Lag in Hydrologic Recovery Following Extreme Meteorological Drought Events: Implications for Ecological Water Requirements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Data
2.2. Methods
2.2.1. Quantifying Drought
2.2.2. Isolating Baseflow from Total Streamflow
2.2.3. Temporal Trends in Streamflow and Assessment of Ecological Water Requirement
3. Results
3.1. Baseflow Separation and Its Validation
3.2. Meteorological and Hydrological Drought Characteristics
3.3. Assessment of Ecological Environmental Flow (e-flow)
4. Discussion
4.1. The Response of Streamflow and Baseflow to Extreme Meteorological Drought
4.2. Assessment Implications for Environmental Flow (e-flow)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smakhtin, V. Low flow hydrology: A review. J. Hydrol. 2001, 240, 147–186. [Google Scholar] [CrossRef]
- Gnann, S.J.; Woods, R.A.; Howden, N.J.K. Is there a baseflow budyko curve? Water Resour. Res. 2019, 55, 2838–2855. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Li, H.; Miguez-Macho, G. Global patterns of groundwater table depth. Science 2013, 339, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Ficklin, D.L.; Robeson, S.M.; Knouft, J.H. Impacts of recent climate change on trends in baseflow and stormflow in United States watersheds. Geophys. Res. Lett. 2016, 43, 5079–5088. [Google Scholar] [CrossRef]
- Yang, Y.; McVicar, T.R.; Donohue, R.J.; Zhang, Y.; Roderick, M.L.; Chiew, F.H.S.; Zhang, L.; Zhang, J. Lags in hydrologic recovery following an extreme drought: Assessing the roles of climate and catchment characteristics. Water Resour. Res. 2017, 53, 4821–4837. [Google Scholar] [CrossRef]
- Larsen, S.; Alp, M. Ecological thresholds and riparian wetlands: An overview for environmental managers. Limnology 2015, 16, 1–9. [Google Scholar] [CrossRef]
- Olden, J.D.; Poff, N.L. Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Res. Appl. 2003, 19, 101–121. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Wigington, R.; Braun, D.P. How much water does a river need? Freshw. Biol. 1997, 37, 231–249. [Google Scholar] [CrossRef] [Green Version]
- Swirepik, J.L.; Burns, I.C.; Dyer, F.J.; Neave, I.A.; O’Brien, M.G.; Pryde, G.M.; Thompson, R.M. Establishing environmental water requirements for the murray-darling basin, Australia’s largest developed river system. River Res. Appl. 2016, 32, 1153–1165. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Stromberg, J.C. The natural flow regime. Bioscience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef] [Green Version]
- King, A.J.; Gwinn, D.C.; Tonkin, Z.; Mahoney, J.; Raymond, S.; Beesley, L.; Heino, J. Using abiotic drivers of fish spawning to inform environmental flow management. J. Appl. Ecol. 2016, 53, 34–43. [Google Scholar] [CrossRef]
- Poff, N.L. Beyond the natural flow regime? Broadening the hydro-ecological foundation to meet environmental flows challenges in a non-stationary world. Freshw. Biol. 2018, 63, 1011–1021. [Google Scholar] [CrossRef]
- Palmer, M.; Ruhi, A. Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration. Science 2019, 365. [Google Scholar] [CrossRef] [Green Version]
- Beatty, S.; Morgan, D.; McAleer, F.; Ramsay, A. Groundwater contribution to baseflow maintains habitat connectivity for Tandanus bostocki (Teleostei: Plotosidae) in a south-western Australian river. Ecol. Freshw. Fish. 2010, 19, 595–608. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Song, J.; Cheng, L. Evaluating relative merits of four baseflow separation methods in Eastern Australia. J. Hydrol. 2017, 549, 252–263. [Google Scholar] [CrossRef]
- Tarasova, L.; Basso, S.; Zink, M.; Merz, R. Exploring Controls on Rainfall-Runoff Events: 1. Time series-based event separation and temporal dynamics of event runoff response in Germany. Water Resour. Res. 2018, 54, 7711–7732. [Google Scholar] [CrossRef]
- Liang, L.Q.; Li, L.J.; Zhang, L.; Li, J.Y.; Li, B. Sensitivity of Penman-Monteith reference crop evapotranspiration in Tao’er River Basin of Northeastern China. Chin. Geogr. Sci. 2009, 18, 340–347. [Google Scholar] [CrossRef]
