.; Themistocleous, K.; Tsanis, I.; Michaelides, S.; Pashiardis, S.; Demetriou, C.; Aristeidou, K.; et al. GIS and remote sensing techniques for the assessment of land use change impact on flood hydrology: The case study of Yialias basin in Cyprus. Nat. Hazard Earth Syst. 2014, 14, 413–426. [Google Scholar] [CrossRef] [Green Version]
- AgriMetSoft Online Calculators. Available online: https://agrimetsoft.com/calculators/Root%20Mean%20Square%20Error (accessed on 12 February 2020).
- Khosravi, G.H.; Majidi, A.; Nohegar, A. Determination of Suitable Probability Distribution for Annual Mean and Peak Discharges Estimation (Case Study: Minab River- Barantin Gage, Iran). Int. J. Probab. Stat. 2012, 1, 160–163. [Google Scholar] [CrossRef] [Green Version]
- Jenicek, M.; Pevna, H.; Matejka, O. Canopy structure and topography effects on snow distribution at a catchment scale: Application of multivariate approaches. J. Hydrol. Hydromech. 2018, 66, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K.; Gajbhiye, S.; Tignath, S. Application of principal component analysis in grouping geomorphic parameters of a watershed for hydrological modelling. Appl. Water Sci. 2015, 5, 89–96. [Google Scholar] [CrossRef] [Green Version]
- El-Jabi, N.; Caissie, D. Characterization of natural and environmental flows in New Brunswick, Canada. River Res. Appl. 2019, 35, 14–24. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Watershed Number | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
A (km2) | 22.60 | 23.63 | 85.66 | 18.06 | 31.54 | 326.14 | 86.18 | 241.72 | 16.00 | 106.30 | 24.17 | 35.21 | 236.69 | 108.42 | 175.75 |
B (km) | 25.85 | 19.75 | 42.12 | 19.02 | 27.15 | 89.61 | 45.41 | 93.61 | 17.76 | 46.72 | 22.79 | 31.98 | 107.90 | 60.82 | 86.28 |
BL (km) | 8.78 | 7.34 | 11.18 | 5.03 | 7.23 | 23.16 | 16.5 | 30 | 5.5 | 17 | 8.2 | 13.37 | 42.07 | 20.94 | 8.9 |
BW (km) | 2.57 | 3.22 | 7.66 | 3.59 | 4.36 | 14.08 | 5.22 | 8.06 | 2.91 | 6.25 | 2.95 | 2.63 | 5.63 | 5.18 | 19.75 |
Ls (km) | 11.54 | 8.49 | 16.51 | 7.01 | 9.92 | 29.69 | 18.75 | 37.98 | 5.98 | 19.30 | 10.19 | 13.84 | 50.11 | 25.87 | 33.42 |
L (km) | 7.15 | 7.04 | 10.2 | 6.05 | 7.6 | 22.6 | 15.3 | 27.5 | 4.9 | 16.2 | 7.4 | 12.5 | 41.02 | 20 | 21.25 |
Tl (km) | 20.64 | 27.02 | 87.44 | 21.82 | 24.74 | 519.27 | 158.95 | 360.07 | 30.19 | 132.68 | 26.38 | 40.52 | 253.44 | 118.51 | 214.40 |
Rc (dimensionless) | 0.42 | 0.76 | 0.61 | 0.63 | 0.54 | 0.51 | 0.52 | 0.35 | 0.64 | 0.61 | 0.58 | 0.43 | 0.26 | 0.37 | 0.30 |
Re (dimensionless) | 0.61 | 0.75 | 0.93 | 0.95 | 0.88 | 0.88 | 0.64 | 0.58 | 0.82 | 0.68 | 0.68 | 0.50 | 0.41 | 0.56 | 1.68 |
