Land Cover and Water Quality Patterns in an Urban River: A Case Study of River Medlock, Greater Manchester, UK
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: River Medlock
2.2. Water Quality Sampling and Measurement
2.3. Classification of Land Cover Patterns
2.4. Drainage Network and Sub-Catchment Delineation
2.5. Data Analysis
3. Results
3.1. Sub-Catchment Characteristics of the River Medlock
3.2. Land Cover Analysis at the Catchment Level
3.3. Land Cover Patterns and Water Quality Variables
3.4. Water Quality Parameters and Standards by Sub-Catchment
3.5. CSOs: Volume Discharged
4. Discussion
4.1. Land Cover and Water Quality
4.2. Spatial Scales and DEM
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Sites | Continuous Urban Fabric–Transport Network | Continuous Urban Fabric–Urban Green | Discontinuous Urban Fabric–Residential | Industrial, Commercial | Inland Waters | Woodland–Broadleaf | Total area (m²) of Land Cover per Sub-Catchment | Impervious Cover % | Non-impervious Cover % |
---|---|---|---|---|---|---|---|---|---|
S1 | 1,302,096.98 | 7,093,284.49 | 2,661,520.56 | 76,954.12 | 22,569.13 | 3,753,243.20 | 14,909,668.48 | 27.10 | 72.90 |
S2 | 2,501,224.47 | 9,545,920.15 | 4,184,219.37 | 491,579.65 | 22,569.13 | 4,974,877.57 | 21,720,390.34 | 33.04 | 66.96 |
S3 | 6,153,087.00 | 18,284,202.32 | 9,394,692.58 | 1,039,360.66 | 43,686.01 | 9,485,514.80 | 44,400,543.37 | 37.36 | 62.64 |
S4 | 7,600,552.87 | 20,420,978.49 | 11,075,106.06 | 1,521,639.61 | 43,686.01 | 10,239,830.79 | 50,901,793.83 | 39.68 | 60.32 |
S5 | 7,960,135.54 | 20,648,100.75 | 11,283,991.01 | 1,542,921.98 | 43,686.01 | 10,311,191.26 | 51,790,026.55 | 40.14 | 59.86 |
GS | 11,718,343.53 | 24,857,706.93 | 15,144,208.77 | 2,919,623.12 | 43,686.01 | 11,277,371.05 | 65,960,939.41 | 45.15 | 54.85 |
Total | 249,683,361.98 |
Sites | Continuous Urban Fabric–Transport Network (Area-(m²); %) | Discontinuous Urban Fabric–Residential (Area-(m²); %) | Industrial, Commercial (Area-(m²); %) | Sum of the Impervious cover (Area-(m²); %) | Discharge (m³/s) = Q | I = Average Precipitation Intensity = mm/h/(m3/s) or ha precipitation = mm) Transp Netw | I = Average Precipitation Intensity = mm/hr/ha (precipitation = mm) Res | I == Average Precipitation Intensity = mm/hr/ha (precipitation = mm) IC Commercial | c–Transp Network = Q/I × A (Transp Networks) |
---|---|---|---|---|---|---|---|---|---|
S1 | 1,302,096.98 | 2,661,520.56 | 76,954.12 | 4,040,571.66 | 0.15 | 8.98 × 10−8 | 4.40 × 10−8 | 1.52 × 10−6 | 1.28 |
32.23 | 65.87 | 1.9 | |||||||
S2 | 2,501,224.47 | 4,184,219.37 | 491,579.65 | 7,177,023.49 | 0.23 | 8.99 × 10−8 | 2.80 × 10−8 | 2.38 × 10−7 | 1.02 |
34.85 | 58.3 | 6.85 | |||||||
S3 | 6,153,087.00 | 9,394,692.58 | 1,039,360.66 | 16,587,140.24 | 0.43 | 1.90 × 10−8 | 1.25 × 10−8 | 1.13 × 10−7 | 3.67 |
37.1 | 56.64 | 6.27 | |||||||
S4 | 7,600,552.87 | 11,075,106.06 | 1,521,639.61 | 20,197,298.54 | 0.53 | 1.54 × 10−8 | 1.06 × 10−8 | 7.69 × 10−8 | 4.53 |
37.63 | 54.83 | 7.53 | |||||||
S5 | 7,960,135.54 | 11,283,991.01 | 1,542,921.98 | 20,787,048.53 | 0.53 | 1.47 × 10−8 | 1.04 × 10−8 | 7.58 × 10−8 | 4.53 |
38.29 | 54.28 | 7.42 | |||||||
GS | 11,718,343.53 | 15,144,208.77 | 2,919,623.12 | 29,782,175.42 | 0.53 | 9.99 × 10−9 | 7.73 × 10−9 | 4.01 × 10−8 | 4.53 |
39.35 | 50.85 | 9.80 | 98,571,257.88 |
Classification Item | 2016 | 2027 | ||
---|---|---|---|---|
Up | Down | Up | Down | |
Ecological (overall) | M | M | G | M |
Biological quality elements | P | P | M | M |
Hydromorphological supporting elements | sG | sG | sG | sG |
Physico-chemical quality elements | M | M | G | M |
Supporting elements (surface water) | M | M | G | G |
Chemical (overall) | G | G | G | G |
References
- Beck, S.M.; McHale, M.R.; Hess, G.R. Beyond Impervious: Urban Land-Cover Pattern Variation and Implications for Watershed Management. Environ. Manag. 2016, 58, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Nisbet, T.; Silgram, M.; Shah, N.; Morrow, K.; Broadmeadow, S. Woodland for Water: Woodland Measures for Meeting Water Framework Directive Objectives; FR(GB-JH) PDF/June11/0099; Forest Research: Surrey, UK, 2011. [Google Scholar]
