Comparative Assessment of Fluvial Suspended Sediment Concentration Analysis Methods
Abstract
:1. Introduction
1.1. General Overview of Indirect Methods
1.2.1. Optical Devices
1.2.2. Acoustic Devices
1.2.3. Consideration of Indirect Methods for the Comparative Assessment
2. Materials and Methods
2.1. Study Site
2.2. Field Data Collection
2.3. Indirect Methods
2.3.1. Optical Devices
2.3.2. Acoustic Devices
2.4. Filtration Method
2.5. Quantitative Analysis of Uncertainties
2.6. Comparative Analysis of Indirect Methods
3. Results
3.1. Individual Analysis of Methods
3.2. Comparative Analysis
4. Discussion
4.1. Discussion of Indirect Methods
4.2. Optimisation of Fluvial Suspended Sediment Monitoring
4.3. Further Tasks
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Landers, M.N. Fluvial Suspended Sediment Characteristics By High-Resolution, Surrogate Metrics of Turbidity, Laserdiffraction, Acoustic Backscatter, and Acoustic Attenuation. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2012. [Google Scholar]
- Park, J.; Batalla, R.J.; Birgand, F.; Esteves, M.; Gentile, F.; Harrington, J.R.; Navratil, O.; López-Tarazón, J.A.; Vericat, D. Influences of Catchment and River Channel Characteristics on the Magnitude and Dynamics of Storage and Re-Suspension of Fine Sediments in River Beds. Water 2019, 11, 878. [Google Scholar] [CrossRef] [Green Version]
- Queensland Government. What Causes Streambed Erosion? Fact Sheet. 2001. Available online: https://www.qld.gov.au/__data/assets/pdf_file/0033/67677/what-causes-stream-bed-erosion.pdf (accessed on 10 February 2020).
- Koczka Bara, M.; Velísková, Y.; Dulovičová, R.; Schügerl, R. Influence of surface water level fluctuation and riverbed sediment deposits on groundwater regime. J. Hydrol. Hydromech. 2014, 62, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Hauer, C.; Leitner, P.; Unfer, G.; Pulg, U.; Habersack, H.; Graf, W. The Role of Sediment and Sediment Dynamics in the Aquatic Environment. In Riverine Ecosystem Management, 1st ed.; Schmutz, S., Sendzimir, J., Eds.; Springer: Cham, Switzerland, 2018; Volume 8, pp. 151–169. [Google Scholar]
- Goldschneider, A.A.; Haralampides, K.A.; MacQuarrie, K.T.B. River sediment and flow characteristics near a bank filtration water supply: Implications for riverbed clogging. J. Hydrol. 2007, 344, 55–69. [Google Scholar] [CrossRef]
- Gillefalk, M.; Massmann, G.; Nützmann, G.; Hilt, S. Potential Impacts of Induced Bank Filtration on Surface Water Quality: A Conceptual Framework for Future Research. Water 2018, 10, 1240. [Google Scholar] [CrossRef] [Green Version]
- Nones, M. Dealing with sediment transport in flood risk management. Acta Geophys. 2019, 67, 677–685. [Google Scholar] [CrossRef] [Green Version]
- Mossa, J. Sediment dynamics in the lowermost Mississippi River. Eng. Geol. 1996, 45, 457–479. [Google Scholar] [CrossRef]
- Mead, A.A.; Demas, C.R.; Ebersole, B.A.; Kleiss, B.A.; Little, C.D.; Meselhe, E.A.; Powell, N.J.; Pratt, T.C.; Vosburg, B.M. A water and sediment budget for the lower Mississippi-Atchafalaya River in flood years 2008–2010: Implications for sediment discharge to the oceans and coastal restoration in Louisiana. J. Hydrol. 2012, 432, 84–97. [Google Scholar] [CrossRef]
- Joshi, S.; Jun, X.Y. Recent changes in channel morphology of a highly engineered alluvial river—The Lower Mississippi River. Phys. Geogr. 2018, 39, 140–165. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Sediment transport, part I: Bed load transport. J. Hydraul. Eng. 1984, 110, 1431–1456. [Google Scholar] [CrossRef] [Green Version]
