1. Introduction
Previous research on domestic rainwater harvesting (RWH) has centred primarily on the ability of systems to deliver a reliable water supply [
1,
2,
3] and, more recently, on their capacity to provide additional benefits in the form of stormwater management [
4]. Campisano et al. [
4] recognized that there is a shortage of high-quality datasets relating to water savings and stormwater management and identified a need for improved modelling to quantify and assess these dual benefits. In the UK, the Urban Flood Resilience research consortium has identified RWH as key multifunctional infrastructure which can decrease surface water flooding [
5]. However, the majority of these systems are still focused solely on the potential for water conservation without considering other potential benefits. This may partly be due to the lack of guidance relating to the design of these systems, with the current British standard for non-potable RWH systems referring only to the provision of water supply [
6].
Research measuring the performance of these systems in the UK is limited to monitored commercial buildings [
7]; few household-scale empirical studies have been performed and are limited to single homes [
8,
9]. Studies in the USA have examined the stormwater performance of specifically designed active release systems which were emptied automatically before storm events [
10]. However, these systems were large and installed on high-demand industrial facilities and not intended for domestic use. The long-term stormwater management of domestic systems designed for water supply is unclear.
Other studies have conceptualised the systems’ performance through modelling either at an allotment, neighbourhood or catchment scale. Xu et al. [
11] modelled the ability of three types of allotment-scale RWH systems to simultaneously deliver the dual benefits discussed above in addition to river baseflow restoration. Using a historic 11 year rainfall dataset, they defined six metrics (the efficiency and frequency of water supply, baseflow and retention) to quantify system performance. These indicators were average values and did not indicate behaviour during storm events with specific return periods, which are of interest to drainage designers.
More detailed models, such as the study of a sewer catchment in Palermo by Freni and Liuzzo [
12] and the catchment response framework developed by Jamali et al. [
13] capture the stormwater management of RWH systems on a larger scale. Due to the size of their spatial grid, the temporal resolution of these models was often low, in the order of daily [
12] or hourly [
13] time steps. Campisano and Modica [
14] illustrated that their mass-balance approach proved unreliable for the evaluation of water supply and retention for small tanks when daily time steps were used in conjunction with high water demand values, concluding that inaccuracies may occur unless higher temporal resolution analyses are adopted. Although an hourly time step is appropriate for retention studies, it does not permit the modelling and interpretation of the detention performance of stormwater management devices [
15].
In terms of modelling, current research typically utilizes demand that is based on metered or stochastic household data [
11,
12,
13]. This may not be representative of demand from actual RWH systems which might only be linked to one (downstairs) toilet in a household. This is particularly relevant for retrofitted systems, where access constraints may mean that only a subset of potential water uses are connected to the RWH system. In addition, residents may not use the connected facilities as much or as often as intended. It is also often difficult to obtain a representative long time series of metered demand. During the design phase, average daily or monthly values are typically used as the size and usage of the household is unknown. The degree to which using a higher resolution demand profile derived from monitored demand affects the accuracy of RWH models has not been quantified. Additionally, previous studies utilise historic data which, although robust in terms of validity, does not take into account future challenges which impact stormwater management such as climate change.
Most research also focuses on urban environments [
4], where overflow is released into conventional drainage systems. In a UK context, the design of stormwater systems that manage and release rainwater in line with the SuDS Manual [
16] represents a potential opportunity for RWH to be integrated into the drainage design process [
17].
This research addresses some of the most pertinent issues raised above including presenting high-resolution monitored data for domestic UK RWH systems, analysis of the impact of demand patterns on model accuracy and system performance under a climate change scenario. The main aim of this paper was to evaluate the current, future and potential water supply and stormwater management performance of three domestic RWH systems in a rural water-scarce community in Broadhempston, UK. In order to achieve this, a number of objectives were identified:
Analyse the collected data and use it to validate a modelling tool for future simulations and examine the impact of different demand patterns on model accuracy.
Determine the current water supply and stormwater performance of the three domestic systems monitored.
Investigate the long-term future performance of these systems and identify and evaluate potential avenues for improvement.