Rf (dimensionless) | 0.29 | 0.44 | 0.69 | 0.71 | 0.60 | 0.61 | 0.32 | 0.27 | 0.53 | 0.37 | 0.36 | 0.20 | 0.13 | 0.25 | 2.22 |
Rl (dimensionless) | 0.85 | 0.57 | 0.36 | 0.35 | 0.41 | 0.41 | 0.79 | 0.93 | 0.47 | 0.68 | 0.70 | 1.27 | 1.87 | 1.01 | 0.11 |
Cr (dimensionless) | 1.61 | 1.21 | 1.62 | 1.16 | 1.30 | 1.31 | 1.23 | 1.38 | 1.22 | 1.19 | 1.38 | 1.11 | 1.22 | 1.29 | 1.57 |
D (km/km2) | 0.91 | 1.14 | 1.02 | 1.21 | 0.78 | 1.59 | 1.84 | 1.49 | 1.89 | 1.25 | 1.09 | 1.15 | 1.07 | 1.09 | 1.22 |
CR (dimensionless) | 3.38 | 6.06 | 4.83 | 4.99 | 4.28 | 4.06 | 4.18 | 2.76 | 5.07 | 4.87 | 4.65 | 3.44 | 2.03 | 2.93 | 2.36 |
E (m) | 1645.0 | 1365.3 | 1703.9 | 1671.2 | 1638.2 | 1220.8 | 1158.1 | 1257.9 | 996.5 | 1299.4 | 1559.0 | 1031.5 | 1422.1 | 1513.9 | 1339.2 |
Emax (m) | 2021 | 1710 | 2102 | 1799 | 1951 | 1997 | 1822 | 2121 | 1348 | 1709 | 1932 | 1517 | 1915 | 1796 | 1636 |
Emin (m) | 1443 | 1012 | 1471 | 1517 | 1407 | 516 | 685 | 668 | 628 | 749 | 1254 | 490 | 1133 | 1208 | 1075 |
CE (m) | 1582 | 1347 | 1775 | 1603 | 1501 | 862 | 1214 | 1104 | 853 | 1132 | 1428 | 861 | 1248 | 1493 | 1402 |
H (m) | 578 | 698 | 631 | 282 | 544 | 1481 | 1137 | 1453 | 720 | 960 | 678 | 1027 | 782 | 588 | 561 |
RH (dimensionless) | 0.35 | 0.51 | 0.37 | 0.55 | 0.42 | 0.48 | 0.42 | 0.41 | 0.51 | 0.57 | 0.45 | 0.53 | 0.37 | 0.52 | 0.47 |
S (m/km) | 50.07 | 82.19 | 38.21 | 40.26 | 54.86 | 49.89 | 60.64 | 38.26 | 120.45 | 49.75 | 66.52 | 74.22 | 15.60 | 22.73 | 16.79 |
BS (%) | 25.54 | 26.51 | 22.63 | 21.28 | 26.26 | 45.13 | 38.67 | 39.04 | 49.07 | 32.60 | 29.66 | 27.83 | 25.66 | 24.35 | 27.23 |
GE (m) | 1460 | 1028 | 1491 | 1531 | 1421 | 533 | 689 | 677 | 636 | 762 | 1257 | 515 | 1134 | 1229 | 1079 |
GLT (decimal degrees) | 41.87 | 41.99 | 41.83 | 41.80 | 41.82 | 41.88 | 41.48 | 41.56 | 41.42 | 41.87 | 41.73 | 41.57 | 41.64 | 41.64 | 41.60 |
GLN (decimal degrees) | 23.93 | 23.84 | 24.13 | 24.07 | 24.17 | 24.81 | 24.85 | 24.87 | 24.98 | 23.62 | 23.90 | 23.83 | 24.16 | 24.23 | 24.18 |
Description of Flow | April–September | Octomber–Mach. |
---|---|---|
Flushing flow (from 48–96 hours) | 200% | |
Optimum range of flow | 60–100% | |
Outstanding habitat | 60% | 40% |
Excellent habitat | 50% | 30% |
Good habitat | 40% | 20% |
Fair or degrading habitat | 30% | 10% |
Poor or minimum habitat | 10% | |
Severe degradation | <10% |
S.No. | Station | Q25 | Q50 | Q100 | K-S Statistic | A-D Statistic | Qenv |
---|---|---|---|---|---|---|---|
1 | Chehliovo | 11.72 | 16.43 | 22.70 | 0.14 | 0.36 | 1.15 |
2 | Tsvetino | 19.00 | 21.27 | 23.29 | 0.16 | 0.28 | 2.13 |