- Nittrouer, J.A.; Best, J.L.; Brantley, C.; Cash, R.W.; Czapiga, M.; Kumar, P.; Parker, G. Mitigating land loss in coastal Louisiana by controlled diversion of Mississippi River sand. Nat. Geosci. 2012, 5, 534–537. [Google Scholar] [CrossRef]
- Nittrouer, J.A.; Viparelli, E. Sand as a stable and sustainable resource for nourishing the Mississippi River delta. Nat. Geosci. 2014, 7, 350–354. [Google Scholar] [CrossRef]
- Joshi, S.; Xu, Y.J. Assessment of suspended sand availability under different flow conditions of the Lowermost Mississippi River at Tarbert Landing during 1973–2013. Water 2015, 7, 7022–7044. [Google Scholar] [CrossRef]
- Gomez, B. Bedload transport. Earth Sci. Rev. 1991, 31, 89–132. [Google Scholar] [CrossRef]
- Joshi, S.; Xu, Y.J. Bedload and suspended load transport in the 140-km reach downstream of the Mississippi River avulsion to the Atchafalaya River. Water 2017, 9, 716. [Google Scholar] [CrossRef] [Green Version]
- DanubeSediment. Handbook on Good Practices in Sediment Monitoring, Approved Project Report. 2019. Available online: http://www.interreg-danube.eu/approved-projects/danubesediment/outputs (accessed on 31 December 2019).
- Agrawal, Y.C.; Pottsmith, H.C. Instruments for particle size and settling velocity observations in sediment transport. Mar. Geol. 2000, 168, 89–114. [Google Scholar] [CrossRef]
- Downing, J. Twenty-five years with OBS sensors: The good, the bad, and the ugly. Cont. Shelf Res. 2006, 26, 2299–2318. [Google Scholar] [CrossRef]
- Agrawal, Y.C.; Whitmire, A.; Mikkelsen, O.A.; Pottsmith, H.C. Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Gray, J.R.; Gartner, J.W. Technological advances in suspended-sediment surrogate monitoring. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Czuba, J.A.; Straub, T.D.; Curran, C.A.; Landers, M.N.; Domanski, M.M. Comparison of fluvial suspended-sediment concentrations and particle-size distributions measured with in-stream laser diffraction and in physical samples. Water Resour. Res. 2015, 51, 320–340. [Google Scholar] [CrossRef]
- Boss, E.; Sherwood, C.R.; Hill, P.; Milligan, T. Advantages and Limitations to the Use of Optical Measurements to Study Sediment Properties. Appl. Sci. 2018, 8, 2692. [Google Scholar] [CrossRef] [Green Version]
- Rai, A.K.; Kumar, A. Continuous measurement of suspended sediment concentration: Technological advancement and future outlook. Measurement 2015, 76, 209–227. [Google Scholar] [CrossRef]
- Thorne, P.D.; Vincent, C.E.; Hardcastle, P.J.; Rehman, S.; Pearson, N. Measuring suspended sediment concentrations using acoustic backscatter devices. Mar. Geol. 1991, 98, 7–16. [Google Scholar] [CrossRef]
- Gartner, J.W. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California. Mar. Geol. 2004, 211, 169–187. [Google Scholar] [CrossRef]
- Moate, B.D.; Thorne, P.D. Interpreting acoustic backscatter from suspended sediments of different and mixed mineralogical composition. Cont. Shelf Res. 2012, 46, 67–82. [Google Scholar] [CrossRef]
- Agrawal, Y.C.; Hanes, D.M. The implications of laser-diffraction measurements of sediment size distributions in a river to the potential use of acoustic backscatter for sediment measurements. Water Resour. Res. 2015, 51, 8854–8867. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, M.; Szupiany, R.N.; Amsler, M.L. Comparison of acoustic backscattering techniques for suspended sediments investigations. Flow Meas. Instrum. 2011, 22, 392–401. [Google Scholar] [CrossRef]
