Concentrations and Loads of Dissolved and Particulate Organic Carbon in Urban Stormwater Runoff
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Sample Collection
2.3. Sample Analyses
2.4. Statistical analysis
3. Results
3.1. Summary of Rainfall and Flow in Residential Catchment
3.2. Concentrations of Organic Carbon Forms in Rainfall and Stormwater Runoff
3.3. Temporal Pattern of Organic Carbon Concentrations in Stormwater Runoff
3.4. Organic Carbon Fractions Export in Stormwater Runoff
4. Discussion
4.1. Concentrations of DOC and POC in Stormwater Runoff
4.2. Temporal Variations in Organic Carbon Concentrations in Stormwater Runoff
4.3. Wet Deposition of Organic Carbon in Stormwater Runoff
4.4. Organic Carbon Export in Stormwater Runoff from the Residential Catchment
4.5. Management Implications of Organic Carbon Transport in Residential Stormwater Runoff
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hale, R.L.; Turnbull, L.; Earl, S.R.; Childers, D.L.; Grimm, N.B. Stormwater infrastructure controls runoff and dissolved material export from arid urban watersheds. Ecosystems 2014, 18, 62–75. [Google Scholar] [CrossRef] [Green Version]
- Walsh, C.J.; Fletcher, T.D.; Burns, M.J. Urban stormwater runoff: A new class of environmental flow problem. PLoS ONE 2012, 7, e45814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wetzel, R.G. Limnology: Lake and River Ecosystems, 3rd ed.; Academic Press: San Diego, CA, USA, 2010; p. 1006. [Google Scholar]
- Yang, Y.-Y.; Toor, G. Sources and mechanisms of nitrate and orthophosphate transport in urban stormwater runoff from residential catchments. Water Res. 2017, 112, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, S.S.; McDowell, W.; Wollheim, W.; Johnson, T.; Mayer, P.; Belt, K.; Pennino, M.J. Urban evolution: The role of water. Water 2015, 7, 4063–4087. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Delaney-Newcomb, K.; Findlay, S.E.G.; Newcomer, T.A.; Duan, S.; Pennino, M.J.; Sivirichi, G.M.; Sides-Raley, A.M.; Walbridge, M.R.; Belt, K.T. Longitudinal patterns in carbon and nitrogen fluxes and stream metabolism along an urban watershed continuum. Biogeochemistry 2014, 121, 23–44. [Google Scholar] [CrossRef]
- Solomon, C.T.; Jones, S.E.; Weidel, B.C.; Buffam, I.; Fork, M.L.; Karlsson, J.; Larsen, S.; Lennon, J.T.; Read, J.S.; Sadro, S.; et al. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: Current knowledge and future challenges. Ecosystems 2015, 18, 376–389. [Google Scholar] [CrossRef]
- Pagano, T.; Bida, M.; Kenny, J. Trends in levels of allochthonous dissolved organic carbon in natural water: A review of potential mechanisms under a changing climate. Water 2014, 6, 2862–2897. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Cardona, B.; Wymore, A.S.; McDowell, W.H. DOC:NO3-ratios and NO3-uptake in forested headwater streams. J. Geophys. Res. Biogeosci. 2016, 121, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.I. The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia 1992, 229, 73–91. [Google Scholar] [CrossRef]
- Søndergaard, M.; Phillips, G.; Hellsten, S.; Kolada, A.; Ecke, F.; Mäemets, H.; Mjedde, M.; Azzella, M.M.; Oggioni, A. Maximum growing depth of submerged macrophytes in European lakes. Hydrobiologia 2012, 704, 165–177. [Google Scholar] [CrossRef]
- Kaushal, S.; McDowell, W.H.; Wollheim, W.M. Tracking evolution of urban biogeochemical cycles: Past, present, and future. Biogeochemistry 2014, 121, 1–21. [Google Scholar] [CrossRef]
- Deverel, S.J.; Rojstaczer, S. Subsidence of agricultural lands in the Sacramento-San Joaquin delta, California: Role of aqueous and gaseous carbon fluxes. Water Resour. Res. 1996, 32, 2359–2367. [Google Scholar] [CrossRef]
- Hallquist, M.; Wenger, J.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N.M.; George, C.; Goldstein, A.H.; et al. The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155–5236. [Google Scholar] [CrossRef] [Green Version]
- Iavorivska, L.; Boyer, E.W.; DeWalle, D.R. Atmospheric deposition of organic carbon via precipitation. Atmos. Environ. 2016, 146, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Parr, T.B.; Cronan, C.S.; Ohno, T.; Findlay, S.E.G.; Smith, S.M.C.; Simon, K.S. Urbanization changes the composition and bioavailability of dissolved organic matter in headwater streams. Limnol. Oceanogr. 2015, 60, 885–900. [Google Scholar] [CrossRef] [Green Version]
- Kaushal, S.S.; Belt, K.T. The urban watershed continuum: Evolving spatial and temporal dimensions. Urban Ecosyst. 2012, 15, 409–435. [Google Scholar] [CrossRef]
- Southwest Florida Water Management District. Manatee River: Comprehensive Watershed Management Plan; Southwest Florida Water Management District: Brookville, FL, USA, 2000; p. 201.
