Nutrients Enrichment and Process Repercussions in Hybrid Microfiltration Osmotic Membrane Bioreactor: A Guideline for Forward Osmosis Development Based on Lab-Scale Experience
Abstract
:1. Introduction
- The salinity buildup either via reverse salt flux or high FO rejection of influent substrate ions;
- The influence of FO membrane salt permeability on total dissolved solids (TDS) accumulation in the sludge.
2. Materials and Methods
2.1. FO and MF Membranes
2.2. MF-OMBR System
2.3. Experimental Protocol and FO Membrane Characterization
2.4. Membrane Fouling Propensity: TMP-Step Method
2.5. Analytical Methods
2.6. Simulations on Salt Accumulation at Varying Salt Diffusivities and Concentration Factors
3. Results
3.1. MF-OMBR Process Parameters under Varying Salinity Conditions and Concentration Factors
3.2. Nutrients Enrichment in the MF-OMBR System
3.3. Membrane Fouling Assessment
3.4. TDS Accumulation from High FO Rejection of Inlet TDS and Reverse Salt Flux from DS
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Compound | Concentration (mg L−1) |
---|---|
Glucose (C6H12O6) | 1000 |
Peptone | 1000 |
Potassium dihydrogen phosphate (KH2PO4) | 175 |
Magnesium sulfate (MgSO4) | 175 |
Ferrous sulfate hepthahydrate (FeSO4٠7H2O) | 100 |
Sodium acetate (CH3COONa) | 2250 |
Urea (CH4N2O) | 350 |
References
- Cordell, D.; White, S. Peak phosphorus: Clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 2011, 3, 2027–2049. [Google Scholar] [CrossRef] [Green Version]
- Gurung, K.; Ncibi, M.C.; Fontmorin, J.M. Incorporating Submerged MBR in Conventional Activated Sludge Process for Municipal Wastewater Treatment: A Feasibility and Performance Assessment. J. Membr. Sci. Technol. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Gurung, K.; Ncibi, M.C.; Sillanpää, M. Assessing membrane fouling and the performance of pilot-scale membrane bioreactor (MBR) to treat real municipal wastewater during winter season in Nordic regions. Sci. Total Environ. 2017, 579, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Judd, S. The status of membrane bioreactor technology. Trends Biotechnol. 2008, 26, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Alturki, A.; McDonald, J.; Khan, S.J.; Hai, F.I.; Price, W.E.; Nghiem, L.D. Performance of a novel osmotic membrane bioreactor (OMBR) system: Flux stability and removal of trace organics. Bioresour. Technol. 2012, 113, 201–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blandin, G.; Gautier, C.; Toran, M.S.; Monclús, H.; Rodríguez-Roda, I.; Comas, J. Retrofitting membrane bioreactor (MBR) into osmotic membrane bioreactor (OMBR): A pilot scale study. Chem. Eng. J 2018, 339, 268–277. [Google Scholar] [CrossRef]
- Qiu, G.; Ting, Y.P. Direct phosphorus recovery from municipal wastewater via osmotic membrane bioreactor (OMBR) for wastewater treatment. Bioresour. Technol. 2014, 170, 221–229. [Google Scholar] [CrossRef]
- Lay, W.C.L.; Zhang, Q.; Zhang, J.; McDougald, D.; Tang, C.; Wang, R.; Liu, Y.; Fane, A.G. Effect of Pharmaceuticals on the Performance of a Novel Osmotic Membrane Bioreactor (OMBR). Sep. Sci. Technol. 2012, 47, 543–554. [Google Scholar] [CrossRef]
- Pathak, N.; Li, S.; Kim, Y.; Chekli, L.; Phuntsho, S.; Jang, A.; Ghaffour, N.; Leiknes, T.O.; Shon, H.K. Assessing the removal of organic micropollutants by a novel baffled osmotic membrane bioreactor-microfiltration hybrid system. Bioresour. Technol. 2018, 262, 98–106. [Google Scholar] [CrossRef]
- Holloway, R.W.; Wait, A.S.; da Silva, A.F.; Herron, J.; Schutter, M.D.; Lampi, K.; Cath, T.Y. Long-term pilot scale investigation of novel hybrid ultrafiltration-osmotic membrane bioreactors. Desalination 2015, 363, 64–74. [Google Scholar] [CrossRef]
- Neoh, C.H.; Noor, Z.Z.; Mutamim, N.S.A.; Lim, C.K. Green technology in wastewater treatment technologies: Integration of membrane bioreactor with various wastewater treatment systems. Chem. Eng. J. 2016, 283, 582–594. [Google Scholar] [CrossRef] [Green Version]
- Holloway, R.W.; Regnery, J.; Nghiem, L.D.; Cath, T.Y. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor. Environ. Sci. Technol. 2014, 48, 10859–10868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jørgensen, M.K.; Sørensen, J.H.; Quist-Jensen, C.A.; Christensen, M.L. Wastewater treatment and concentration of phosphorus with the hybrid osmotic microfiltration bioreactor. J. Memb. Sci. 2018, 559, 107–116. [Google Scholar] [CrossRef]