- Guerrero, M.; Rüther, N.; Szupiany, R.N. Laboratory validation of acoustic Doppler current profiler (ADCP) techniques for suspended sediment investigations. Flow Meas. Instrum. 2012, 23, 40–48. [Google Scholar] [CrossRef]
- Sassi, M.G.; Hoitink, A.J.F.; Vermeulen, B. Impact of sound attenuation by suspended sediment on ADCP backscatter calibrations. Water Resour. Res. 2012, 48, 1–14. [Google Scholar] [CrossRef]
- Guerrero, M.; Rüther, N.; Szupiany, R.; Haun, S.; Baranya, S.; Latosinski, F. The acoustic properties of suspended sediment in large rivers: Consequences on ADCP methods applicability. Water 2016, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Hawley, N. A comparison of suspended sediment concentrations measured by acoustic and optical sensors. J. Great Lakes Res. 2004, 30, 301–309. [Google Scholar] [CrossRef]
- Patino, E.; Byrne, M.J. Application of Acoustic and Optic Methods for Estimating Suspended—Solids Concentrations in the St. Lucie River Estuary, Florida; U.S. Geological Survey Scientific Investigations Report 2004–5028; USGS: Reston, VA, USA, 2004.
- Vousdoukas, M.I.; Aleksiadis, S.; Grenz, C.; Verney, R. Comparisons of acoustic and optical sensors for suspended sediment concentration measurements under non-homogeneous solutions. J. Coast. Res. 2011, 64, 160–164. [Google Scholar]
- Sirabahenda, Z.; St-Hilaire, A.; Courtenay, S.C.; van den Heuvel, M.R. Comparison of acoustic to optical backscatter continuous measurements of suspended sediment concentrations and their characterization in an agriculturally impacted river. Water 2019, 11, 981. [Google Scholar] [CrossRef] [Green Version]
- Sommerhäuser, M.; Robert, S.; Birk, S.; Hering, D.; Moog, O.; Stubauer, I.; Ofenböck, T. Developing the Typology of Surface Waters and Defining the Relevant Reference Conditions. Final Report. 2003. Available online: http://www.undp-drp.org/pdf/1.1_River%20Basin%20Management%20-%20Phase%201/1.1_UNDP-DRP_Typology%20of%20SW_116_fr.pdf (accessed on 12 February 2020).
- DanubeSediment. Analysis of Sediment Data Collected Along the Danube. Approved Project Report. 2019. Available online: http://www.interreg-danube.eu/approved-projects/danubesediment/outputs (accessed on 12 February 2020).
- BMFLUW. Schwebstoffe im Fließgewässer—Leitfaden zur Erfassung des Schwebstofftransports. Bundesministerium für Land- und Forstwirtschaft; Umwelt und Wasserwirtschaft, 2. Auflage; BMLFUW: Vienna, Austria; Available online: https://www.bmnt.gv.at/wasser/wasser-oesterreich/wasserkreislauf/Schwebstoffe_LF.html (accessed on 31 December 2019).
- LISST-Portable|XR Manual Version 1.3. Available online: http://www.sequoiasci.com/wp-content/uploads/2015/06/LISST-PortableXR-Manual-Version-1_3.pdf (accessed on 31 December 2019).
- Le, H.A.; Gratiot, N.; Santini, W.; Ribolzi, O.; Soares-Frazao, S.; Deleersnijder, E. Sediment properties in the fluvial and estuarine environments of the Mekong River. E3S Web Conf. 2018, 40, 05063. [Google Scholar] [CrossRef] [Green Version]
- Rai, A.K.; Kumar, A. Sediment monitoring for hydroabrasive erosion: A field study from Himalayas, India. Int. J. Fluid Mach. Syst. 2017, 10, 146–153. [Google Scholar] [CrossRef]
- Rai, A.K.; Kumar, A. Determination of the particle load based on detailed suspended sediment measurements at a hydropower plant. Int. J. Sediment Res. 2019, 34, 409–421. [Google Scholar] [CrossRef]
- Bogárdi, J. Sediment Transport in Alluvial Streams, 1st ed.; Akadémiai Kiadó: Budapest, Hungary, 1971; pp. 44–48. [Google Scholar]
- VELP TB1 Portable Turbidimeter Leaflet. Available online: https://www.velp.com/euronet/contenuti/image/thumb/VELP_TB1_Turbidimeter_Leaflet.pdf (accessed on 31 December 2019).
