Advancing Understanding of Land Use and Physicochemical Impacts on Fecal Contamination in Mixed-Land-Use Watersheds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Data Collection
2.3. Data Analysis
3. Results and Discussion
3.1. Climate during Study
3.2. E. Coli Concentrations
3.3. Physicochemical Parameters
3.4. Annual Non-Parametric Statistical Results
3.5. Quarterly Non-Parametric Statistical Results
3.6. Study Implications and Future Directions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Site Number | |||||||||||
#1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #10 | #11 | |
Avg. | 170 | 38 | 397 | 429 | 34 | 269 | 84 | 89 | 127 | 210 | 98 |
Med. | 66 | 3 | 260 | 361 | 4 | 194 | 20 | 32 | 25 | 93 | 16 |
Min. | 0 | 0 | 15 | 107 | 0 | 2 | 0 | 0 | 0 | 3 | 0 |
Max. | 1011 | 961 | 1011 | 1011 | 914 | 1011 | 1011 | 1011 | 1011 | 1011 | 870 |
Std. Dev. | 251 | 139 | 315 | 249 | 129 | 276 | 179 | 180 | 241 | 273 | 202 |
Site Number | |||||||||||
#12 | #13 | #14 | #15 | #16 | #17 | #18 | #19 | #20 | #21 | #22 | |
Avg. | 234 | 215 | 457 | 330 | 560 | 206 | 324 | 466 | 415 | 471 | 452 |
Med. | 88 | 91 | 299 | 211 | 575 | 93 | 218 | 436 | 299 | 397 | 397 |
Min. | 0 | 0 | 0 | 5 | 22 | 3 | 0 | 1 | 23 | 2 | 3 |
Max. | 1011 | 1011 | 1011 | 1011 | 1011 | 1011 | 1011 | 1011 | 1011 | 1011 | 1011 |
Std. Dev. | 305 | 266 | 406 | 293 | 373 | 288 | 342 | 339 | 340 | 342 | 345 |
Site Number | |||||||||||
#1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #10 | #11 | |
Avg. | 11.77 | 11.09 | 11.27 | 11.48 | 12.28 | 11.44 | 12.36 | 12.32 | 11.88 | 11.72 | 12.84 |
Med. | 11.00 | 9.90 | 10.20 | 9.80 | 10.85 | 9.70 | 11.40 | 11.30 | 10.60 | 10.10 | 12.80 |
Min. | 5.00 | 2.60 | 1.10 | −0.10 | 0.00 | −0.10 | 0.10 | −0.10 | −0.10 | −0.20 | 2.80 |
Max. | 20.30 | 19.10 | 19.50 | 21.90 | 23.10 | 22.10 | 21.50 | 21.50 | 21.80 | 22.20 | 22.10 |
Std. Dev. | 4.20 | 5.51 | 6.15 | 6.95 | 7.73 | 7.21 | 6.65 | 6.28 | 6.72 | 7.02 | 6.22 |
Site Number | |||||||||||
#12 | #13 | #14 | #15 | #16 | #17 | #18 | #19 | #20 | #21 | #22 | |
Avg. | 12.10 | 12.09 | 12.34 | 12.86 | 12.00 | 11.67 | 12.53 | 12.64 | 12.88 | 12.87 | 13.74 |
Med. | 10.70 | 10.70 | 10.60 | 11.40 | 11.10 | 10.40 | 10.90 | 11.10 | 11.80 | 11.60 | 13.05 |
Min. | −0.10 | 0.10 | 0.30 | −0.10 | 0.10 | 0.20 | −0.10 | −0.20 | −0.30 | −0.20 | −0.10 |
Max. | 23.50 | 22.00 | 24.00 | 23.00 | 24.00 | 21.70 | 24.00 | 24.10 | 23.50 | 24.60 | 27.70 |
Std. Dev. | 7.87 | 6.91 | 7.66 | 6.89 | 6.99 | 6.99 | 7.44 | 7.72 | 7.76 | 7.88 | 8.61 |
Site Number | |||||||||||
#1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #10 | #11 | |
Avg. | 7.33 | 5.94 | 6.68 | 7.17 | 6.19 | 6.79 | 5.03 | 4.37 | 5.08 | 5.60 | 5.56 |
Med. | 7.30 | 5.62 | 6.70 | 7.24 | 7.17 | 7.19 | 5.04 | 4.23 | 4.93 | 5.62 | 5.70 |
Min. | 6.57 | 4.74 | 5.71 | 6.29 | 3.05 | 3.92 | 2.89 | 3.05 | 3.13 | 3.43 | 3.08 |
Max. | 8.69 | 7.93 | 7.92 | 7.85 | 7.74 | 8.06 | 7.78 | 7.58 | 7.83 | 7.81 | 7.66 |
Std. Dev. | 0.44 | 0.93 | 0.51 | 0.42 | 1.63 | 0.90 | 1.43 | 1.04 | 1.24 | 1.08 | 1.08 |
Site Number | |||||||||||
#12 | #13 | #14 | #15 | #16 | #17 | #18 | #19 | #20 | #21 | #22 | |
Avg. | 6.13 | 6.10 | 6.54 | 7.68 | 7.80 | 7.86 | 7.18 | 7.38 | 7.97 | 7.86 | 7.76 |
Med. | 6.38 | 6.38 | 6.75 | 7.97 | 7.96 | 7.96 | 7.51 | 7.72 | 8.11 | 8.06 | 7.96 |
Min. | 0.25 | 3.61 | 4.01 | 4.30 | 4.23 | 4.00 | 3.99 | 4.14 | 4.27 | 4.32 | 4.27 |
Max. | 7.89 | 7.85 | 7.76 | 8.47 | 8.36 | 8.45 | 7.95 | 8.23 | 8.65 | 8.73 | 8.67 |
Std. Dev. | 1.13 | 1.07 | 0.77 | 0.76 | 0.58 | 0.59 | 0.91 | 0.92 | 0.66 | 0.70 | 0.72 |
