Adsorptive of Nickel in Wastewater by Olive Stone Waste: Optimization through Multi-Response Surface Methodology Using Desirability Functions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Response Surface Method and Design of Experiments
2.3. Nickel Adsortion Experiments
3. Results and Discussion
3.1. Experimental Results
3.2. Regression Model Analysis
3.3. Effect of Operational Parameters
3.3.1. Effect of Solution pH on Ni(II) Adsorption
3.3.2. Effect of Adsorbent Dose on Ni(II) Adsorption
3.3.3. Effect of Stirring Speed Dose on Ni(II) Adsorption
3.4. Multi-Response Optimization
3.5. SEM-EDX Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Directive 2010/75/EU of the European Parliament and of the council of 24 November 2010 on industrial emissions. Off. J. Eur. Union 2010, 334, 17–119.
- Raval, N.P.; Shah, P.U.; Shah, N.K. Adsorptive removal of nickel (II) ions from aqueous environment: A review. J. Environ. Manag. 2016, 179, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Dabrowski, A.; Hubicki, Z.; Podkoscielny, P.; Robens, E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 2004, 56, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Shaidan, N.H.; Eldemerdash, U.; Awad, S. Removal of Ni (II) ions from aqueous solutions using fixed-bed ion exchange column technique. J. Taiwan Inst. Chem. Eng. 2012, 43, 40–45. [Google Scholar] [CrossRef]
- Dermentzis, K.; Christoforidis, A.; Valsamidou, E.; Loucas, A. Removal of nickel, copper, zinc and chromium from synthetic and industrial wastewater by electrocoagulation. Int. J. Environ. Sci. 2011, 1, 697–710. [Google Scholar]
- Heidmann, I.; Calmano, W. Removal of Zn (II), Cu (II), Ni (II), Ag (I) and Cr (VI) present in aqueous solutions by aluminium electrocoagulation. J. Hazard. Mater. 2008, 152, 934–941. [Google Scholar] [CrossRef]
- Samper, E.; Rodríguez, M.; De la Rubia, M.A.; Prats, D. Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS). Sep. Purif. Technol. 2009, 65, 337–342. [Google Scholar] [CrossRef]
- Molinari, R.; Poerio, T.; Argurio, P. Selective separation of copper (II) and nickel (II) from aqueous media using the complexationeultrafiltration process. Chemosphere 2008, 70, 341–348. [Google Scholar] [CrossRef]
- Siboni, M.S.; Samadi, M.T.; Yang, J.K.; Lee, S.M. Photocatalytic reduction of Cr (VI) and Ni (II) in aqueous solution by synthesized nanoparticle ZnO under ultraviolet light irradiation: a kinetic study. Environ. Technol. 2011, 32, 1573–1579. [Google Scholar] [CrossRef]
- Ipek, U. Removal of Ni (II) and Zn (II) from an aqueous solutionby reverse osmosis. Desalination 2005, 174, 161–169. [Google Scholar] [CrossRef]
- Mohsen-Nia, M.; Montazeri, P.; Modarress, H. Removal of Cu2þ and Ni2þ from wastewater with a chelating agent and reverse osmosis processes. Desalination 2007, 217, 276–281. [Google Scholar] [CrossRef]
- Belkacem, M.; Khodir, M.; Abdelkrim, S. Treatment characteristics of textile wastewater and removal of heavy metals using the electroflotation technique. Desalination 2008, 228, 245–254. [Google Scholar] [CrossRef]
- Saeed, A.; Iqbal, M.; Akhtar, M.W. Removal and recovery of lead (II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). J. Hazard. Mater. 2005, 117, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Do, Q.C.; Choi, S.; Kim, H.; Kang, S. Adsorption of lead and nickel on to expanded graphite decorated with manganese oxide nanoparticles. Appl. Sci. 2019, 9, 5375. [Google Scholar] [CrossRef] [Green Version]
- Manjuladevi, M.; Anitha, R.; Manonmani, S. Kinetic study on adsorption of Cr (VI), Ni (II), Cd (II) and Pb (II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel. Appl. Water Sci. 2018, 8, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Afroze, S.; Sen, T.K. A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water Air Soil Pollut. 2018, 229, 225. [Google Scholar] [CrossRef]