- Arnold, C.L.; Gibbons, C.J. Impervious Surface Coverage: The Emergence of a Key Environmental Indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 2005, 24, 706. [Google Scholar] [CrossRef]
- Lepeška, T. The Impact of Impervious Surfaces on Ecohydrology and Health in Urban Ecosystems of Banská Bystrica (Slovakia). Soil Water Res. 2016, 11, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Zalewski, M. Ecohydrology—The use of ecological and hydrologîcal processes for sustainable management of water resources. J. des Sci. Hydrol. 2003, 47, 823–832. [Google Scholar] [CrossRef] [Green Version]
- Chadwick, M.A.; Dobberfuhl, D.R.; Benke, A.C.; Huryn, A.D.; Suberkropp, K.; Thiele, J.E. Urbanization Affects Stream Ecosystem Function by Altering Hydrology, Chemistry, and Biotic Richness. Ecol. Appl. 2010, 16, 1796–1807. [Google Scholar] [CrossRef]
- Chin, A. Urban transformation of river landscapes in a global context. Geomorphology 2006, 79, 460–487. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, Y.; Liu, Q.; Hou, Z.; Liao, J.; Fu, L.; Peng, Q. Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: A multi-scale analysis. Sci. Total Environ. 2016, 551–552, 205–216. [Google Scholar] [CrossRef]
- Huang, J.; Zhan, J.; Yan, H.; Wu, F.; Deng, X. Evaluation of the impacts of land use on water quality: A case study in the Chaohu lake basin. Sci. World J. 2013, 2013, 7. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.J.; Meyer, J.L. Streams in the urban landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Walsh, C.J.; Fletcher, T.D.; Vietz, G.J. Variability in stream ecosystem response to urbanization: Unraveling the influences of physiography and urban land and water management. Prog. Phys. Geogr. 2016, 40, 714–731. [Google Scholar] [CrossRef]
- Cuffney, T.F.; Mcmahon, G.; Kashuba, R.; May, J.T.; Waite, I.R. Responses of Benthic Macroinvertebrates to Urbanization in Nine Metropolitan Areas. Ecol. Appl. 2010, 20, 1384–1401. [Google Scholar] [CrossRef] [PubMed]
- Passerat, J.; Ouattara, K.N.; Mouchel, J.-M.; Rocher, V.; Servais, P. Impact of an intense combined sewer overflow event on the microbiological water quality of the Seine River. Water Res. 2011, 45, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Madoux-Humery, A.S.; Dorner, S.; Sauvé, S.; Aboulfadl, K.; Galarneau, M.; Servais, P.; Prévost, M. The effects of combined sewer overflow events on riverine sources of drinking water. Water Res. 2016, 92, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Combined Sewer Overflows (CSOs) Impact on Water Quality and Environmental Ecosystem in the Harlem River. J. Environ. Prot. (Irvine Calif.) 2014, 11, 1373–1389. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Wu, J.; Li, H.; Chen, Y.; Xu, J.; Xiong, L.; Zhang, J. Characterizing heavy metals in combined sewer overflows and its influence on microbial diversity. Sci. Total Environ. 2018, 625, 1272–1282. [Google Scholar] [CrossRef]
- APEM, A. Manchester Ship Canal Strategic Review of Fish; APEM: Heaton Mersey, UK, 2007; p. 139. [Google Scholar]
- Myerscough, P.E.; Digman, C.J. Combined Sewer Overflows-Do they have a Future? In Proceedings of the 11th International Conference on Urban Drainage, Edinburgh, Scotland, 31 August–5 September 2008; pp. 1–10. [Google Scholar]
- Rees, A.; White, K.N. Impact of Combined Sewer Overflows on the Water-Quality of an Urban Watercourse. Regul. Rivers-Res. Manag. 1993, 8, 83–94. [Google Scholar] [CrossRef]
- Committee on Climate Change. UK Climate Change Risk Assessment 2017. Synthesis Report for the Next Five Years; Committee on Climate Change: London, UK, 2016. [Google Scholar]
- National Flood Resilience Review. Available online: https://www.gov.uk/government/publications/national-flood-resilience-review (accessed on 16 March 2020).