Site Number | |||||||||||
#1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #10 | #11 | |
Avg. | 1639.28 | 958.51 | 778.70 | 810.22 | 1320.75 | 827.24 | 1053.28 | 1661.13 | 1497.19 | 1143.77 | 812.42 |
Med. | 1643.00 | 918.00 | 718.00 | 727.00 | 1353.00 | 769.00 | 999.00 | 1562.00 | 1480.00 | 1129.00 | 695.00 |
Min. | 331.60 | 358.10 | 286.20 | 301.80 | 633.00 | 354.30 | 503.00 | 813.00 | 688.00 | 476.60 | 530.00 |
Max. | 3778.00 | 2024.00 | 1620.00 | 1709.00 | 2654.00 | 1745.00 | 3378.00 | 4692.00 | 4302.00 | 2572.00 | 1955.00 |
Std. Dev. | 484.90 | 301.93 | 305.86 | 303.74 | 307.58 | 263.52 | 404.69 | 555.53 | 496.47 | 349.67 | 284.72 |
Site Number | |||||||||||
#12 | #13 | #14 | #15 | #16 | #17 | #18 | #19 | #20 | #21 | #22 | |
Avg. | 885.06 | 961.58 | 503.58 | 1392.64 | 413.31 | 249.11 | 868.99 | 877.08 | 1463.58 | 945.33 | 738.12 |
Med. | 861.00 | 958.00 | 480.40 | 1116.00 | 385.00 | 226.40 | 845.00 | 831.00 | 1045.00 | 850.00 | 651.00 |
Min. | 516.00 | 449.50 | 321.50 | 510.00 | 231.60 | 144.40 | 451.60 | 494.00 | 408.90 | 486.50 | 297.60 |
Max. | 2072.00 | 2315.00 | 1052.00 | 6631.00 | 890.00 | 449.90 | 2184.00 | 2690.00 | 6106.00 | 3345.00 | 2185.00 |
Std. Dev. | 279.25 | 292.86 | 111.90 | 1041.80 | 120.58 | 68.43 | 306.89 | 355.26 | 1193.23 | 458.84 | 359.11 |
Site Number | |||||||||||
#1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #10 | #11 | |
Avg. | 85.93 | 89.95 | 98.47 | 100.78 | 102.52 | 100.62 | 93.20 | 100.38 | 101.42 | 101.16 | 98.50 |
Med. | 85.10 | 94.90 | 98.50 | 100.50 | 102.25 | 100.60 | 95.00 | 100.10 | 101.70 | 101.30 | 98.90 |
Min. | 76.90 | 61.30 | 93.20 | 90.40 | 97.10 | 95.20 | 75.70 | 94.60 | 94.80 | 95.30 | 92.70 |
Max. | 101.10 | 100.70 | 102.00 | 112.10 | 107.40 | 105.00 | 103.20 | 120.50 | 106.00 | 108.10 | 103.60 |
Std. Dev. | 6.02 | 10.04 | 1.97 | 3.48 | 1.92 | 1.68 | 7.64 | 3.14 | 1.60 | 1.73 | 1.89 |
Site Number | |||||||||||
#12 | #13 | #14 | #15 | #16 | #17 | #18 | #19 | #20 | #21 | #22 | |
Avg. | 100.76 | 100.31 | 100.39 | 103.78 | 97.40 | 96.68 | 102.30 | 103.09 | 104.63 | 104.22 | 103.68 |
Med. | 100.90 | 100.50 | 100.50 | 102.70 | 97.70 | 98.50 | 102.00 | 103.10 | 102.40 | 103.80 | 103.50 |
Min. | 94.00 | 92.90 | 93.40 | 89.10 | 86.80 | 60.70 | 93.80 | 96.90 | 93.40 | 96.70 | 94.80 |
Max. | 107.20 | 104.60 | 109.50 | 117.80 | 107.40 | 103.70 | 112.90 | 110.00 | 129.30 | 112.00 | 115.60 |
Std. Dev. | 2.08 | 2.09 | 3.05 | 5.56 | 3.97 | 6.60 | 3.13 | 1.78 | 9.06 | 2.74 | 3.80 |
Site Number | |||||||||||
#1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #10 | #11 | |
Avg. | 272.11 | 128.83 | 101.63 | 95.87 | 23.41 | 62.49 | 22.53 | 119.36 | 109.73 | 84.04 | 76.27 |
Med. | 263.40 | 118.25 | 86.62 | 83.73 | 12.89 | 57.47 | 18.25 | 105.28 | 102.46 | 78.75 | 52.46 |
Min. | 27.08 | 19.78 | 13.76 | 14.31 | 4.97 | 12.14 | 6.38 | 32.65 | 24.29 | 16.35 | 3.39 |
Max. | 821.26 | 325.24 | 388.96 | 444.44 | 282.40 | 289.87 | 124.07 | 340.28 | 263.38 | 249.22 | 520.25 |
Std. Dev. | 146.30 | 55.88 | 68.56 | 68.34 | 45.50 | 41.00 | 18.04 | 55.72 | 47.16 | 40.79 | 84.18 |
Site Number | |||||||||||
#12 | #13 | #14 | #15 | #16 | #17 | #18 | #19 | #20 | #21 | #22 | |
Avg. | 73.42 | 74.23 | 27.94 | 220.17 | 32.16 | 13.34 | 67.52 | 80.97 | 282.87 | 111.21 | 87.82 |
Med. | 51.01 | 63.76 | 22.94 | 164.83 | 21.56 | 11.79 | 57.96 | 66.06 | 168.78 | 84.08 | 56.97 |
Min. | 16.48 | 17.88 | 15.26 | 29.23 | 14.13 | 6.85 | 17.69 | 21.87 | 33.96 | 27.24 | 7.71 |