- LISST-ABS Acoustic Backscatter Sensor User’s Manual Version 1.4. Available online: http://www.sequoiasci.com/wp-content/uploads/2015/04/LISST-ABS-Users-Manual_v1.4.pdf (accessed on 31 December 2019).
- Agrawal, Y.C.; Slade, W.; Pottsmith, H.C.; Dana, D. Technologies and experience with monitoring sediments for protecting turbines from abrasion. IOP Conf. Ser. Earth Environ. Sci. 2016, 49, 122005. [Google Scholar] [CrossRef] [Green Version]
- Conevski, S.; Guerrero, M.; Rüther, N.; Baranya, S. Testing the LISST-ABS Capabilities and Verifying its Usage for Measuring Suspended Sediment Concentration in Large Rivers. In Proceedings of the Particle in Europe (PiE) Conference, Budapest, Hungary, 3–5 October 2016. [Google Scholar]
- Guerrero, M.; Di Federico, V. Suspended sediment assessment by combining sound attenuation and backscatter measurements–analytical method and experimental validation. Adv. Water Resour. 2018, 113, 167–179. [Google Scholar] [CrossRef]
- Baranya, S.; Józsa, J. Estimation of suspended sediment concentrations with ADCP in Danube river. J. Hydrol. Hydromech. 2013, 61, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Rüther, N.; Aleixo, R.; Guerrero, M.; Sørås, S.; Stokseth, S. Towards an establishment of a rating curve for suspended sediment transport by means of ADCP measurements. E3S Web Conf. 2018, 40, 04024. [Google Scholar] [CrossRef]
- Helsel, D.R.; Hirsch, R.M. Simple Linear Regression. In Statistical Methods in Water Researches, 1st ed.; U. S. Geological Survey: Reston, VA, USA, 2002; pp. 221–263. [Google Scholar]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Lewis, C.D. Industrial and business forecasting methods. J. Forecast. 1982, 2, 194–196. [Google Scholar]
- Pomázi, F.; Baranya, S.; Török, G.T. Mapping of Suspended Sediment Mixing at a Confluence Zone to Improve Sediment Monitoring of a Large River. In Proceedings of the Particle in Europe (PiE) Conference, Lisbon, Portugal, 14–17 October 2018. [Google Scholar]
- Venditti, J.G.; Church, M.; Attard, M.E.; Haught, D. Use of ADCPs for suspended sediment transport monitoring: An empirical approach. Water Resour. Res. 2016, 52, 2715–2736. [Google Scholar] [CrossRef]
- Workhorse Rio Grande ADCP Guide. Available online: http://www.teledynemarine.com/Documents/Brand%20Support/RD%20INSTRUMENTS/Technical%20Resources/Manuals%20and%20Guides/Workhorse/Rio%20Grande%20ADCP%20Guide_Sep13.pdf (accessed on 31 December 2019).
- Hejduk, L.; Banasik, K. Variations in suspended sediment grain sizes in flood events of a small lowland river. IAHS Publ. 2010, 337, 189–196. [Google Scholar]
- Shang, D.; Qin, R.; Xu, H.; Xu, C.; Sun, K.; Zhou, Y. Variation of Suspended Particles in the Bottom Layer of the East China Sea with Data from Seafloor Observatory. Sensors 2019, 19, 5156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Workhorse H-ADCP Technical Specifications. Available online: http://www.teledynemarine.com/Lists/Downloads/hadcp_datasheet_lr.pdf (accessed on 31 December 2019).