- Thorne, C. Geographies of UK flooding in 2013/4. Geogr. J. 2014, 180, 297–309. [Google Scholar] [CrossRef]
- Cheng, P.; Meng, F.; Wang, Y.; Zhang, L.; Yang, Q.; Jiang, M. The impacts of land use patterns on water quality in a trans-boundary river basin in northeast China based on eco-functional regionalization. Int. J. Environ. Res. Public Health 2018, 15, 1872. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Zhou, Y.; Ma, W.; Zhou, L. Influence of spatial variation in land-use patterns and topography on water quality of the rivers inflowing to Fuxian Lake, a large deep lake in the plateau of southwestern China. Ecol. Eng. 2017, 99, 417–428. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Y.; Li, Z.; Li, P.; Xu, G. Influence of land use and land cover patterns on seasonal water quality at multi-spatial scales. Catena 2017, 151, 182–190. [Google Scholar] [CrossRef]
- Xia, L.L.; Liu, R.Z.; Zao, Y.W. Correlation Analysis of Landscape Pattern and Water Quality in Baiyangdian Watershed. Procedia Environ. Sci. 2012, 13, 2188–2196. [Google Scholar] [CrossRef] [Green Version]
- Potter, K.M.; Cubbage, F.W.; Blank, G.B.; Schaberg, R.H. A watershed-scale model for predicting nonpoint pollution risk in North Carolina. Environ. Manag. 2004, 34, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Buakhao, W.; Kangrang, A. DEM Resolution Impact on the Estimation of the Physical Characteristics of Watersheds by Using SWAT. Adv. Civ. Eng. 2016, 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Oguchi, T. Drainage density, slope angle, and relative basin position in Japanese bare lands from high-resolution DEMs. Geomorphology 2004, 63, 159–173. [Google Scholar] [CrossRef]
- Jenson, K.S.; Dominigue, O.J. Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis. Photogramm. Eng. Remote Sens. 1988, 54, 1593–1600. [Google Scholar]
- Hawker, L.; Bates, P.; Neal, J.; Rougier, J. Perspectives on Digital Elevation Model (DEM) Simulation for Flood Modeling in the Absence of a High-Accuracy Open Access Global DEM. Front. Earth Sci. 2018, 6, 233. [Google Scholar] [CrossRef] [Green Version]
- Nigel, R.; Rughooputh, S. Mapping of monthly soil erosion risk of mainland Mauritius and its aggregation with delineated basins. Geomorphology 2010, 114, 101–114. [Google Scholar] [CrossRef]
- Wechsler, S.P. Uncertainties associated with digital elevation models for hydrologic applications: A review. Hydrol. Earth Syst. Sci. 2007, 11, 1481–1500. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Yinglan, A.; Xu, Z.; Zhang, S. The influence of land use patterns on water quality at multiple spatial scales in a river system. Hydrol. Process. 2014, 28, 5259–5272. [Google Scholar] [CrossRef]
- Gurnell, A.; Lee, M.; Souch, C. Urban Rivers: Hydrology, Geomorphology, Ecology and Opportunities for Change. Geogr. Compass 2007, 1, 1118–1137. [Google Scholar] [CrossRef]
- Whitford, V.; Ennos, A.R.; Handley, J.F. “City form and natural process”—Indicators for the ecological performance of urban areas and their application to Merseyside, UK. Landsc. Urban Plan. 2001, 57, 91–103. [Google Scholar] [CrossRef]