Max. | 455.64 | 248.34 | 101.48 | 905.31 | 297.32 | 39.82 | 225.82 | 307.39 | 1242.68 | 491.53 | 472.78 |
Std. Dev. | 74.83 | 45.41 | 17.91 | 176.53 | 44.33 | 6.13 | 40.02 | 54.18 | 260.03 | 95.67 | 99.41 |
Variables | Coefficients of PC1 | Coefficients of PC2 | Coefficients of PC3 |
---|---|---|---|
E. coli | −0.03 | 0.55 | 0.00 |
Water Temp | −0.09 | 0.37 | −0.14 |
DO | 0.12 | 0.11 | 0.53 |
SPC | 0.41 | −0.37 | −0.08 |
pH | 0.09 | 0.57 | 0.06 |
Cl- | 0.50 | −0.12 | −0.03 |
Mixed Development | 0.55 | 0.18 | 0.08 |
Agriculture | −0.15 | 0.02 | −0.73 |
Forested | −0.47 | −0.20 | 0.40 |
Variables | Coefficients of PC1 | Coefficients of PC2 | Coefficients of PC3 |
---|---|---|---|
E. coli | −0.03 | 0.55 | 0.00 |
Water Temp | −0.09 | 0.37 | −0.14 |
DO | 0.12 | 0.11 | 0.53 |
SPC | 0.41 | −0.37 | −0.08 |
pH | 0.09 | 0.57 | 0.06 |
Cl- | 0.50 | −0.12 | −0.03 |
Mixed Development | 0.55 | 0.18 | 0.08 |
Agriculture | −0.15 | 0.02 | −0.73 |
Forested | −0.47 | −0.20 | 0.40 |
Variables | Coefficients of PC1 | Coefficients of PC2 | Coefficients of PC3 | Coefficients of PC4 |
---|---|---|---|---|
E. coli | 0.03 | 0.58 | −0.09 | −0.09 |
Water Temp | 0.05 | 0.12 | −0.12 | 0.91 |
DO | 0.04 | 0.09 | 0.59 | −0.18 |
SPC | 0.36 | −0.49 | −0.08 | 0.17 |
pH | 0.17 | 0.60 | 0.04 | 0.09 |
Cl− | 0.51 | −0.12 | −0.01 | −0.11 |
Mixed Development | 0.56 | 0.09 | 0.15 | −0.01 |
Agriculture | −0.12 | 0.03 | −0.71 | −0.23 |
Forested | −0.50 | −0.12 | 0.31 | 0.16 |
Variables | Coefficients of PC1 | Coefficients of PC2 | Coefficients of PC3 | Coefficients of PC4 |
---|---|---|---|---|
E. coli | 0.43 | 0.14 | −0.29 | −0.20 |
Water Temp | 0.21 | 0.18 | 0.58 | 0.33 |
DO | 0.30 | 0.22 | 0.48 | 0.16 |
SPC | −0.50 | 0.03 | 0.24 | 0.14 |
pH | 0.39 | 0.32 | −0.20 | −0.18 |
Cl− | −0.48 | 0.21 | −0.13 | −0.12 |
Mixed Development | −0.16 | 0.63 | 0.01 | −0.15 |
Agriculture | 0.09 | −0.13 | −0.41 | 0.78 |
Forested | 0.11 | −0.57 | 0.26 | −0.36 |
Variables | Coefficients of PC1 | Coefficients of PC2 | Coefficients of PC3 | Coefficients of PC4 |
---|---|---|---|---|
E. coli | −0.03 | 0.55 | 0.00 | 0.21 |
Water Temp | −0.09 | 0.37 | −0.14 | 0.79 |
DO | 0.12 | 0.11 | 0.53 | −0.01 |
SPC | 0.41 | −0.37 | −0.08 | 0.19 |
pH | 0.09 | 0.57 | 0.06 | −0.14 |
Cl− | 0.50 | −0.12 | −0.03 | −0.17 |
Mixed Development | 0.55 | 0.18 | 0.08 | 0.09 |
Agriculture | −0.15 | 0.02 | −0.73 | −0.44 |
Forested | −0.47 | −0.20 | 0.40 | 0.20 |
References
- Mahmoud, M.A.; Abdelsalam, M.; Mahdy, O.A.; El Miniawy, H.M.F.; Ahmed, Z.A.M.; Osman, A.H.; Mohamed, H.M.H.; Khattab, A.M.; Zaki Ewiss, M.A. Infectious bacterial pathogens, parasites and pathological correlations of sewage pollution as an important threat to farmed fishes in Egypt. Environ. Pollut. 2016, 219, 939–948. [Google Scholar] [CrossRef] [PubMed]
- Price, R.G.; Wildeboer, D.E. coli as an Indicator of Contamination and Health Risk in Environmental Waters. In Escherichia coli—Recent Advances on Physiology, Pathogenesis and Biotechnological Applications; InTech: Vienna, Austria, 2017. [Google Scholar]
- Madoux-Humery, A.-S.; Dorner, S.; Sauvé, S.; Aboulfadl, K.; Galarneau, M.; Servais, P.; Prévost, M. The effects of combined sewer overflow events on riverine sources of drinking water. Water Res. 2016, 92, 218–227. [Google Scholar] [CrossRef] [PubMed]
- E. coli (Escherichia coli)|E. coli|CDC. Available online: https://www.cdc.gov/ecoli/index.html (accessed on 8 January 2020).
- WHO. World Water Day Report. Available online: https://www.who.int/water_sanitation_health/takingcharge.html (accessed on 12 December 2019).