- Potter, B.B.; Wimsatt, J.C. USEPA method 415.3: Quantifying TOC, DOC, and SUVA. J. Am. Water Works Assoc. 2012, 104, E358–E369. [Google Scholar] [CrossRef]
- Filella, M. Freshwaters: Which NOM matters? Environ. Chem. Lett. 2008, 7, 21–35. [Google Scholar] [CrossRef]
- Motulsky, H.; Brown, R. Detecting outliers when fitting data with nonlinear regression-a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinf. 2006, 7, 123. [Google Scholar] [CrossRef] [Green Version]
- Gray, D. Derivation of Hydrographs for Small Watersheds from Measurable Characteristics. Research Bulletin (Iowa Agriculture and Home Economics Experiment Station). 1962, Volume 34. No. 506, Article 1. Available online: http://lib.dr.iastate.edu/researchbulletin/vol34/iss506/1 (accessed on 1 March 2020).
- Arcement, G.J.; Schneider, V.R. Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Flood Plains United States Geological Survey Water-Supply Paper 2339. In Water-Supply Paper; 1989. Available online: https://pubs.er.usgs.gov/publication/wsp2339 (accessed on 1 March 2020).
- Jani, J.; Yang, Y.-Y.; Lusk, M.G.; Toor, G.S. Composition of nitrogen in urban residential stormwater runoff: Concentrations, loads, and source characterization of nitrate and organic nitrogen. PLoS ONE 2020, 15, e0229715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanley, E.H.; Powers, S.M.; Lottig, N.R.; Buffam, I.; Crawford, J.T. Contemporary changes in dissolved organic carbon (DOC) in human-dominated rivers: Is there a role for DOC management? Freshwater Biol. 2012, 57, 26–42. [Google Scholar] [CrossRef]
- Smith, R.M.; Kaushal, S.S. Carbon cycle of an urban watershed: Exports, sources, and metabolism. Biogeochemistry 2015, 126, 173–195. [Google Scholar] [CrossRef]
- Alvarez-Cobelas, M.; Angeler, D.G.; Sánchez-Carrillo, S.; Almendros-Martin, G. A worldwide view of organic carbon export from catchments. Biogeochemistry 2012, 107, 275–293. [Google Scholar] [CrossRef]
- Tian, Y.Q.; Yu, Q.; Feig, A.D.; Ye, C.; Blunden, A. Effects of climate and land-surface processes on terrestrial dissolved organic carbon export to major US coastal rivers. Ecol. Eng. 2013, 54, 192–201. [Google Scholar] [CrossRef]
- Seo, Y.; Choi, N.J.; Schmidt, A.R. Contribution of directly connected and isolated impervious areas to urban drainage network hydrographs. Hydrol. Earth Syst. Sci. 2013, 17, 3473–3483. [Google Scholar] [CrossRef] [Green Version]
- Hinton, M.J.; Schiff, S.L.; English, M.C. The significance of storms for the concentration and export of dissolved organic carbon from two Precambrian Shield catchments. Biogeochemistry 1997, 36, 67–88. [Google Scholar] [CrossRef]
- Sickman, J.O.; Zanoli, M.J.; Mann, H.L. Effects of urbanization on organic carbon loads in the Sacramento River, California. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef] [Green Version]
- Fork, M.L.; Heffernan, J.B. Direct and indirect effects of dissolved organic matter source and concentration on denitrification in northern Florida rivers. Ecosystems 2013, 17, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Sterner, R.; Andersen, T.; Elser, J.; Hessen, D.O.; Hood, J.M.; McCauley, E.; Urabe, J. Scale-dependent carbon:nitrogen:phosphorus seston stoichiometry in marine and freshwaters. Limnol. Oceanogr. 2008, 53, 1169–1180. [Google Scholar] [CrossRef]
- McPherson, B.F.; Miller, R.L.; Haag, K.H.; Bradner, A. Water Quality in Southern Florida Florida, 1996–98; U.S. Geological Survey Circular 1207; U.S. Geological Survey: Denver, CO, USA, 1997; p. 32. Available online: https://pubs.usgs.gov/circ/circ1207/ (accessed on 1 March 2020).