- Nolan, P.A.; Guthrie, N. River rehabilitation in an urban environment: Examples from the Mersey Basin, North West England. Aquat. Conserv. Mar. Freshw. Ecosyst. 1998, 8, 685–700. [Google Scholar] [CrossRef]
- Burton, L.R. The Mersey Basin: An historical assessment of water quality from an anecdotal perspective. Sci. Total Environ. 2003, 314–316, 53–66. [Google Scholar] [CrossRef]
- Douglas, I.; Hodgson, R.; Lawson, N. Industry, environment and health through 200 years in Manchester. Ecol. Econ. 2002, 41, 235–255. [Google Scholar] [CrossRef]
- MacKillop, F. Climatic city: Two centuries of urban planning and climate science in Manchester (UK) and its region. Cities 2012, 29, 244–251. [Google Scholar] [CrossRef]
- Williams, A.E.; Waterfall, R.J.; White, K.N.; Hendry, K. Manchester Ship Canal and Salford Quays: Industrial legacy and ecological restoration. In Ecological Reviews: Ecology of Industrial Pollution; Cambridge University Press: Cambridge, UK, 2010; pp. 276–308. [Google Scholar]
- Blackburn, H.; O’Neill, R.; Rangeley-Wilson, C. Flushed Away: How Sewage is Still Polluting the Rivers of England and Wales; Hydro International: Clevedon, UK, 2017; pp. 1–37. [Google Scholar]
- Medupin, C. Spatial and temporal variation of benthic macroinvertebrate communities along an urban river in Greater Manchester, UK. Environ. Monit. Assess. 2020, 192, 84. [Google Scholar] [CrossRef] [Green Version]
- Archfield, S.A.; Vogel, R.M. Map correlation method: Selection of a reference streamgage to estimate daily streamflow at ungauged catchments. Water Resour. Res. 2010, 46, 1–15. [Google Scholar] [CrossRef]
- Environment Agency-Standing Committee of Analysts (SCA library): Methods for the Examination of Waters and Associated Material—Index of Methods for the Examination of Waters and Associated Materials 1976–2011 Blue Book 236. 2011. Available online: http://www.standingcommitteeofanalysts.co.uk (accessed on 15 March 2020).
- Barbara, K.; György, B.; Gerard, H.; Stephan, A. Updated CLC Illustrated Nomenclature Guidelines; European Environment Agency: Copenhagen, Denmark, 2017; pp. 1–124. [Google Scholar]
- WFD_UKTAG (2013) UKTAG WFD Environmental Standards River Basin Management 2015–2021. November 2013. Available online: http://www.wfduk.org/sites/default/files/Media/Environmental%20standards/UKTAG%20Environmental%20Standards%20Phase%203%20Final%20Report%2004112013.pdf (accessed on 15 March 2020).
- Luo, K.; Hu, X.; He, Q.; Wu, Z.; Cheng, H.; Hu, Z.; Mazumder, A. Impacts of rapid urbanization on the water quality and macroinvertebrate communities of streams: A case study in Liangjiang New Area, China. Sci. Total Environ. 2018, 621, 1601–1614. [Google Scholar] [CrossRef]
- Klein, R.D. Urbanization and Stream Quality Impairment. Water Resour. Bull. 1979, 15, 948–963. [Google Scholar] [CrossRef]
- Gagkas, Z.; Heal, K.; Stuart, N.; Nisbet, T.R. Forests and Water Guidelines: Broadleaf Woodlands and the Protection of Freshwaters in Acid-Sensitive Catchments. In Proceedings of the BHS 9th National Hydrology Symposium, Durham, England, 11–13 September 2006; pp. 53–58. [Google Scholar]