2. Materials and Methods
2.1. Data Collection
The inflows, outflows and tank levels of three household RWH tanks were monitored. The tanks were connected to a single toilet and, in one case, additionally a washing machine. These houses are part of a unique community located in Broadhempston, Devon, United Kingdom, and are partially owned by the Broadhempston Community Land Trust, which is a Community Interest Company that was set up in 2012 to enable local people, in housing need, to develop affordable eco-housing. This development is not connected to a centralised water supply system and the six families rely on a private borehole to meet their needs. At times, this has proven insufficient. The development’s borehole was upgraded in early 2018 with an additional storage tank added. Technical and financial barriers prevented further upgrades being undertaken and the community continues to experience interrupted water supply. This, in addition to the eco-friendly aspirations of the local community, made the retro-fitting of RWH tanks an attractive option to the householders.
Each property was broadly of the same design and identical RWH tanks (0.8 m
3) were installed at the rear of each house in May 2018. Two outflows were possible: spillage through an overflow downpipe located at the top of the tank (not measured) and yield to the toilet delivered by a submersible pump (measured with a flow meter). Two possible inflows were also present: roof runoff (not measured) and additionally residents could choose to top up the water in the tank using the borehole (measured with flow meter). The tank level was continuously measured using a pressure sensor. All sensors were connected to a datalogger and data was recorded at one-minute intervals. The systems were installed by technicians from a telemetry provider and were checked periodically throughout the monitoring period. In addition, the systems were not managed and were emptied solely by the householder for their non-potable water demand. Remote access to the systems was limited, as it was reliant upon consistent availability of householder Wi-Fi. The monitoring period was between 10 June 2018 and 28 August 2019. A schematic of this system is shown in
Figure 1.
As water falling below the pump’s inlet could not be supplied to the household, the tanks were found to have an effective tank storage capacity of 0.67 m3. All houses had identical 6/4 L dual-flush toilets and each house had an occupancy rate of two adults and three children. Each roof feeding the downpipes had a plan area (A) of 41.5 m2 and the closest rain gauge (Environment Agency 46103) was located 6.5 km from the site at Buckfast.
Drainage on site is provided by a traditional pipe network that feeds a series of swales and other sustainable drainage systems.
2.2. Model Creation and Validation
Each system was modelled using a yield-after-spillage approach (This model is available in
supplementary material S1), which is the most conservative method of simulating RWH system behaviour [
18]:
where O
t is the tank overflow, B
t is the borehole inflow, Q
t is the roof runoff, Y
t is the yield and D
t is the demand during the current time interval t, V
t and V
t−
1 are the volume in store at time step t (current) and t−1 (previous) and S is the tank storage capacity. These all have units of m
3 and a 5 min time step. The roof runoff was calculated using:
where R
t is the rainfall at time t (m/5 min); losses were assumed to be zero.
The tank level and recorded inflows and outflows were measured at 1 min resolution, enabling individual toilet usage events to be captured in the data. However, as the rainfall data was only available at hourly intervals, a 1 h time step was necessary for model validation. Although an hourly or coarser time step has previously been used to model the water management potential of stormwater management devices, it has been suggested that a shorter resolution is needed to accurately measure detention performance [
15]. In this case, a higher resolution rainfall dataset was unavailable for the monitored data. However, a 5 min interval was used for the long-term simulation, which is detailed in
Section 2.4.
The accuracy of the model was assessed using the root mean square error (RMSE) and the coefficient of determination (R2). Each of these indexes gives different model evaluations. By utilizing both, an overall picture of its accuracy can be gathered.
Data from the pressure transducer was used to infer a water demand profile for each house. A uniform demand profile was generated and used in the modelled simulations. This enabled the model to be run based on a site-specific value for daily water demand, and it is acknowledged that such a value would not be available at the design stage. This was performed to examine the impact on accuracy of assuming constant demand, as a time series-based demand profile is not always available.
2.3. Assessment Metrics
The metrics chosen for performance analysis evaluated both objectives of the RWH system: water supply and stormwater management. Relevant metrics were taken from Xu et al. [
11] and represented both volumetric (efficiency) and frequency characteristics. The water supply metrics were as follows:
where E
WS is the water supply efficiency, N
t is counted if demand is satisfied in timestep t, n is the total number of timesteps and F
ws is the water supply frequency. The stormwater management metrics were as follows:
where E
R is stormwater retention, N
to is counted if overflow occurs at timestep t and F
o is overflow frequency.