- Basu, M.; Guha, A.K.; Ray, L. Adsorption of lead on cucumber peel. J. Clean. Prod. 2017, 151, 603–615. [Google Scholar] [CrossRef]
- Şen, A.; Pereira, H.; Olivella, M.A.; Villaescusa, I. Heavy metals removal in aqueous environments using bark as a biosorbent. Int. J. Environ. Sci. Technol. 2015, 12, 391–404. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.K.; Mittal, A.; Malviya, A.; Mittal, J. Adsorption of carmoisine A from wastewater using waste materials-bottom ash and deoiled soya. J. Colloid Interface Sci. 2009, 335, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Tunali, S.; Akar, T. Zn (II) biosorption properties of Botrytis cinerea biomass. J. Hazard. Mater. 2006, 131, 137–145. [Google Scholar] [CrossRef]
- Beolchini, F.; Pagnanelli, F.; Toro, L.; Veglio, F. Ionic strength effect on copper biosorption by Sphaerotilus natans: Equilibrium study and dynamic modelling in membrane reactor. Water Res. 2006, 40, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.C.; Aldrich, C. Biosorption of heavy metals from aqueous solutions with tobacco dust. Bioresour. Technol. 2008, 99, 5595–5601. [Google Scholar] [CrossRef] [PubMed]
- Pahlavanzadeh, H.; Keshtkar, A.R.; Safdari, J.; Abadi, Z. Biosorption of nickel (II) from aqueous solution by brown algae: equilibrium, dynamic and thermodynamic studies. J. Hazard. Mater. 2010, 175, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Fiol, N.; Escudero, C.; Villaescusa, I. Re-use of exhausted ground coffee waste for Cr (VI) sorption. Sep. Sci. Technol. 2008, 43, 582–596. [Google Scholar] [CrossRef]
- Iqbal, M.; Schiewer, S.; Cameron, R. Mechanistic elucidation and evaluation of biosorption of metal ions by grapefruit peel using FTIR spectroscopy, kinetics and isotherms modeling, cations displacement and EDX analysis. J. Chem. Tehnol. Biotehnol. 2009, 84, 1516–1526. [Google Scholar] [CrossRef]
- Mata, Y.N.; Blázquez, M.L.; Ballester, A.; González, F.; Munoz, J.A. Optimization of the continuous biosorption of copper with sugar-beet pectin gels. J. Environ. Manage. 2009, 90, 1737–1743. [Google Scholar] [CrossRef]
- Villaescusa, I.; Fiol, N.; Martínez, M.; Miralles, N.; Poch, J.; Serarols, J. Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Res. 2004, 38, 992–1002. [Google Scholar] [CrossRef]
- Wu, Y.; Fan, Y.; Zhang, M.; Ming, M.; Yang, S.; Arkin, A. Functionalized agricultural biomass as a low-cost adsorbent : Utilization of rice straw incorporated with amine groups for the adsorption of Cr (VI) and Ni (II) from single and binary systems. Biochem. Eng. J. 2016, 105, 27–35. [Google Scholar] [CrossRef]
- Razafsha, A.; Ziarati, P.; Moslehishad, M. Removal of heavy metals from oryza sativa rice by sour lemon peel as bio-sorbent. Biomed. Pharmacol. J. 2016, 9, 543–553. [Google Scholar] [CrossRef]
- Sudha, R.; Srinivasan, K.; Premkumar, P. Kinetic, mechanism and equilibrium studies on removal of Pb (II) using Citrus limettioides peel and seed carbon. Res. Chem. Intermed. 2016, 42, 1677–1697. [Google Scholar] [CrossRef]
- Lam, Y.F.; Yee, L.; Chua, S.J.; Lim, S.S.; Gan, S. Ecotoxicology and environmental safety insights into the equilibrium, kinetic and thermodynamics of nickel removal by environmental friendly Lansium domesticum peel biosorbent. Ecotoxicol. Environ. Saf. 2016, 127, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Argun, M.E.; Dursun, S.; Gur, K.; Ozdemir, C.; Karatas, M.; Dogan, S. Nickel adsorption on the modified pine tree materials. Environ. Technol. 2005, 26, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.S.; Ramalingam, S.; Kirupha, S.D.; Murugesan, A.; Vidhyadevi, T.; Sivanesan, S. Adsorption behavior of nickel (II) onto cashew nut shell: equilibrium, thermodynamics, kinetics, mechanism and process design. Chem. Eng. J. 2011, 167, 122–131. [Google Scholar] [CrossRef]