- Petersen, F.; Hubbart, J.A.; Kellner, E.; Kutta, E. Land-use-mediated Escherichia coli concentrations in a contemporary Appalachian watershed. Environ. Earth Sci. 2018, 77, 754. [Google Scholar] [CrossRef]
- Hirn, J.; Viljamaa, H.; Raevuori, M. The effect of physicochemical, phytoplankton and seasonal factors on faecal indicator bacteria in northern brackish water. Water Res. 1980, 14, 279–285. [Google Scholar] [CrossRef]
- Goyal, S.M.; Gerba, C.P.; Melnick, J.L. Occurrence and distribution of bacterial indicators and pathogens in canal communities along the Texas coast. Appl. Environ. Microbiol. 1977, 34, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.M.M.; Hofstra, N.; Islam, M.A. The Impact of Environmental Variables on Faecal Indicator Bacteria in the Betna River Basin, Bangladesh. Environ. Process. 2017, 4, 319–332. [Google Scholar] [CrossRef]
- Verhougstraete, M.P.; Martin, S.L.; Kendall, A.D.; Hyndman, D.W.; Rose, J.B. Linking fecal bacteria in rivers to landscape, geochemical, and hydrologic factors and sources at the basin scale. Proc. Natl. Acad. Sci. USA 2015, 112, 10419–10424. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.-C.; Cheng, S.-J. Recovery of low-temperature stressed E. coli O157:H7 and its susceptibility to crystal violet, bile salt, sodium chloride and ethanol. Int. J. Food Microbiol. 2000, 61, 127–136. [Google Scholar] [CrossRef]
- Hong, H.; Qiu, J.; Liang, Y. Environmental factors influencing the distribution of total and fecal coliform bacteria in six water storage reservoirs in the Pearl River Delta Region, China. J. Environ. Sci. 2010, 22, 663–668. [Google Scholar] [CrossRef]
- Gotkowska-Plachta, A.; Golaś, I.; Korzeniewska, E.; Koc, J.; Rochwerger, A.; Solarski, K. Evaluation of the distribution of fecal indicator bacteria in a river system depending on different types of land use in the southern watershed of the Baltic Sea. Environ. Sci. Pollut. Res. 2016, 23, 4073–4085. [Google Scholar] [CrossRef]
- Rwego, I.B.; Gillspie, T.R.; Isabirye-Basuta, G.; Goldberg, T.L. High Rates of Escherichia coli Transmission between Livestock and Humans in Rural Uganda. J. Clin. Microbiol. 2008, 46, 3187–3191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Causse, J.; Billen, G.; Garnier, J.; Henri-des-Tureaux, T.; Olasa, X.; Thammahacksa, C.; Latsachak, K.O.; Soulileuth, B.; Sengtaheuanghoung, O.; Rochelle-Newall, E. Field and modelling studies of Escherichia coli loads in tropical streams of montane agro-ecosystems. J. Hydro-Environ. Res. 2015, 9, 496–507. [Google Scholar] [CrossRef]
- Jamieson, R.; Joy, D.M.; Lee, H.; Kostaschuk, R.; Gordon, R. Transport and deposition of sediment-associated Escherichia coli in natural streams. Water Res. 2005, 39, 2665–2675. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yunus, M.; Islam, M.S.; Emch, M. Influence of climate extremes and land use on fecal contamination of shallow tubewells in Bangladesh. Environ. Sci. Technol. 2016, 50, 2669–2676. [Google Scholar] [CrossRef] [Green Version]
- Petersen, F.; Hubbart, J.A. Quantifying Escherichia coli and Suspended Particulate Matter Concentrations in a Mixed-Land Use Appalachian Watershed. Water 2020, 12, 532. [Google Scholar] [CrossRef] [Green Version]
- Rochelle-Newall, E.J.; Ribolzi, O.; Viguier, M.; Thammahacksa, C.; Silvera, N.; Latsachack, K.; Dinh, R.P.; Naporn, P.; Sy, H.T.; Soulileuth, B. Effect of land use and hydrological processes on Escherichia coli concentrations in streams of tropical, humid headwater catchments. Sci. Rep. 2016, 6, 32974. [Google Scholar] [CrossRef] [Green Version]
- Wilson, C.; Weng, Q. Assessing surface water quality and its relation with urban land cover changes in the Lake Calumet Area, Greater Chicago. Environ. Manag. 2010, 45, 1096–1111. [Google Scholar] [CrossRef]
- Tong, S.T.; Chen, W. Modeling the relationship between land use and surface water quality. J. Environ. Manag. 2002, 66, 377–393. [Google Scholar] [CrossRef]
- Abia, A.L.K.; Ubomba-Jaswa, E.; Genthe, B.; Momba, M.N.B. Quantitative microbial risk assessment (QMRA) shows increased public health risk associated with exposure to river water under conditions of riverbed sediment resuspension. Sci. Total Environ. 2016, 566–567, 1143–1151. [Google Scholar] [CrossRef]
- Characklis, G.W.; Dilts, M.J.; Simmons, O.D., III; Likirdopulos, C.A.; Krometis, L.-A.H.; Sobsey, M.D. Microbial partitioning to settleable particles in stormwater. Water Res. 2005, 39, 1773–1782. [Google Scholar] [CrossRef]
- Jeng, H.C.; England, A.J.; Bradford, H.B. Indicator organisms associated with stormwater suspended particles and estuarine sediment. J. Environ. Sci. Health 2005, 40, 779–791. [Google Scholar] [CrossRef] [PubMed]
- Kändler, M.; Blechinger, K.; Seidler, C.; Pavlů, V.; Šanda, M.; Dostál, T.; Krása, J.; Vitvar, T.; Štich, M. Impact of land use on water quality in the upper Nisa catchment in the Czech Republic and in Germany. Sci. Total Environ. 2017, 586, 1316–1325. [Google Scholar] [CrossRef] [PubMed]
- Paster, E.; Ryu, W.S. The thermal impulse response of Escherichia coli. Proc. Natl. Acad. Sci. USA 2008, 105, 5373–5377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, E.D.; Tiefenthaler, L.; Schiff, K. Comparison of stormwater pollutant loading by land use type. Proc. Water Environ. Fed. 2007, 2007, 700–722. [Google Scholar] [CrossRef]
- Widgren, S.; Engblom, S.; Emanuelson, U.; Lindberg, A. Spatio-temporal modelling of verotoxigenic Escherichia coli O157 in cattle in Sweden: Exploring options for control. Vet. Res. 2018, 49, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tetzlaff, D.; Carey, S.K.; McNamara, J.P.; Laudon, H.; Soulsby, C. The essential value of long-term experimental data for hydrology and water management. Water Resour. Res. 2017, 53, 2598–2604. [Google Scholar] [CrossRef] [Green Version]