- Li, L.J.; Jiang, D.J.; Hou, X.Y.; Li, J.Y. Simulated runoff responses to land use in the middle and upstream reaches of Taoerhe River basin, Northeast China, in wet, average and dry years. Hydrol. Process. 2013, 27, 3484–3494. [Google Scholar] [CrossRef]
- Liang, L.Q.; Li, L.J.; Liu, Q. Temporal variation of reference evapotranspiration during 1961-2005 in the Taoer River basin of Northeast China. Agric. Forest Meteorol. 2010, 150, 298–306. [Google Scholar] [CrossRef]
- Jiang, H.B.; Wen, Y.; Zou, L.F.; Wang, Z.Q.; He, C.G.; Zou, C.L. The effects of a wetland restoration project on the Siberian crane (Grus leucogeranus) population and stopover habitat in Momoge National Nature Reserve, China. Ecol. Eng. 2016, 96, 170–177. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, J.L.; Liu, H.F.; Liang, L.Q.; Cai, Y.P.; Wang, X.; Li, C.H. Vegetation dynamics under water-level fluctuations: Implications for wetland restoration. J. Hydrol. 2020, 581, 124418. [Google Scholar] [CrossRef]
- Yu, K.; D’Odorico, P. Climate, vegetation, and soil controls on hydraulic redistribution in shallow tree roots. Adv. Water Res. 2014, 66, 70–80. [Google Scholar] [CrossRef]
- Rasmussen, E.; Dickinson, R.; Kutzbach, J.; Cleaveland, M. Handbook of hydrology. In Climatology; Maidment, D.R., Ed.; McGraw-Hill: New York, NY, USA, 1993; pp. 2.1–2.44. [Google Scholar]
- Wang, F.; Wang, X.; Zhao, Y.; Yang, Z.F. Long-term periodic structure and seasonal-trend decomposition of water level in Lake Baiyangdian, Northern China. Int. J. Environ. Sci. Technol. 2014, 11, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Chapman, T.; Maxwell, A. Baseflow separation-comparison of numerical methods with tracer experiments. In Hydrology and Water Resources Symposium 1996: Water and the Environment; Preprints of Papers; Institution of Engineers: Barton, Australia, 1996; pp. 539–545. [Google Scholar]
- Gonzales, A.; Nonner, J.; Heijkers, J.; Uhlenbrook, S. Comparison of different base flow separation methods in a lowland catchment. Hydrol. Earth Syst. Soc. 2009, 13, 2055–2068. [Google Scholar] [CrossRef] [Green Version]
- Chapman, T. A comparison of algorithms for stream flow recession and baseflow separation. Hydrol. Process. 1999, 13, 701–714. [Google Scholar] [CrossRef]
- Graszkiewicz, Z.; Murphy, R.; Hill, P.; Nathan, R. Review of techniques for estimating the contribution of baseflow to flood hydrographs. In Proceedings of the 34th World Congress of the International Association for Hydro-Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, Brisbane, Australia, 26 June–1 July 2011; Engineers Australia: Barton, Australia, 2011; p. 138. [Google Scholar]
- Brutsaert, W. Hydrology: An Introduction; Cambridge University Press: Cambridge, UK, 2005; p. 618. [Google Scholar]
- Brutsaert, W.; Nieber, J.L. Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resour. Res. 1977, 13, 637–643. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, L.; Brutsaert, W. Automated selection of pure base flows from regular daily Streamflow data: objective algorithm. J. Hydrol. Eng. 2016, 21, 06016008. [Google Scholar] [CrossRef]
- Serrano, A.; Mateos, V.L.; García, J.A. Trend analysis of monthly precipitation over the Iberian Peninsula for the period 1921–1995. Phys. Chem. Earth B 1999, 24, 85–90. [Google Scholar] [CrossRef]
- Birsan, M.-V.; Molnar, P.; Burlando, P.; Pfaundler, M. Streamflow trends in Switzerland. J. Hydrol. 2005, 314, 312–329. [Google Scholar] [CrossRef]
- Liu, Q.; McVicar, T.R. Assessing climate change induced modification of Penman potential evaporation and runoff sensitivity in a large water-limited basin. J. Hydrol. 2012, 464–465, 352–362. [Google Scholar] [CrossRef]
- Tennant, D.L. Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries 1976, 1, 6–10. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, S.; Liu, J.; Liu, C.; Hao, F.; Wang, Z.; Zhang, H.; Song, J.X.; Mitrovic, S.M.; Lim, R.P. Linking fish tolerance to water quality criteria for the assessment of environmental flows: A practical method for streamflow regulation and pollution control. Water Res. 2018, 141, 96–108. [Google Scholar] [CrossRef]