- Bobadilla, C.M.; González Marcos, A.; Vergara González, E.P.; Alba-Elías, F. Bioremediation of waste water to remove heavy metals using the spent mushroom substrate of Agaricus bisporus. Water 2019, 11, 454. [Google Scholar] [CrossRef] [Green Version]
- Flores-Garnica, J.G.; Morales-Barrera, L.; Pineda-Camacho, G.; Cristiani-Urbina, E. Biosorption of Ni (II) from aqueous solutions by Litchi chinensis seeds. Bioresour. Technol. 2013, 136, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.; Kaczala, F.; Hogland, W.; Marques, M.; Paraskeva, C.A.; Papadakis, V.G.; Sillanpää, M. Valorization of solid waste products from the olive oil industry as potential adsorbents for water pollution control—A review. Environ. Sci. Pollut. Res. Int. 2013, 21, 268–298. [Google Scholar] [CrossRef]
- Uğurlu, M.; Kula, I.; Karaoğlu, M.H.; Arslan, Y. Removal of Ni (II) ions from aqueous solutions using activated-carbon prepared from olive stone by ZnCl2 activation. Environ. Prog. Sustain. Energy. 2009, 28, 547–557. [Google Scholar] [CrossRef]
- Nuhoglu, Y.; Malkoc, E. Thermodynamic and kinetic studies of environmentally friendly Ni(II) biosorption using waste pomace of an olive oil factory. Bioresour. Technol. 2009, 100, 2375–2380. [Google Scholar] [CrossRef]
- Fiol, N.; Villaescusa, I.; Martínez, M.; Miralles, N.; Poch, J.; Serarols, J. Sorption of Pb (II), Ni (II), Cu (II) and Cd (II) from aqueous solution by olive stone waste. Sep. Purif. Technol. 2006, 50, 132–140. [Google Scholar] [CrossRef]
- Blázquez, G.; Hernáinz, F.; Calero, M.; Ruiz-Núñez, L.F. Removal of cadmium ions with olive stones: the effect of some parameters. Process. Biochem. 2005, 40, 2649–2654. [Google Scholar] [CrossRef]
- Belalia, M.; Bendjelloul, M.; Aziz, A.; Elandaloussi, E.H. Surface modification of olive stone waste for enhanced sorption properties of cadmium and lead ions. Acta Chem. Iasi 2018, 26, 281–306. [Google Scholar] [CrossRef] [Green Version]
- Witek-Krowiak, A.; Chojnacka, K.; Podstawczyk, D.; Dawiec, A.; Pokomeda, K. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresour. Technol. 2014, 160, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Garg, U.K.; Kaur, M.P.; Garg, V.K.; Sud, D. Removal of nickel (II) from an aqueous solution by adsorption by agricultural waste biomass using a response surface methodological approach. Bioresour. Technol. 2008, 99, 1325–1331. [Google Scholar] [CrossRef] [PubMed]
- Amini, M.; Younesi, H. Biosorption of Cd (II), Ni (II) and Pb (II) from an aqueous solution of dried biomass of Aspergillus niger: Application of response surface methodology to the optimization of process parameters. Clean Soil Air Water 2009, 37, 776–786. [Google Scholar] [CrossRef]
- Murugesan, S.; Rajiv, S.; Thanapalan, M. Optimization of process variables for biosorption of nickel (II) using the response surface method. Korean J. Chem. Eng. 2009, 26, 364. [Google Scholar] [CrossRef]
- Bhagat, S.K.; Tung, T.M.; Yaseen, Z.M. Development of artificial intelligence for modeling wastewater heavy metal removal: State of the art, application assessment and possible future research. J. Clean. Prod. 2019, 250, 119473. [Google Scholar] [CrossRef]
- Garba, Z.N.; Ugbaga, N.I.; Abdullahi, A.K. Evaluation of optimum adsorption conditions for Ni (II) and Cd (II) removal from an aqueous solution by modified plantain peels (MPP). Beni Suef Univ. J. Basic Appl. 2016, 5, 170–179. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, A. Removal of nickel (II) from an aqueous solution by biosorption on A. Barbadensis Miller waste leaves powder. Appl. Water Sci. 2019, 9, 96. [Google Scholar] [CrossRef] [Green Version]
- ASTM D1293-18 Standard Test Methods for pH of Water. Available online: https://www.astm.org/Standards/D1293.htm (accessed on 15 June 2019).