- Zeiger, S.; Hubbart, J.A. Quantifying suspended sediment flux in a mixed-land-use urbanizing watershed using a nested-scale study design. Sci. Total Environ. 2016, 542, 315–323. [Google Scholar] [CrossRef]
- Leopold, L.B. Hydrologic Research on Instrumented Watersheds; International Association of Scientific Hydrology: Wellington, New Zealand, 1970; pp. 135–150. [Google Scholar]
- Hewlett, J.D.; Lull, H.W.; Reinhart, K.G. In Defense of Experimental Watersheds. Water Resour. Res. 1969, 5, 306–316. [Google Scholar] [CrossRef]
- Bosch, J.M.; Hewlett, J.D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 1982, 55, 3–23. [Google Scholar] [CrossRef]
- Nichols, J.; Hubbart, J.A. Using macroinvertebrate assemblages and multiple stressors to infer urban stream system condition: A case study in the central US. Urban Ecosyst. 2016, 19, 679–704. [Google Scholar] [CrossRef]
- Zeiger, S.; Hubbart, J.A.; Anderson, S.A.; Stambaugh, M.C. Quantifying and modelling urban stream temperature: A central US watershed study. Hydrol. Process. 2015, 30, 503–514. [Google Scholar] [CrossRef]
- Hubbart, J.A.; Kellner, E.; Zeiger, S. A Case-Study Application of the Experimental Watershed Study Design to Advance Adaptive Management of Contemporary Watersheds. Water 2019, 11, 2355. [Google Scholar] [CrossRef] [Green Version]
- Zeiger, S.J.; Hubbart, J.A. Nested-scale nutrient flux in a mixed-land-use urbanizing watershed. Hydrol. Process. 2016, 30, 1475–1490. [Google Scholar] [CrossRef]
- Kellner, E.; Hubbart, J. Advancing understanding of the surface water quality regime of contemporary mixed-land-use watersheds: An application of the experimental watershed method. Hydrology 2017, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Hubbart, J.A. Urban Floodplain Management: Understanding Consumptive Water-Use Potential in Urban Forested Floodplains. Stormwater J. 2011, 12, 56–63. [Google Scholar]
- Cantor, J.; Krometis, L.-A.; Sarver, E.; Cook, N.; Badgley, B. Tracking the downstream impacts of inadequate sanitation in central Appalachia. J. Water Health 2017, 15, 580–590. [Google Scholar] [CrossRef] [Green Version]
- Arcipowski, E.; Schwartz, J.; Davenport, L.; Hayes, M.; Nolan, T. Clean water, clean life: Promoting healthier, accessible water in rural Appalachia. J. Contemp. Water Res. Educ. 2017, 161, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Dykeman, W. Appalachian Mountains. Available online: https://www.britannica.com/place/Appalachian-Mountains (accessed on 20 November 2019).
- Köppen, W. Das geographische System der Klimate. Handb. Klimatol. 1936, 35, 44. [Google Scholar]
- Central Appalachian Broadleaf Forest—Coniferous Forest—Meadow Province. Available online: https://www.fs.fed.us/land/ecosysmgmt/colorimagemap/images/m221.html (accessed on 12 December 2019).
- Kellner, E.; Hubbart, J.; Stephan, K.; Morrissey, E.; Freedman, Z.; Kutta, E.; Kelly, C. Characterization of sub-watershed-scale stream chemistry regimes in an Appalachian mixed-land-use watershed. Environ. Monit. Assess. 2018, 190, 586. [Google Scholar] [CrossRef]
- The West Virginia Water Research Institute, The West Run Watershed Association. (WVWRI) Watershed Based Plan for West Run of the Monongahela River; The West Virginia Water Research Institute, The West Run Watershed Association: Morgantown, WV, USA, 2008. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 2007, 4, 439–473. [Google Scholar] [CrossRef] [Green Version]
- Arguez, A.; Durre, I.; Applequist, S.; Squires, M.; Vose, R.; Yin, X.; Bilotta, R. NOAA’s US climate normals (1981–2010). NOAA Natl. Cent. Environ. Inf. 2010, 10, V5PN93JP. [Google Scholar]
- Hubbart, J.A.; Muzika, R.-M.; Huang, D.; Robinson, A. Improving Quantitative Understanding of Bottomland Hardwood Forest Influence on Soil Water Consumption in an Urban Floodplain. Watershed Sci. Bull. 2011, 3, 34–43. [Google Scholar]
- Hubbart, J.A. Measuring and Modeling Hydrologic Responses to Timber Harvest in a Continental/Maritime Mountainous Environment. Ph.D. Dissertation, University of Idaho, Moscow, ID, USA, 2007. [Google Scholar]
- Wei, L.; Hubbart, J.A.; Zhou, H. Variable Streamflow Contributions in Nested Subwatersheds of a US Midwestern Urban Watershed. Water Resour. Manag. 2018, 32, 213–228. [Google Scholar] [CrossRef]
- Hubbart, J.A.; Kellner, E.; Hooper, L.W.; Zeiger, S. Quantifying loading, toxic concentrations, and systemic persistence of chloride in a contemporary mixed-land-use watershed using an experimental watershed approach. Sci. Total Environ. 2017, 581, 822–832. [Google Scholar] [CrossRef] [PubMed]
- Zeiger, S.J.; Hubbart, J.A. Quantifying flow interval–pollutant loading relationships in a rapidly urbanizing mixed-land-use watershed of the Central USA. Environ. Earth Sci. 2017, 76, 484. [Google Scholar] [CrossRef]
- Dusek, N.; Hewitt, A.J.; Schmidt, K.N.; Bergholz, P.W. Landscape-Scale Factors Affecting the Prevalence of Escherichia coli in Surface Soil Include Land Cover Type, Edge Interactions, and Soil pH. Appl. Environ. Microbiol. 2018, 84, e02714-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, M.A.; Rifai, H.S. Variability of Escherichia coli Concentrations in an Urban Watershed in Texas. J. Environ. Eng. 2010, 136, 1347–1359. [Google Scholar] [CrossRef]
- IDEXX. Laboratories Colilert Procedure Manual. Available online: https://www.idexx.com/files/colilert-procedure-en.pdf (accessed on 4 April 2019).
- Cummings, D. The Fecal Coliform Test Compared to Specific Tests for Escherichia coli. IDEXX. Available online: https://www.idexx.com/resource-library/water/water-reg-article9B.pdf (accessed on 24 September 2019).