- Luo, W.; Hai, F.I.; Kang, J.; Price, W.E.; Nghiem, L.D.; Elimelech, M. The role of forward osmosis and microfiltration in an integrated osmotic-microfiltration membrane bioreactor system. Chemosphere 2015, 136, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, W.; Hai, F.I.; Price, W.E.; Guo, W.; Ngo, H.H.; Yamamoto, K.; Nghiem, L.D. Phosphorus and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system. Bioresour. Technol. 2016, 200, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, E.R.; Harmsen, D.; de Korte, K.F.; Ruiken, C.J.; Qin, J.J.; Oo, H.; Wessels, L.P. Membrane fouling and process performance of forward osmosis membranes on activated sludge. J. Memb. Sci. 2008, 319, 158–168. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, B.; Chen, Y.; Li, X.; Ren, Y. Integration of micro-filtration into osmotic membrane bioreactors to prevent salinity build-up. Bioresour. Technol. 2014, 167, 116–123. [Google Scholar] [CrossRef]
- Kedwell, K.C.; Quist-Jensen, C.A.; Giannakakis, G.; Christensen, M.L. Forward osmosis with high-performing TFC membranes for concentration of digester centrate prior to phosphorus recovery. Sep. Purif. Technol. 2018, 197, 449–456. [Google Scholar] [CrossRef]
- Ren, J.; McCutcheon, J.R. A new commercial thin film composite membrane for forward osmosis. Desalination 2014, 343, 187–193. [Google Scholar] [CrossRef]
- McCutcheon, J.R.; Elimelech, M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J. Memb. Sci. 2006, 284, 237–247. [Google Scholar] [CrossRef]
- Alsvik, I.L.; Hägg, M.B. Pressure retarded osmosis and forward osmosis membranes: Materials and methods. Polymers (Basel). 2013, 5, 303–327. [Google Scholar] [CrossRef] [Green Version]
- Cath, T.Y.; Elimelech, M.; McCutcheon, J.R.; McGinnis, R.L.; Achilli, A.; Anastasio, D.; Brady, A.R.; Childress, A.E.; Farr, I.V.; Hancock, N.T.; et al. Standard Methodology for Evaluating Membrane Performance in Osmotically Driven Membrane Processes. Desalination 2013, 312, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Bugge, T.V.; Jørgensen, M.K.; Christensen, M.L.; Keiding, K. Modeling cake buildup under TMP-step filtration in a membrane bioreactor: Cake compressibility is significant. Water Res. 2012, 46, 4330–4338. [Google Scholar] [CrossRef] [PubMed]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005; Volume 21. [Google Scholar]
- Raunkjær, K.; Hvitved-Jacobsen, T.; Nielsen, P.H. Measurement of pools of protein, carbohydrate and lipid in domestic wastewater. Water Res. 1994, 28, 251–262. [Google Scholar] [CrossRef]
- Baker, R. Membrane Technology and Applications, 2nd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2004; ISBN 9780470854457. [Google Scholar]
- Pathak, N.; Chekli, L.; Wang, J.; Kim, Y.; Phuntsho, S.; Li, S.; Ghaffour, N.; Leiknes, T.O.; Shon, H. Performance of a novel baffled osmotic membrane bioreactor-microfiltration hybrid system under continuous operation for simultaneous nutrient removal and mitigation of brine discharge. Bioresour. Technol. 2017, 240, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Kedwell, K.C.; Christensen, M.L.; Quist-Jensen, C.A.; Jørgensen, M.K. Effect of reverse sodium flux and pH on ammoniacal nitrogen transport through biomimetic membranes. Sep. Purif. Technol. 2019, 217, 40–47. [Google Scholar] [CrossRef]
- Liu, L.F.; Huang, X.; Zhang, X.; Li, K.; Ji, Y.L.; Yu, C.Y.; Gao, C.J. Modification of polyamide TFC nanofiltration membrane for improving separation and antifouling properties. RSC Adv. 2018, 8, 15102–15110. [Google Scholar] [CrossRef] [Green Version]
- Le-Clech, P.; Chen, V.; Fane, T.A.G. Fouling in membrane bioreactors used in wastewater treatment. J. Memb. Sci. 2006, 284, 17–53. [Google Scholar] [CrossRef]
- Chen, L.; Gu, Y.; Cao, C.; Zhang, J.; Ng, J.-W.; Tang, C. Performance of a submerged anaerobic membrane bioreactor with forward osmosis membrane for low-strength wastewater treatment. Water Res. 2014, 50, 114–123. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Y.; Yuan, B.; Wang, Z.; Li, X.; Ren, Y. Comparison of biofouling mechanisms between cellulose triacetate (CTA) and thin-film composite (TFC) polyamide forward osmosis membranes in osmotic membrane bioreactors. Bioresour. Technol. 2016, 202, 50–58. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurung, K.; Christensen, M.L.; Sillanpää, M.; Ncibi, M.C.; Jørgensen, M.K. Nutrients Enrichment and Process Repercussions in Hybrid Microfiltration Osmotic Membrane Bioreactor: A Guideline for Forward Osmosis Development Based on Lab-Scale Experience. Water 2020, 12, 1098. https://doi.org/10.3390/w12041098
Gurung K, Christensen ML, Sillanpää M, Ncibi MC, Jørgensen MK. Nutrients Enrichment and Process Repercussions in Hybrid Microfiltration Osmotic Membrane Bioreactor: A Guideline for Forward Osmosis Development Based on Lab-Scale Experience. Water. 2020; 12(4):1098. https://doi.org/10.3390/w12041098
Chicago/Turabian StyleGurung, Khum, Morten Lykkegaard Christensen, Mika Sillanpää, Mohamed Chaker Ncibi, and Mads Koustrup Jørgensen. 2020. "Nutrients Enrichment and Process Repercussions in Hybrid Microfiltration Osmotic Membrane Bioreactor: A Guideline for Forward Osmosis Development Based on Lab-Scale Experience" Water 12, no. 4: 1098. https://doi.org/10.3390/w12041098