3 | Devinska | 4.03 | 4.07 | 4.10 | 0.13 | 0.76 | 2.94 |
4 | Sarayar | 4.99 | 5.37 | 5.71 | 0.12 | 0.26 | 1.16 |
5 | Toplika | 7.62 | 8.19 | 8.66 | 0.11 | 0.34 | 1.22 |
6 | Yugovo | 271.02 | 331.80 | 397.53 | 0.13 | 0.48 | 18.55 |
7 | Rudozem | 137.79 | 178.58 | 228.28 | 0.05 | 0.21 | 8.04 |
8 | Taran | 179.54 | 200.37 | 220.55 | 0.11 | 0.24 | 14.94 |
9 | Erma_reka | 59.57 | 61.12 | 62.10 | 0.06 | 0.13 | 1.32 |
10 | Eleshnitsa | 74.64 | 102.84 | 138.11 | 0.06 | 0.19 | 2.27 |
11 | Beslet | 29.72 | 35.99 | 42.68 | 0.10 | 0.49 | 2.74 |
12 | Dabnitsa | 143.69 | 367.19 | 889.06 | 0.21 | 0.41 | 0.61 |
13 | Dospat | 77.66 | 79.01 | 79.63 | 0.09 | 0.25 | 11.08 |
14 | Zmeitsa | 49.18 | 67.30 | 92.02 | 0.16 | 0.50 | 5.72 |
15 | Barutin | 50.28 | 55.25 | 60.09 | 0.14 | 0.33 | 9.15 |
B | L | Ls | BL | A | Tl | Emax | BW | S | Rc | E | BS | CE | GE | Emin | GLN | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PC1 | 0.96 | 0.95 | 0.95 | 0.94 | 0.94 | 0.93 | 0.89 | 0.88 | −0.76 | −0.68 | ||||||
PC2 | 0.92 | −0.90 | 0.85 | 0.83 | 0.82 | −0.67 |
Equations | R2 | RMSE | PE (%) | NSE | d | |
---|---|---|---|---|---|---|
Q25 | 0.91 | 22.85 | 83.80 | 0.91 | 0.98 | |
0.96 | 18.32 | 31.50 | 0.94 | 0.99 | ||
0.95 | 19.10 | 24.20 | 0.93 | 0.98 | ||
0.97 | 13.79 | 51.90 | 0.97 | 0.99 | ||
Q50 | 0.68 | 64.10 | 147.80 | 0.68 | 0.89 | |
0.91 | 38.33 | 31.30 | 0.88 | 0.97 | ||
0.90 | 36.30 | 38.10 | 0.90 | 0.97 | ||
0.91 | 33.95 | 87.80 | 0.91 | 0.98 | ||
Q100 | 0.71 | 121.34 | 353.20 | 0.71 | 0.91 | |
0.96 | 49.59 | 38.70 | 0.95 | 0.99 | ||
0.61 | 139.30 | 74.40 | 0.61 | 0.86 | ||
0.86 | 85.05 | 214.50 | 0.86 | 0.96 | ||
Qenv | 0.95 | 1.23 | 39.00 | 0.95 | 0.99 | |
0.95 | 1.44 | 38.50 | 0.93 | 0.98 | ||
0.82 | 3.97 | 43.40 | 0.47 | 0.91 | ||
0.80 | 2.42 | 82.10 | 0.80 | 0.94 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myronidis, D.; Ivanova, E. Generating Regional Models for Estimating the Peak Flows and Environmental Flows Magnitude for the Bulgarian-Greek Rhodope Mountain Range Torrential Watersheds. Water 2020, 12, 784. https://doi.org/10.3390/w12030784
Myronidis D, Ivanova E. Generating Regional Models for Estimating the Peak Flows and Environmental Flows Magnitude for the Bulgarian-Greek Rhodope Mountain Range Torrential Watersheds. Water. 2020; 12(3):784. https://doi.org/10.3390/w12030784
Chicago/Turabian StyleMyronidis, Dimitrios, and Ekaterina Ivanova. 2020. "Generating Regional Models for Estimating the Peak Flows and Environmental Flows Magnitude for the Bulgarian-Greek Rhodope Mountain Range Torrential Watersheds" Water 12, no. 3: 784. https://doi.org/10.3390/w12030784