- Yellow Springs Instruments. ProDSS User Manual. Available online: https://www.ysi.com/File%20Library/Documents/Manuals/YSI-ProDSS-110714-Rev-B-626973-User-Manual.pdf (accessed on 8 January 2020).
- Yazici, B.; Yolacan, S. A comparison of various tests of normality. J. Stat. Comput. Simul. 2007, 77, 175–183. [Google Scholar] [CrossRef]
- Fisher, R.A. Statistical Methods for Research Workers. In Breakthroughs in Statistics: Methodology and Distribution; Kotz, S., Johnson, N.L., Eds.; Springer Series in Statistics; Springer: New York, NY, USA, 1992; pp. 66–70. ISBN 978-1-4612-4380-9. [Google Scholar]
- United States Climate Data (USCD). Available online: https://www.usclimatedata.com/climate/morgantown/west-virginia/united-states/uswv0507/2012/7 (accessed on 28 September 2019).
- RoyChowdhury, A.; Sarkar, D.; Datta, R. Remediation of Acid Mine Drainage-Impacted Water. Curr. Pollut. Rep. 2015, 1, 131–141. [Google Scholar] [CrossRef]
- Méndez-García, C.; Peláez, A.I.; Mesa, V.; Sánchez, J.; Golyshina, O.V.; Ferrer, M. Microbial diversity and metabolic networks in acid mine drainage habitats. Front. Microbiol. 2015, 6, 475. [Google Scholar]
- Brown, T.C.; Binkley, D.; Brown, D. Water quality on forest lands|Rocky Mountain Research Station. Available online: /rmrs/projects/water-quality-forest-lands (accessed on 11 March 2020).
- Nelson, K.C.; Palmer, M.A. Stream temperature surges under urbanization and climate change: Data, models and responses. J. Am. Water Resour. Assoc. 2007, 43, 440–452. [Google Scholar] [CrossRef]
- Wang, L.; Kanehl, P. Influences of Watershed Urbanization and Instream Habitat on Macroinvertebrates in Cold Water Streams1. JAWRA J. Am. Water Resour. Assoc. 2003, 39, 1181–1196. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Lyons, J.; Kanehl, P. Impacts of Urban Land Cover on Trout Streams in Wisconsin and Minnesota. Trans. Am. Fish. Soc. 2003, 132, 825–839. [Google Scholar] [CrossRef]
- Imberger, S.J.; Walsh, C.J.; Grace, M.R. More microbial activity, not abrasive flow or shredder abundance, accelerates breakdown of labile leaf litter in urban streams. JNBS 2008, 27, 549–561. [Google Scholar] [CrossRef]
- Mustafa, M.; Barnhart, B.; Babber-Sebens, M.; Ficklin, D. Modeling landscape change effects on stream temperature using the soil and water assessment tool. Water 2018, 10, 1143. [Google Scholar] [CrossRef] [Green Version]
- McQuestin, O.J.; Shadbolt, C.T.; Ross, T. Quantification of the Relative Effects of Temperature, pH, and Water Activity on Inactivation of Escherichia coli in Fermented Meat by Meta-Analysis. Appl. Environ. Microbiol. 2009, 75, 6963–6972. [Google Scholar] [CrossRef] [Green Version]
- Lyew, D.; Sheppard, J. Use of conductivity to monitor the treatment of acid mine drainage by sulphate-reducing bacteria. Water Res. 2001, 35, 2081–2086. [Google Scholar] [CrossRef]
- Cormier, S.M.; Wilkes, S.P.; Zheng, L. Relationship of land use and elevated ionic strength in Appalachian watersheds. Environ. Toxicol. Chem. 2013, 32, 296–303. [Google Scholar] [CrossRef] [Green Version]
- Gray, N.F. Field assessment of acid mine drainage contamination in surface and ground water. Geo 1996, 27, 358–361. [Google Scholar] [CrossRef]
- Zampella, R.A.; Procopio, N.A.; Lathrop, R.G.; Dow, C.L. Relationship of Land-Use/Land-Cover Patterns and Surface-Water Quality in The Mullica River Basin1. JAWRA J. Am. Water Resour. Assoc. 2007, 43, 594–604. [Google Scholar] [CrossRef]
- Baker, M.E.; Schley, M.L.; Sexton, J.O. Impacts of Expanding Impervious Surface on Specific Conductance in Urbanizing Streams. Water Resour. Res. 2019, 55, 6482–6498. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, Y.; Fu, L.; Liu, Q.; Peng, Q.; Kang, M. Impacts of land use on surface water quality in a subtropical river basin: A case study of the dongjian river basin, southeastern China. Water 2015, 7, 4427–4445. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Aziz, O.I.; Ahmed, S. Relative linkages of stream water quality and environmental health with the land use and hydrologic drivers in the coastal-urban watersheds of southeast Florida. GeoHealth 2017, 1, 180–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guenther, P.M.; Hubert, W.A. Factors influencing dissolved oxygen concentrations during winter in small Wyoming reservoirs. Great Basin Nat. 1991, 51, 282–285. [Google Scholar]
- Wetzel, R.G.; Likens, G.E. Dissolved Oxygen. In Limnological Analyses; Wetzel, R.G., Likens, G.E., Eds.; Springer: New York, NY, USA, 2000; pp. 73–84. ISBN 978-1-4757-3250-4. [Google Scholar]
- De Vivo, B.; Belkin, H.E.; Lima, A. Environmental Geochemistry: Site Characterization, Data Analysis and Case Histories, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 978-0-444-63763-5. [Google Scholar]
- Grese, M.M.; Kaushal, S.S.; Newcomer, T.A.; Findlay, S.E.G.; Groffman, P.M. Effects of urbanization on variability in temperature and diurnal oxygen patterns in streams. In Proceedings of the Global Warming Esa, Pittsburg, CA, USA, 22 September 2010; The David L. Lawrence Convention Center: Pittsburg, CA, USA, 2010. [Google Scholar]
- Niu, T.; Zhou, Z.; Shen, X.; Qiao, W.; Jiang, L.-M.; Pan, W.; Zhou, J. Effects of dissolved oxygen on performance and microbial community structure in a micro-aerobic hydrolysis sludge in situ reduction process. Water Res. 2016, 90, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Hibbing, M.E.; Fuqua, C.; Parsek, M.R.; Peterson, S.B. Bacterial competition: Surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 2010, 8, 15–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lax, S.M.; Peterson, E.W.; Van der Hoven, S.J. Stream chloride concentrations as a function of land use: A comparison of an agricultural watershed to an urban agricultural watershed. Environ. Earth Sci. 2017, 76, 708. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Groffman, P.M.; Likens, G.E.; Belt, K.T.; Stack, W.P.; Kelly, V.R.; Band, L.E.; Fisher, G.T. Increased salinization of fresh water in the northeastern United States. Proc. Natl. Acad. Sci. USA 2005, 102, 13517–13520. [Google Scholar] [CrossRef] [Green Version]
- Hauke, J.; Kossowski, T. Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Quaest. Geogr. 2011, 30, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Blaustein, R.A.; Pachepsky, Y.; Hill, R.L.; Shelton, D.R.; Whelan, G. Escherichia coli survival in waters: Temperature dependence. Water Res. 2013, 47, 569–578. [Google Scholar] [CrossRef]
- Ishii, S.; Sadowsky, M.J. Escherichia coli in the Environment: Implications for Water Quality and Human Health. Microbes Environ. 2008, 23, 101–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spietz, R.L.; Williams, C.M.; Rocap, G.; Horner-Devine, M.C. A Dissolved Oxygen Threshold for Shifts in Bacterial Community Structure in a Seasonally Hypoxic Estuary. PLoS ONE 2015, 10, e0135731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Multivariate Analysis: Principal Component Analysis: Biplots-9.3. Available online: http://support.sas.com/documentation/cdl/en/imlsug/64254/HTML/default/viewer.htm#imlsug_ugmultpca_sect003.htm (accessed on 23 December 2019).