Statistical Measure | Interpretation | |||
---|---|---|---|---|
Very Good | Good | Satisfactory | Not Satisfactory | |
R2 | 0.80< | 0.65–0.80 | 0.40–0.65 | <0.40 |
MAPE | <10 | 10–20 | 20–50 | 50< |
%RMSE | <10 | 10–20 | 20–50 | 50< |
PBIAS | <1 | 1–10 | 10–20 | 20< |
MAE | Lower the better; optimally 0 | |||
RMSE | Lower the better; optimally 0 |
Statistic | ADCP | LISST-ABS | LISST-P | VELP TB1 |
---|---|---|---|---|
Nr. of meas. | 750 | 621 | 604 | 771 |
R2 (-) | 0.36 | 0.69 | 0.85 | 0.80 |
MAE (mg/L) | 19.57 | 10.89 | 9.48 | 9.29 |
MAPE (%) | 57.86 | 40.88 | 28.23 | 29.11 |
RMSE (mg/L) | 30.24 | 15.79 | 13.65 | 15.40 |
%RMSE (%) | 76.46 | 45.84 | 31.73 | 40.12 |
PBIAS (%) | 19.55 | 0.00055 | 0.00323 | 0.00001 |
Attribute | Acoustic | Optical | ||
---|---|---|---|---|
ADCP RB | LISST-ABS | LISST-P | VELP TB1 | |
Time needed | Approx. 30 min 1 | Real-time | 3–5 min | 1 min |
Field application (Y/N) | Yes (in situ) | Yes (in situ) | Limited (sensitive to the cold temperature) | Yes (off-site) |
Measurement location | Continuous (suitable for vertical, horizontal and cross-sectional profiling) | Discrete (but suitable also for continuous vertical and horizontal profiling) | Point (discrete) | Point (discrete) |
Automated measurement (Y/N) | Yes | Yes | No | No |
Probability of errors | Low | Low | Medium | Medium |
Source of errors | Manual calibration (e.g., extracting echo intensity profiles, determining calibration dataset) | No differentiation between fine and coarse particles | Setting of the optical method and the material of SS; bubbles | Limited volume; settling velocity of coarser particles |
Sensitivity | Calibration | Particle size | Temperature, high SSC | Sample colour, dirty vial |
Accuracy | ± 1.5 dB (relative measure) [58] | ± 30% (for particles 30 to 400 µm) [47] | ± 20% [41] | ± 2% (0–500 NTU) and ±3% (501–1000 NTU) [46] |
Range | 80 dB (dynamic range) [58] | 1–30,000 mg/L (depending on particle size) [47] | 10–1900 mg/L (depending on particle size) [41] | 0–1000 NTU [46] |
Calibration (Y/N) | Yes; complex | Yes; easy with linear regression | Yes; easy with linear regression | Yes; easy with linear regression |
Unit of measurement | Echo intensity | Uncalibrated SSC | Mass concentration (mg/L) | Turbidity (NTU) |
Handling | Easy | Easy | Easy, but a bit of practice needed | Easy |
Postprocessing needs | High | Low | Low (only when PSD in m/m% is needed) | No |
Bonus strengths | Always used | Can be easily used for cross-sectional and vertical profiling as well | Provides information about PSD | Compact, small sample volume is needed |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pomázi, F.; Baranya, S. Comparative Assessment of Fluvial Suspended Sediment Concentration Analysis Methods. Water 2020, 12, 873. https://doi.org/10.3390/w12030873
Pomázi F, Baranya S. Comparative Assessment of Fluvial Suspended Sediment Concentration Analysis Methods. Water. 2020; 12(3):873. https://doi.org/10.3390/w12030873
Chicago/Turabian StylePomázi, Flóra, and Sándor Baranya. 2020. "Comparative Assessment of Fluvial Suspended Sediment Concentration Analysis Methods" Water 12, no. 3: 873. https://doi.org/10.3390/w12030873
APA StylePomázi, F., & Baranya, S. (2020). Comparative Assessment of Fluvial Suspended Sediment Concentration Analysis Methods. Water, 12(3), 873. https://doi.org/10.3390/w12030873