- Box, G.E.P.; Wilson, K.B. On the experimental attainment of optimum conditions. J. R. Stat. Soc. Ser. B Methodol. 1951, 13, 1–45. [Google Scholar] [CrossRef]
- Lostado, R.; García, R.E.; Martinez, R.F. Optimization of operating conditions for a double-row tapered roller bearing. Int. J. Mech. Mater. Des. 2016, 12, 353–373. [Google Scholar] [CrossRef]
- Lostado, R.; Escribano, R.; Martínez, M.A.; Múgica, R. Improvement in the design of welded joints of EN 235JR low carbon steel by multiple response surface methodology. Metals 2016, 6, 205. [Google Scholar] [CrossRef] [Green Version]
- Harrington, E.C. The desirability function. Ind. Qual. Control. 1965, 21, 494–498. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 12 March 2019).
- Lata, H.; Garg, V.K.; Gupta, R.K. Sequestration of nickel from an aqueous solution onto activated carbon prepared from Parthenium hysterophorus L. J. Hazard. Mater. 2008, 157, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Thirumavalavan, M.; Lai, Y.L.; Lee, Y.F. Fourier transform infrared spectroscopic analysis of fruit peels before and after the adsorption of heavy metal ions from an aqueous solution. J. Chem. Eng. Data 2011, 56, 2249–2255. [Google Scholar] [CrossRef]
- Kandah, M.I.; Meunier, J.L. Removal of nickel ions from water by multi-walled carbon nanotubes. J. Hazard. Mater. 2007, 146, 283–288. [Google Scholar] [CrossRef]
- Kuhn, M. Desirability: Desirability Function Optimization and Ranking. R package v.1.6. Available online: http://CRAN.R-project.org/package=desirability (accessed on 5 July 2019).
Parameter | Value |
---|---|
Specific surface area (m2/g) | 0.6 |
Oxygen (%) | 41.7 |
Carbon (% dry weight) | 50.7 |
Nitrogen (% dry weight) | 0.4 |
Sulfur (% dry weight) | 0.04 |
Hydrogen (% dry weight) | 5.9 |
Lignin (g/kg) | 387.0 |
Cellulose (g/kg) | 269.0 |
Hemicellulose (g/kg) | 346.0 |
Input | Notation | Magnitude | Levels | ||
---|---|---|---|---|---|
−1 | 0 | 1 | |||
pH | pH | 3.5 | 5 | 6.5 | |
Speed | S | rpm | 100 | 150 | 200 |
Biosorbent dosage | bioDose | g/L | 0.5 | 1 | 1.5 |
Sample | Input Variables of the Adsorption Process | Process Outputs | |||
---|---|---|---|---|---|
pH (pH) | Speed (S) (rpm) | Biosorbent Dosage (bioDose) (g/L) | Ni(II) Removal Efficiency (%NiR) (%) | Ni(II) Uptake (q) (mg/g) | |
1 | 3.5 | 100 | 1 | 58.71 | 29.36 |
2 | 6.5 | 100 | 1 | 66.08 | 33.04 |
3 | 5 | 100 | 0.5 | 43.14 | 43.14 |
4 | 5 | 150 | 1 | 53.93 | 26.97 |
5 | 3.5 | 150 | 1.5 | 45.43 | 15.14 |
6 | 5 | 200 | 1.5 | 51.45 | 17.15 |
7 | 3.5 | 150 | 0.5 | 37.7 | 37.70 |
8 | 5 | 150 | 1 | 56.72 | 28.36 |
9 | 5 | 200 | 0.5 | 48.34 | 48.34 |
10 | 6.5 | 150 | 1.5 | 62.43 | 20.81 |
11 | 5 | 150 | 1 | 53.15 | 26.58 |
12 | 6.5 | 150 | 0.5 | 57.24 | 54.24 |
13 | 6.5 | 200 | 1 | 67.28 | 33.64 |
14 | 5 | 150 | 1 | 54.72 | 27.36 |
15 | 5 | 150 | 1 | 53.74 | 26.87 |
16 | 5 | 100 | 1.5 | 59.78 | 19.93 |
17 | 3.5 | 200 | 1 | 49.68 | 24.84 |
Variables | Df | Sum of Sq. | Mean Sq. | F Value | p-Value |
---|---|---|---|---|---|
bioDose | 1 | 133.4165 | 133.416 | 30.8221 | 0.0005399 |
bioDose² | 1 | 174.7524 | 174.752 | 40.3717 | 0.0002197 |