- Chen, Z.; Hu, C.; Comny, R.; Muller-Karger, F.; Swarzenski, P. Colored dissolved organic matter in Tampa Bay, Florida. Mar. Chem. 2007, 104, 98–109. [Google Scholar] [CrossRef]
DOC (mg L−1) | POC (mg L−1) | TOC (mg L−1) | DOC:TOC | POC:TOC | |
---|---|---|---|---|---|
FWMC | 10.51 | 2.01 | 12.52 | 0.84 | 0.16 |
Median | 9.48 | 0.56 | 10.34 | 0.92 | 0.08 |
Minimum | 3.37 | 0.41 | 3.78 | — | — |
Maximum | 28.40 | 18.23 | 29.28 | — | — |
Standard Deviation | 6.20 | 4.05 | 7.09 | — | — |
Event | Rainfall DOC Concentration (mg L−1) | Stormwater runoff DOC Concentration (mg L−1) | Percent Rainfall DOC in Stormflow (%) |
---|---|---|---|
1 | 2.08 | 14.59 | 14 |
5 | 2.89 | 9.58 | 30 |
9 | 2.08 | 12.35 | 17 |
10 | 2.02 | 7.21 | 28 |
13 | 1.15 | 3.37 | 34 |
14 | 0.83 | 9.48 | 9 |
19 | 1.28 | 9.51 | 13 |
20 | 1.17 | 8.35 | 14 |
22 | 6.98 | 19.30 | 36 |
24 | 2.25 | 4.60 | 49 |
Mean | 2.27 | 9.83 | 23 |
Form | Calculated export in 25 storm events (kg ha−1) | Estimated export in non-captured storm events (kg ha−1) | Total (calculated + estimated) export in wet season (kg ha−1) |
---|---|---|---|
DOC | 16.8 | 40.1 | 56.9 |
POC | 1.4 | 7.7 | 9.1 |
TOC | 18.2 | 47.8 | 66.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalev, S.; Toor, G.S. Concentrations and Loads of Dissolved and Particulate Organic Carbon in Urban Stormwater Runoff. Water 2020, 12, 1031. https://doi.org/10.3390/w12041031
Kalev S, Toor GS. Concentrations and Loads of Dissolved and Particulate Organic Carbon in Urban Stormwater Runoff. Water. 2020; 12(4):1031. https://doi.org/10.3390/w12041031
Chicago/Turabian StyleKalev, Stefan, and Gurpal S. Toor. 2020. "Concentrations and Loads of Dissolved and Particulate Organic Carbon in Urban Stormwater Runoff" Water 12, no. 4: 1031. https://doi.org/10.3390/w12041031
APA StyleKalev, S., & Toor, G. S. (2020). Concentrations and Loads of Dissolved and Particulate Organic Carbon in Urban Stormwater Runoff. Water, 12(4), 1031. https://doi.org/10.3390/w12041031