- Savage, J.T.S.; Bates, P.; Freer, J.; Neal, J.; Aronica, G. When does spatial resolution become spurious in probabilistic flood inundation predictions? Hydrol. Process. 2016, 30, 2014–2032. [Google Scholar] [CrossRef] [Green Version]
- Fewtrell, T.J.; Bates, P.D.; Horritt, M.; Hunter, N.M. Evaluating the effect of scale in flood inundation modelling in urban environments. Hydrol. Process. 2008, 22, 5107–5118. [Google Scholar] [CrossRef]
- Flaherty, D.J.; Drelich, J. The Use of Grasslands to Improve Water Quality in the New York City Watershed; Session 27—Integration of Environmental and Agricultural Policy; European Environment Agency: Copenhagen, Denmark, 1996. [Google Scholar]
- Grabowski, R.C.; Surian, N.; Gurnell, A.M. Characterizing geomorphological change to support sustainable river restoration and management. Wiley Interdiscip. Rev. Water 2014, 1, 483–512. [Google Scholar] [CrossRef]
- Gurnell, A.M.; Rinaldi, M.; Belletti, B.; Bizzi, S.; Blamauer, B.; Braca, G.; Buijse, A.D.; Bussettini, M.; Camenen, B.; Comiti, F.; et al. A multi-scale hierarchical framework for developing understanding of river behaviour to support river management. Aquat. Sci. 2016, 78, 1–16. [Google Scholar] [CrossRef] [Green Version]
Sub-Catchment | Grid Reference | Latitude | Longitude | Distance (km from Source) | Average Slope (%) | Sample Point Catchment Area (km²) | Elevation (Mean Sea Level) |
---|---|---|---|---|---|---|---|
S1 | SD 94183 02295 | 53.5173 | −2.0892 | 6.6 | 10.72 | 13.65 | 182 |
S2 | SD 93489 01798 | 53.5128 | −2.0996 | 8.5 | 9.45 | 20.55 | 159 |
S3 | SJ 89272 99554 | 53.4925 | −2.1631 | 13 | 7.56 | 43.98 | 114 |
S4 | SJ 86052 98382 | 53.4819 | −2.2116 | 16.1 | 7.24 | 50.16 | 93 |
S5 | SJ 85781 97858 | 53.4772 | −2.2157 | 17.4 | 7.21 | 50.85 | 90 |
GS | SJ 84800 97500 | 53.4740 | −2.2305 | 18 | 6.57 | 65.94 | 89 |
Land Cover and Water Quality Variables | r | p |
---|---|---|
Transport Network | ||
DO mg/L | −0.937 | 0.019 * |
Conductivity | 0.991 | 0.001 * |
TOM mg/L | −0.885 | 0.046 * |
Discharge m³/s | 0.964 | 0.008 ** |
NO3-N mg/L | 0.904 | 0.035 * |
Urban Green | ||
DO mg/L | 0.934 | 0.020 * |
Conductivity | −0.991 | 0.001 * |
TOM mg/L | 0.904 | 0.035 * |
Discharge m³/s | −0.962 | 0.009 ** |
PO4-P mg/L | −0.881 | 0.049 * |
NO3-N mg/L | −0.913 | 0.031 * |
Residential | ||
Conductivity | 0.993 | 0.001 ** |
Suspended solids mg/L | 0.904 | 0.035 * |
Discharge m³/s | 1.000 | 0.000 ** |
PO4-P mg/L | 0.908 | 0.033 * |
NO3-N mg/L | 0.959 | 0.001 * |
Industrial/Commercial | ||
DO mg/L | −0.897 | 0.039 * |
Conductivity | 0.928 | 0.023 * |
Discharge m³/s | 0.915 | 0.029 * |
Woodland (broadleaf) | ||
DO mg/L | 0.899 | 0.038 * |
Conductivity µS/cm | −0.999 | 0.000 ** |
Variables | Sub-Catchment Areas | Median | % Percentile | Standards EU WFD, * Freshwater Fisheries Directive ** Nitrates Directive and Drinking Water Directive | Interpretation |
---|---|---|---|---|---|
Temperature (°C) 2% and 98% percentile | S1 | 9.8 | 5–15.3 | ≤20 | High |
S2 | 9.5 | 5.1–14.8 | |||
S3 | 10.4 | 5.4–17.7 | |||
S4 | 10.2 | 4.9–17.3 | |||
S5 | 10.3 | 4.8–18.5 | |||
pH 5% and 10th percentile | S1 | 7.858 | 7.40–7.46 | ≤6–9 | High |
S2 | 7.79 | 7.50–7.61 | |||