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Bro, R.; Smilde, K.A. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Dingman, S.L. Phyiscal Hydrology, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 2002; ISBN 0-13-099695-5. [Google Scholar]
- Farewell, A.; Neidhardt, F.C. Effect of Temperature on In Vivo Protein Synthetic Capacity in Escherichia coli. J. Bacteriol. 1998, 180, 4704–4710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajmeer, M.; Ceylan, E.; Marsden, J.L.; Fung, D.Y.C. Impact of sodium chloride on Escherichia coli O157:H7 and Staphylococcus aureus analysed using transmission electron microscopy. Food Microbiol. 2006, 23, 446–452. [Google Scholar] [CrossRef]
- Harvey, R.; Lye, L.; Khan, A.; Paterson, R. The Influence of Air Temperature on Water Temperature and the Concentration of Dissolved Oxygen in Newfoundland Rivers. Can. Water Resour. J. 2011, 36, 171–192. [Google Scholar] [CrossRef]
- Davies-Colley, R.J.; Nagels, J.W.; Smith, R.A.; Young, R.G.; Phillips, C.J. Water quality impact of a dairy cow herd crossing a stream. N. Z. J. Mar. Freshw. Res. 2004, 38, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Collins, R.; Mcleod, M.; Hedley, M.; Donnison, A.; Close, M.; Hanly, J.; Horne, D.; Ross, C.; Davies-Colley, R.; Bagshaw, C.; et al. Best management practices to mitigate faecal contamination by livestock of New Zealand waters. N. Z. J. Agric. Res. 2007, 50, 267–278. [Google Scholar] [CrossRef]
Site | Mixed Development (%) | Agriculture (%) | Forested (%) | Drainage Area (km²) |
---|---|---|---|---|
1 | 53.23% | 38.70% | 8.07% | 0.30 |
2 | 13.58% | 12.20% | 74.21% | 0.29 |
3 | 22.35% | 16.17% | 61.32% | 1.87 |
4 | 25.88% | 14.91% | 59.00% | 2.48 |
5 | 23.35% | 25.51% | 51.14% | 0.38 |
6 | 23.91% | 17.25% | 58.70% | 3.72 |
7 | 16.33% | 28.60% | 54.91% | 0.78 |
8 | 30.78% | 16.47% | 52.35% | 1.55 |
9 | 27.57% | 19.33% | 52.84% | 2.29 |
10 | 24.92% | 18.40% | 56.49% | 6.18 |
11 | 18.15% | 41.87% | 39.16% | 1.75 |
12 | 31.77% | 33.72% | 34.51% | 1.75 |
13 | 26.83% | 25.77% | 47.15% | 10.53 |
14 | 16.19% | 26.43% | 56.92% | 3.36 |
15 | 70.28% | 10.31% | 19.42% | 0.98 |
16 | 5.38% | 58.72% | 35.16% | 0.25 |
17 | 4.78% | 9.38% | 85.84% | 0.75 |
18 | 25.98% | 24.88% | 48.86% | 16.41 |
19 | 29.45% | 22.45% | 47.85% | 18.88 |
20 | 89.16% | 4.19% | 6.61% | 3.42 |
21 | 38.10% | 19.46% | 42.23% | 22.93 |
22 | 37.71% | 19.38% | 42.66% | 23.24 |
Site Number | ||||||||||||
#1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #10 | #11 | ||
Water Temp. | SCC | 0.35 | 0.59 | 0.20 | 0.19 | 0.75 | 0.37 | 0.12 | 0.26 | 0.20 | 0.50 | 0.52 |
p-value | 0.01 | 0.00 | 0.18 | 0.19 | 0.00 | 0.01 | 0.43 | 0.08 | 0.18 | 0.00 | 0.00 | |
pH | SCC | 0.36 | 0.47 | 0.54 | 0.31 | 0.69 | 0.44 | 0.55 | 0.46 | 0.55 | 0.70 | 0.81 |
p-value | 0.01 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
SPC | SCC | −0.48 | −0.23 | −0.17 | −0.18 | −0.16 | −0.16 | −0.80 | −0.51 | −0.55 | −0.14 | −0.41 |
p-value | 0.00 | 0.11 | 0.24 | 0.21 | 0.27 | 0.27 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | |
DO | SCC | 0.31 | −0.14 | −0.18 | −0.24 | −0.01 | −0.39 | −0.16 | −0.15 | −0.37 | −0.40 | −0.49 |
p-value | 0.03 | 0.35 | 0.21 | 0.10 | 0.93 | 0.01 | 0.27 | 0.32 | 0.01 | 0.00 | 0.00 | |
Cl- | SCC | −0.14 | −0.20 | −0.24 | −0.26 | −0.16 | −0.21 | −0.35 | −0.45 | −0.28 | −0.12 | −0.48 |