In addition, as the site drainage is limited to swales and other forms of sustainable drainage, the retention below greenfield runoff (E
GF) and the frequency above it (F
GF) are also reported. It is important to limit the inflow into these sustainable drainage features to as low a rate as possible to preserve channel morphology, limit scour and, overall, maintain their utility. The greenfield runoff rate modelled was assumed to be 2 L/s/ha in line with guidance issued on sustainable drainage systems [
16].
2.4. Long-Term Modelling and Assesment
In order to investigate the long-term impact of the different household demand behaviours, rainfall inputs for the model were taken from the UK Climate Projections for Cornwall, as detailed in Stovin et al. [
15]. This is a 30 year dataset that has been disaggregated into 5 min time steps using the STORMPAC disaggregation tool [
18,
19].
In addition to examining current demand patterns, scenarios intended to improve the stormwater management performance of these systems were also modelled:
Scenario 1—Increase demand for non-potable water
Use of the downstairs toilet was increased and all washing machines were connected to the tank. Each of the five occupants was assumed to use the toilet four times per day on weekdays and six times per day on weekends with a partial flush ratio of 1(6 L):2(4 L) [
3]. The washing machine was assumed to have 0.2 uses per day per person, with 50 L per use [
3]. In total, demand from the RWH tank was assumed to be 156 L per household per day.
Scenario 2—Model passive system
The model was configured to enable passive releases from the tanks to occur. These systems have a slow-release discharge outlet and water below this outlet was stored for domestic consumption. The outlet was sized so that the water above it slowly discharged at the greenfield runoff rate (2 L/s/ha). The passive outlet was located at 0.68 m above the base of the tank, which created a storage capacity of 25% of the effective volume (0.17 m3). The objective of this system is to store runoff during events and allow it to slowly release to the environment.
Scenario 3—Model active system
Active release systems were modelled. These were remotely controlled in real time, and they managed the release of water according to the rainfall forecast and available retention volume in the tank. The target was to minimize rainfall discharge by maximizing functional tank capacity prior to the forecasted storm event. The system was emptied at midnight as needed. The pre-storm release volume was calculated as the difference between the available tank storage volume at the end of the previous day and predicted runoff volume for the next 24 h. This pre-storm release was delivered through a 10 mm automated valve located at 0.1 m above the outlet to ensure that there was water above the pump at all times. The pre-storm release was driven by gravity. The objective of this system is to release water quickly in advance of an event in order to provide additional storage capacity.
For scenarios 2 and 3, controlled (passive and active) release was assumed to occur before yield, resulting in a modified overflow (O
t) equation:
where C
t is the controlled release at time t and is calculated using the orifice equation [
9]:
where d is the orifice diameter, h
t is the head acting over the centreline of the orifice, Cd is the orifice discharge coefficient (Cd = 0.7 was adopted), and g is the acceleration due to gravity (9.81 m/s
2).
As well as applying the metrics defined above to the 30 year time series, individual storm events were isolated from the continuous simulation record based on an assumed six-hour inter-event period, as reported by Stovin et al. [
20]. The 30 largest events (by volume) were chosen for further analysis. They represented the events with a 1 year return period. These events were considered to be important, as their peak runoff rates were likely to be significant for the morphology and ecology of the catchment [
16]. They were analysed using both retention proportion and flow duration curves. Flow duration curves were used as they capture the consequences of both controlled flows and spill from the top of the RWH systems. A flow duration curve is a plot of runoff versus the percent of time for which a particular runoff was equalled or exceeded.
4. Discussion
In contrast to previous modelling studies, in which all houses were assumed to have the same demand [
9], the findings from Broadhempston showed that households with similar demographics can have substantially different usage rates. In addition, the tanks remained full for between 12% and 45% of the observed validation period, indicating that available water was not being used by the households. This would have an impact on stormwater management, as a full tank offers no stormwater storage potential. These findings indicated that there was potential to further raise the demand from these systems by engaging with the community to increase the usage of the downstairs toilet or connect additional washing machines.
From the model validation study, no significant decrease in accuracy was shown when an average constant demand profile was used as opposed to a metered demand time series. This indicates that a constant demand pattern provides an alternative method of representing demand in a yield-after-spillage model if higher resolution data is unavailable. This is useful in scenarios for which water requirements are not consistently monitored. For a constant demand profile, the water supply frequency and efficiency metrics were equivalent, suggesting that only one of these metrics needs calculation when using this method.