- Nathan, R.; McMahon, T. Evaluation of automated techniques for base flow and recession analyses. Water Resour. Res. 1990, 26, 1465–1473. [Google Scholar] [CrossRef]
- Caissie, D.; El-Jabi, N. Instream flow assessment: From holistic approaches to habitat modelling. Can. Water Resour. J. 2003, 28, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Song, X.Y.; Song, S.B.; Sun, W.Y.; Mu, X.M.; Wang, S.Y.; Li, J.Y.; Li, Y. Recent changes in extreme precipitation and drought over the Songhua River Basin, China, during 1960–2013. Atmos. Res. 2015, 157, 137–152. [Google Scholar] [CrossRef]
- Barker, L.J.; Hannaford, J.; Chiverton, A.; Svensson, C. From meteorological to hydrological drought using standardised indicators. Hydrol. Earth Syst. Soc. 2016, 20, 2483–2505. [Google Scholar] [CrossRef] [Green Version]
- Spence, C. On the relation between dynamic storage and runoff: A discussion on thresholds, efficiency, and function. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Kløve, B.; Ala-aho, P.; Bertrand, G.; Boukalova, Z.; Ertürk, A.; Goldscheider, N.; Widerlund, A. Groundwater dependent ecosystems. Part I: Hydroecological status and trends. Environ. Sci. Policy 2011, 14, 770–781. [Google Scholar] [CrossRef]
- Sinclair, K.M. Environmental Water Requirements of Groundwater Dependent Ecosystems, Environmental Flows Initiative Technical Report Number 2; Commonwealth of Australia: Canberra, Australia, 2001. [Google Scholar]
- De Graaf, I.E.M.; Gleeson, T.; Rens van Beek, L.P.H.; Sutanudjaja, E.H.; Bierkens, M.F.P. Environmental flow limits to global groundwater pumping. Nature 2019, 574, 90–94. [Google Scholar] [CrossRef]
Method | Recession Constant (α) | Attribution (%) | |
---|---|---|---|
The CM filter method (recession constant) | Default | 0.925 | 48.25 |
ABIT | 0.984 | 37.73 |
Variables | Periods | Start Time | End Time | Duration | Intensity | Severity | Time Lags | Pr |
---|---|---|---|---|---|---|---|---|
(Year.month) | (Year.month) | (Month) | (%) | (%) | (Month) | (%) | ||
P | First | 1975.6 | 1983.3 | 93 | −0.073 | −6.80 | − | − |
Q | 1975.6 | 1985.7 | 121 | −0.36 | −44.16 | 27 | −12.09 | |
Qb | 1975.7 | 1985.8 | 121 | −0.39 | −47.34 | 28 | −14.39 | |
P | Second | 1999.4 | 2010.9 | 137 | −0.12 | −16.84 | - | - |
Q | 1999.6 | 2012.8 | 158 | −0.52 | −81.70 | 22 | −9.47 | |
Qb | 1999.7 | 2013.4 | 165 | −0.51 | −83.43 | 30 | −40.35 |
Method | Period | Mean Q | Ewm (10%) | Ewb (30%) | Ews (60%) |
---|---|---|---|---|---|
(Year.month) | (108 m3) | (108 m3) | (108 m3) | (108 m3) | |
Hydrological drought quantification | 1960.01–1975.05 | 13.27 | 1.33 | 3.98 | 7.96 |
1975.06–1985.07 | 4.96 | 0.50 | 1.49 | 2.97 | |
1985.08–1999.05 | 19.98 | 2.00 | 5.99 | 11.99 | |
1999.06–2012.08 | 1.65 | 0.17 | 0.50 | 0.99 | |
2012.09–2016.12 | 10.59 | 1.06 | 3.18 | 6.35 | |
Abrupt changes | 1960–1970 | 14.22 | 1.42 | 4.27 | 8.53 |
1971–1983 | 6.35 | 0.64 | 1.91 | 3.81 | |
1984–1997 | 15.52 | 1.55 | 4.66 | 9.31 | |
1998–2016 | 6.95 | 0.69 | 2.08 | 4.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Ma, X.; Yan, S.; Liang, L.; Pan, J.; Zhang, J. Lag in Hydrologic Recovery Following Extreme Meteorological Drought Events: Implications for Ecological Water Requirements. Water 2020, 12, 837. https://doi.org/10.3390/w12030837
Liu Q, Ma X, Yan S, Liang L, Pan J, Zhang J. Lag in Hydrologic Recovery Following Extreme Meteorological Drought Events: Implications for Ecological Water Requirements. Water. 2020; 12(3):837. https://doi.org/10.3390/w12030837
Chicago/Turabian StyleLiu, Qiang, Xiaojing Ma, Sirui Yan, Liqiao Liang, Jihua Pan, and Junlong Zhang. 2020. "Lag in Hydrologic Recovery Following Extreme Meteorological Drought Events: Implications for Ecological Water Requirements" Water 12, no. 3: 837. https://doi.org/10.3390/w12030837
APA StyleLiu, Q., Ma, X., Yan, S., Liang, L., Pan, J., & Zhang, J. (2020). Lag in Hydrologic Recovery Following Extreme Meteorological Drought Events: Implications for Ecological Water Requirements. Water, 12(3), 837. https://doi.org/10.3390/w12030837