p-value | 0.34 | 0.18 | 0.09 | 0.07 | 0.28 | 0.16 | 0.01 | 0.00 | 0.05 | 0.43 | 0.00 | |
Site Number | ||||||||||||
#12 | #13 | #14 | #15 | #16 | #17 | #18 | #19 | #20 | #21 | #22 | ||
Water Temp. | SCC | 0.71 | 0.66 | 0.71 | 0.37 | 0.13 | 0.69 | 0.56 | 0.46 | 0.05 | 0.33 | 0.24 |
p-value | 0.00 | 0.00 | 0.00 | 0.01 | 0.37 | 0.00 | 0.00 | 0.00 | 0.73 | 0.02 | 0.10 | |
pH | SCC | 0.62 | 0.74 | 0.69 | −0.35 | −0.14 | 0.16 | 0.56 | 0.57 | −0.08 | 0.22 | 0.25 |
p-value | 0.00 | 0.00 | 0.00 | 0.02 | 0.36 | 0.30 | 0.00 | 0.00 | 0.61 | 0.14 | 0.09 | |
SPC | SCC | −0.16 | −0.38 | −0.06 | −0.70 | 0.21 | 0.30 | −0.30 | −0.12 | −0.50 | −0.29 | −0.33 |
p-value | 0.28 | 0.01 | 0.67 | 0.00 | 0.16 | 0.04 | 0.04 | 0.43 | 0.00 | 0.05 | 0.03 | |
DO | SCC | −0.41 | −0.56 | 0.00 | −0.73 | −0.47 | −0.58 | −0.22 | −0.20 | −0.25 | −0.06 | −0.31 |
p-value | 0.00 | 0.00 | 0.97 | 0.00 | 0.00 | 0.00 | 0.14 | 0.17 | 0.09 | 0.68 | 0.03 | |
Cl- | SCC | −0.57 | −0.41 | −0.23 | −0.52 | 0.16 | −0.15 | −0.44 | −0.27 | −0.37 | −0.41 | −0.30 |
p-value | 0.00 | 0.00 | 0.13 | 0.00 | 0.27 | 0.33 | 0.00 | 0.07 | 0.01 | 0.00 | 0.04 |
Principal Component | Eigenvalue | Percentage of Variance | Cumulative Variance |
---|---|---|---|
1 | 2.64 | 29.34% | 29.34% |
2 | 1.99 | 22.14% | 51.48% |
3 | 1.33 | 14.79% | 66.27% |
4 | 0.98 | 10.91% | 77.18% |
5 | 0.79 | 8.80% | 85.98% |
6 | 0.61 | 6.73% | 92.71% |
7 | 0.44 | 4.94% | 97.65% |
8 | 0.21 | 2.35% | 100.00% |
9 | 0.00 | 0.00% | 100.00% |
Principal Component | Eigenvalue | Percentage of Variance | Cumulative Variance | Eigenvalue | Percentage of Variance | Cumulative Variance |
---|---|---|---|---|---|---|
Quarter 1 | Quarter 2 | |||||
1 | 3.36 | 37.31% | 37.31% | 2.81 | 31.22% | 31.22% |
2 | 1.53 | 16.95% | 54.26% | 1.98 | 21.97% | 53.19% |
3 | 1.44 | 16.00% | 70.25% | 1.41 | 15.63% | 68.82% |
4 | 0.92 | 10.22% | 80.48% | 1.06 | 11.74% | 80.56% |
5 | 0.73 | 8.13% | 88.60% | 0.85 | 9.39% | 89.95% |
6 | 0.53 | 5.94% | 94.54% | 0.48 | 5.36% | 95.32% |
7 | 0.26 | 2.94% | 97.48% | 0.30 | 3.38% | 98.70% |
8 | 0.23 | 2.52% | 100.00% | 0.12 | 1.30% | 100.00% |
9 | 0.00 | 0.00% | 100.00% | 0.00 | 0.00% | 100.00% |
Quarter 3 | Quarter 4 | |||||
1 | 2.89 | 32.07% | 32.07% | 2.74 | 30.39% | 30.39% |
2 | 2.14 | 23.80% | 55.88% | 1.87 | 20.73% | 51.13% |
3 | 1.34 | 14.91% | 70.79% | 1.47 | 16.30% | 67.43% |
4 | 1.16 | 12.92% | 83.71% | 1.09 | 12.14% | 79.57% |
5 | 0.58 | 6.44% | 90.15% | 0.79 | 8.83% | 88.40% |
6 | 0.39 | 4.29% | 94.44% | 0.57 | 6.38% | 94.78% |
7 | 0.31 | 3.49% | 97.93% | 0.29 | 3.22% | 97.99% |
8 | 0.19 | 2.07% | 100.00% | 0.18 | 2.01% | 100.00% |
9 | 0.00 | 0.00% | 100.00% | 0.00 | 0.00% | 100.00% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petersen, F.; Hubbart, J.A. Advancing Understanding of Land Use and Physicochemical Impacts on Fecal Contamination in Mixed-Land-Use Watersheds. Water 2020, 12, 1094. https://doi.org/10.3390/w12041094
Petersen F, Hubbart JA. Advancing Understanding of Land Use and Physicochemical Impacts on Fecal Contamination in Mixed-Land-Use Watersheds. Water. 2020; 12(4):1094. https://doi.org/10.3390/w12041094
Chicago/Turabian StylePetersen, Fritz, and Jason A. Hubbart. 2020. "Advancing Understanding of Land Use and Physicochemical Impacts on Fecal Contamination in Mixed-Land-Use Watersheds" Water 12, no. 4: 1094. https://doi.org/10.3390/w12041094