S3 | 8.005 | 7.74–7.77 | |||
S4 | 8.04 | 7.80–7.81 | |||
S5 | 8.06 | 7.83–7.86 | |||
DO (% sat) 10%–90th percentile | S1 | 103.7 | 97.94–115.5 | ≥70% | High |
S2 | 101 | 85.8–111.6 | |||
S3 | 101.5 | 94.81–117.2 | |||
S4 | 100.9 | 93.82–113.7 | |||
S5 | 99.5 | 82.04–113.9 | |||
* Suspended solids (mg L−1) Freshwater Fisheries Directive | S1 | 4.183 | <25 | High | |
S2 | 6.029 | ||||
S3 | 11.59 | ||||
S4 | 15.03 | ||||
S5 | 12.05 | ||||
NH3-N (mg L−1) 1%–99th percentile | S1 | 0.35 | 0–2.48 | 0.04 | Poor |
S2 | 0.4 | 0–2.18 | |||
S3 | 0.59 | 0–2.50 | |||
S4 | 0.4 | 0.01–2.18 | |||
S5 | 0.43 | 0–2.55 | |||
BOD(mg L−1) 1%–99th percentile | S1 | 1.52 | 0–13.68 | ≤14 | Good to Moderate |
S2 | 1.98 | 0–13.1 | ≤14 | Good to Moderate | |
S3 | 2 | 0.04–14.92 | ≤19 | Good to Moderate | |
S4 | 2.6 | 0.55–16.13 | ≤19 | Good to Moderate | |
S5 | 2.49 | 0–5.1 | ≤19 | Very Good | |
TOM (mg L−1) 1%–99th percentile | S1 | 0.01 | 0–28.13 | ||
S2 | 0.01 | 0–25.93 | |||
S3 | 0.84 | 0–18.81 | |||
S4 | 0.33 | 0–14.04 | |||
S5 | 0.67 | 0–17.75 | |||
** NO3-N (mg L−1) (5%–95%) Nitrate Directive | S1 | 9.72 | 0.14–4.98 | 50 | Very Good |
S2 | 9.60 | 0.14–4.46 | 50 | Very Good | |
S3 | 10.7 | 0.59–11.68 | 50 | Very Good | |
S4 | 10.3 | 0.611–9.60 | 50 | Very Good | |
S5 | 10.34 | 0.523–9.23 | 50 | Very Good | |
PO4-P (mg L−1) (5%–95%) | S1 | 0.023 | 0–0.58 | 0.215–1.098 | Very Good |
S2 | 0.027 | 0–1.01 | 0.215–1.099 | Very Good | |
S3 | 0.462 | 0.03–1.61 | 0.215–1.100 | Moderately Poor | |
S4 | 0.444 | 0.02–1.25 | 0.215–1.101 | Moderately Poor | |
S5 | 0.447 | 0.02–1.25 | 0.215–1.102 | Moderately Poor |
Sites/Parameters | p | r |
---|---|---|
S1 | ||
BOD (mg/L) /NH3-N (mg/L) | 0 | 0.729 *** |
Conductivity (µS/cm)/pH | 0.016 | −0.517 ** |
NO3-N (mg/L)/PO4-P (mg/L) | 0.001 | 0.652 *** |
Q (m³/s)/NO3-N (mg/L) | 0.013 | 0.509 ** |
S2 | ||
BOD (mg/L)/NH3-N (mg/L) | 0.001 | 0.639 *** |
Q(m³/s)/NO3-N (kg/d) | 0.019 | 0.485 ** |
S3 | ||
BOD (mg/L)/NH3-N (mg/L) | 0.018 | 0.501 ** |
NO3-N (mg/L)/PO4-P (mg/L) | 0 | 0.797 *** |
S4 | ||
BOD (mg/L)/NH3-N (mg/L) | 0.009 | 0.535 *** |
NO3-N (mg/L)/PO4-P (mg/L) | 0 | 0.797 *** |
PO4-P (mg/L)/SS (mg/L) | 0.02 | 0.481 ** |
S5 | ||
NO3-N (mg/L)/PO4-P (mg/L) | 0 | 0.838 *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medupin, C.; Bark, R.; Owusu, K. Land Cover and Water Quality Patterns in an Urban River: A Case Study of River Medlock, Greater Manchester, UK. Water 2020, 12, 848. https://doi.org/10.3390/w12030848
Medupin C, Bark R, Owusu K. Land Cover and Water Quality Patterns in an Urban River: A Case Study of River Medlock, Greater Manchester, UK. Water. 2020; 12(3):848. https://doi.org/10.3390/w12030848
Chicago/Turabian StyleMedupin, Cecilia, Rosalind Bark, and Kofi Owusu. 2020. "Land Cover and Water Quality Patterns in an Urban River: A Case Study of River Medlock, Greater Manchester, UK" Water 12, no. 3: 848. https://doi.org/10.3390/w12030848
APA StyleMedupin, C., Bark, R., & Owusu, K. (2020). Land Cover and Water Quality Patterns in an Urban River: A Case Study of River Medlock, Greater Manchester, UK. Water, 12(3), 848. https://doi.org/10.3390/w12030848