pH | 1 | 472.9350 | 472.935 | 109.2586 | 6.093 × 10−6 |
pH² | 1 | 42.1860 | 42.1860 | 9.7459 | 0.0141890 |
S | 1 | 15.0152 | 15.0152 | 3.4688 | 0.0995499 |
bioDose·S | 1 | 45.7652 | 45.7652 | 10.5727 | 0.0116734 |
pH·S | 1 | 26.1632 | 26.1632 | 6.0442 | 0.0394099 |
S² | 1 | 37.4288 | 37.4288 | 8.6468 | 0.0186935 |
Residuals | 8 | 34.6286 | 4.32858 |
R2 | Adjusted R2 | MAE Train | RMSE Train |
---|---|---|---|
0.9647 | 0.9295 | 0.04005 | 0.04825 |
Sample | Input Variables of the Adsorption Process | Process Outputs | |||
---|---|---|---|---|---|
pH (pH) | Speed (S) (rpm) | Biosorbent Dosage (bioDose) (g/L) | Ni(II) Removal Efficiency (%NiR) (%) | Ni(II) Uptake (q) (mg/g) | |
1 | 6.4 | 174 | 1.284 | 65.70 | 25.58 |
2 | 4.6 | 171 | 0.956 | 50.63 | 26.47 |
3 | 6.23 | 106 | 0.547 | 50.07 | 45.72 |
4 | 4.3 | 199 | 0.533 | 45.43 | 42.64 |
5 | 5.5 | 159 | 0.526 | 47.16 | 44.79 |
MAE Test | RMSE Test |
---|---|
0.05625 | 0.06727 |
Variables | Goal | Min | Max | Optimum | Desirability |
---|---|---|---|---|---|
bioDose | Min | 0.5 | 1.5 | 0.553 | 0.947 |
pH | inRange | 3.5 | 6.5 | 6.369 | 1 |
S | inRange | 100 | 200 | 199.234 | 1 |
%NiR | Max | 37.7 | 67.28 | 61.732 | 0.812 |
Overall Desirability | 0.877 |
Variables | Goal | Min | Max | Optimum | Desirability |
---|---|---|---|---|---|
bioDose | inRange | 0.5 | 1.5 | 1.311 | 1 |
pH | inRange | 3.5 | 6.5 | 6.433 | 1 |
S | Min | 100 | 200 | 102.115 | 0.979 |
%NiR | Max | 37.7 | 67.28 | 68.185 | 1 |
Overall Desirability | 0.989 |
Variables | Goal | Min | Max | Optimum | Desirability |
---|---|---|---|---|---|
bioDose | inRange | 0.5 | 1.5 | 1.311 | 1 |
pH | inRange | 3.5 | 6.5 | 6.433 | 1 |
S | inRange | 100 | 200 | 102.315 | 1 |
%NiR | Max | 37.7 | 67.28 | 68.158 | 1 |
Overall Desirability | 1 |
Opt. Scenario | pH | S (rpm) | bioDose (g/L) | %NiR (%) | q (mg/g) |
---|---|---|---|---|---|
1st Scenario | 6.369 | 199.234 | 0.553 | 61.732 | 55.816 |
2nd Scenario | 6.433 | 102.115 | 1.311 | 68.185 | 26.005 |
3rd Scenario | 6.433 | 102.315 | 1.311 | 68.158 | 25.995 |
Opt. Scenario | Exp. Values | Errors |
---|---|---|
%NiRExp. | MAE | |
1st Scenario | 61.697 | 0.034 |
2nd Scenario | 68.564 | 0.379 |
3rd Scenario | 68.223 | 0.038 |
MAE | 0.1504 | |
RMSE | 0.2209 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corral Bobadilla, M.; Lostado Lorza, R.; Somovilla Gómez, F.; Escribano García, R. Adsorptive of Nickel in Wastewater by Olive Stone Waste: Optimization through Multi-Response Surface Methodology Using Desirability Functions. Water 2020, 12, 1320. https://doi.org/10.3390/w12051320
Corral Bobadilla M, Lostado Lorza R, Somovilla Gómez F, Escribano García R. Adsorptive of Nickel in Wastewater by Olive Stone Waste: Optimization through Multi-Response Surface Methodology Using Desirability Functions. Water. 2020; 12(5):1320. https://doi.org/10.3390/w12051320
Chicago/Turabian StyleCorral Bobadilla, Marina, Rubén Lostado Lorza, Fátima Somovilla Gómez, and Rubén Escribano García. 2020. "Adsorptive of Nickel in Wastewater by Olive Stone Waste: Optimization through Multi-Response Surface Methodology Using Desirability Functions" Water 12, no. 5: 1320. https://doi.org/10.3390/w12051320