It was found that the greatest source of inaccuracy during model validation was the non-localised rainfall data. This is problematic for models which predict the performance of these systems before they are installed, as data may not be available at the site level. This also raises questions for the emptying accuracy of active systems, as they rely on weather forecasts which may have a high degree of variability depending on local conditions and topography. It is noted that the study also implemented a “perfect forecast” approach, and the accuracy of site-specific forecasts represents a topic for further exploration before such methods can be demonstrably useful.
As shown by the periods of downtime in the monitoring data (
Figure 1), obtaining a complete dataset of results proved difficult. This was due to intermittent communications which relied upon householder WiFi connections. Without a steady stream of communication from the telemetry, sensor failures could not be identified, or rectified, in a timely manner. These communication challenges will need to be overcome for the successful implementation of active systems and further work is warranted to explore the benefits of a range of communication protocols that could support active technologies to be reliably adopted. For both short- and long-term simulations, as the original systems were designed with the objective of water supply, their functionality was solely dependent on demand. This results in the house with the highest demand (House B) having higher stormwater retention than the house with the lowest demand (House C). For the long-term simulation, although the tanks were designed for water supply, they still exhibited a degree of stormwater management capacity with retention efficiencies of between 0.18 and 0.30. However, overall retention was not a clear indicator of performance, as typically system response to rainfall events with return periods of 1 year or greater is of importance to drainage designers. These events have the capacity to impact surface water quality, disrupt the natural morphology of the catchment or, in extreme cases, initiate flooding. When the retention during the 30 largest events (1 year return period) was examined, it was found that the modelled systems offered little protection, with a mean modelled retention performance of between 0.04 and 0.07. This suggested that, for the demand levels recorded during this study, additional action would be needed to improve stormwater management performance if these systems were to provide adequate runoff control for extreme storm events.
Three scenarios which could improve stormwater management were examined: raising demand and installing passive and active systems. Active systems have been found to be generally superior in simultaneously achieving water supply and stormwater retention compared with the other types of system tested, though it was acknowledged that the control algorithm needs to be implemented carefully [
9]. However, this study found that the highest overall retention was exhibited by the maximum demand scenario. In addition, the passive systems have a low overall retention and high overflow frequency rate. Nonetheless, if the frequency and retention of greenfield runoff is examined, it is clear that these systems successfully restricted a minimum of 86% of overflow to below greenfield runoff throughout the 30 year simulation period. Although the active release system limited the amount of time overflow occurred, it did not effectively limit overflow to greenfield runoff, which is indicated by the minimal difference between overall retention and retention below greenfield runoff. This was due to the modelled active pre-release outlet having a diameter designed to deliver high flow rates in advance of a storm. It is noted that this outlet could also be sized to deliver a greenfield runoff rate, though there is a trade-off, as this would impair its ability to empty quickly.
The overflow rates were examined in greater detail during the 30 largest case events through the creation of flow duration curves. They showed that the modelled active system caused a substantial increase in outflow rate above roof runoff. This could have unintended consequences such as eroding the banks of the swales or damaging the morphology of the other on-site sustainable drainage systems. The advantage of active systems is their ability to minimize periods of overflow (shown here through low overflow frequency) and restrict it to outside of rainfall events, which limits the burden of conventional sewers. In addition, these systems did not provide higher retention (mean values of 0.12 and 0.14) than simply increasing demand (0.24). This illustrates that engaging with the community and maximising their demand from the system can yield greater benefits than engineering solutions alone. However, if limiting to greenfield runoff is a principle objective, then passive systems perform best. Although this paper has shown that RWH systems principally designed to provide water supply can effectively work as stormwater management devices, further work is needed to determine the best methods of increasing the performance of the tanks with low demand. This may take the form of community engagement activities or conversion to passive devices if limiting overflow to greenfield runoff is deemed to be sufficient. In addition, as illustrated above, the conventionally used stormwater metrics which represent overall average performance are insufficient at providing guidance relating to system behaviour during individual rainfall events. Further research is needed into the development of more robust metrics which could be used by drainage designers who wished to incorporate these devices in their plans. Further work on the application of active control systems in rainwater and stormwater management is also warranted. Such studies are necessary to explore design philosophies, benchmark their performance and gather empirical data on their performance at pilot sites.