Influencing Factors Analysis of Taiwan Eutrophicated Reservoirs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Reservoirs
2.2. Dataset
2.2.1. Water Quality Parameters
2.2.2. Weather Parameters
2.3. Statistical Methods
2.3.1. Carlson’s Trophic State Index
2.3.2. Pearson’s Correlation Analysis
2.3.3. PCA–APCS
2.4. Data Display and Analysis Tools
3. Results
3.1. Correlations among Influencing Factors and CTSI
3.2. Contribution of Influencing Factors to CTSI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cosgrove, W.J.; Loucks, D.P. Water management: Current and future challenges and research directions. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.E.; Wu, X.; Hao, H.L.; He, Z.L. Mechanisms and assessment of water eutrophication. J. Zhejiang Univ. Sci. B 2008, 9, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-W.; Ju, Y.-R.; Chen, C.-F.; Dong, C.-D. Evaluation of organic pollution and eutrophication status of Kaohsiung Harbor, Taiwan. Int. Biodeterior. Biodegrad. 2016, 113, 318–324. [Google Scholar] [CrossRef]
- Kaydis, M.K.D. Marine Eutrophication: A Global Perspective; Taylor & Francis Group LLC: Oxford, UK, 2019. [Google Scholar]
- Pires, D.A.; Tucci, A.; Carvalho, M.d.C.; Lamparelli, M.C. Water quality in four reservoirs of the metropolitan region of São Paulo, Brazil. Acta Limnol. Bras. 2015, 27, 370–380. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Huang, T.; Li, X.; Zhou, Z.; Li, Y.; Zeng, K. The Effects of Storm Runoff on Water Quality and the Coping Strategy of a Deep Canyon-Shaped Source Water Reservoir in China. Int. J. Environ. Res. Public Health 2015, 2, 7839–7855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dąbrowska, J.; Dąbek, P.; Lejcuś, I. Identifying Surface Runoff Pathways for Cost-Effective Mitigation of Pollutant Inputs to Drinking Water Reservoir. Water 2018, 10, 1300. [Google Scholar] [CrossRef] [Green Version]
- Nourmohammadi Dehbalaei, F.; Javan, M.; Eghbalzaeh, A.; Eftekhari, M.; Fatemi, S.E. Assessment of Ilam reservoir eutrophication response in controlling water inflow. Civil Eng. Infrastruct. J. 2016, 49, 215–234. [Google Scholar]
- O’Hare, M.T.; Baattrup-Pedersen, A.; Baumgarte, I.; Freeman, A.; Gunn, I.D.M.; Lazar, A.N.; Sinclair, R.; Wade, A.J.; Bowes, M.J. Responses of Aquatic Plants to Eutrophication in Rivers: A Revised Conceptual Model. Front. Plant Sci. 2018, 9, 451. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdiscip. Rev. Water 2019, 6, e1373. [Google Scholar] [CrossRef]
- Huo, S.; Zhang, H.; Ma, C.; Xi, B.; Zhang, J.; He, Z.; Li, X.; Wu, F. Algae community response to climate change and nutrient loading recorded by sedimentary phytoplankton pigments in the Changtan Reservoir, China. J. Hydrol. 2019, 571, 311–321. [Google Scholar] [CrossRef]
- Varol, M. Spatio-temporal changes in surface water quality and sediment phosphorus content of a large reservoir in Turkey. Environ. Pollut. 2020, 259, 113860. [Google Scholar] [CrossRef]
- Wang, H.-W.; Kondolf, G.M.; Tullos, D.; Kuo, W.-C. Sediment Management in Taiwan’s Reservoirs and Barriers to Implementation. Water 2018, 10, 1034. [Google Scholar] [CrossRef] [Green Version]
- Dadson, S.J.; Hovius, N.; Chen, H.; Dade, W.B.; Hsieh, M.-L.; Willett, S.D.; Hu, J.-C.; Horng, M.-J.; Chen, M.-C.; Stark, C.; et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 2003, 426, 648–651. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Wu, Y.; Shen, C.-W.; Chiu, Y.-J. Dynamic Modeling of Sediment Budget in Shihmen Reservoir Watershed in Taiwan. Water 2018, 10, 1808. [Google Scholar] [CrossRef] [Green Version]
- Water Resources Agency. Reservoir Water Information, Ministry of Economic Affairs Water Resources Department Global Network Home. 2019. Available online: https://www.wra.gov.tw/ (accessed on 20 July 2019).
- Huang, C.-L.; Hsu, N.-S.; Wei, C.-C. Coupled Heuristic Prediction of Long Lead-Time Accumulated Total Inflow of a Reservoir during Typhoons Using Deterministic Recurrent and Fuzzy Inference-Based Neural Network. Water 2015, 7, 6516–6550. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-F.; Wu, Y.-R.; Lin, J.-Y. Applying a Watershed and Reservoir Model in an Off-Site Reservoir to Establish an Effective Watershed Management Plan. Processes 2019, 7, 484. [Google Scholar] [CrossRef] [Green Version]
- Environmental Protection Administration. Basic Information of Reservoir Barrage. 2020. Available online: https://wq.epa.gov.tw (accessed on 11 January 2020).
- Caspers, H. OECD: Eutrophication of Waters. Monitoring, Assessment and Control. In Internationale Revue Der Gesamten Hydrobiologie Und Hydrographi; Organisation for Economic Co-Operation and Development: Paris, France, 1982; Volume 69, p. 200. [Google Scholar]
- Environmental Protection Administration. Environmental Water Quality Information, Environmental Protection Administration Executive Yuan, R.O.C (Taiwan). 2010. Available online: https://wq.epa.gov.tw (accessed on 21 July 2019).
- Lin, R.-T.; Huang, W.-C. Fuzzy Assessment On Reservoir Water Quality. J. Mar. Sci. Technol. 2015, 23, 231–239. [Google Scholar]
- Lin, G.-W.; Chen, H.; Petley, D.N.; Horng, M.-J.; Wu, S.-J.; Chuang, B. Impact of rainstorm-triggered landslides on high turbidity in a mountain reservoir. Eng. Geol. 2011, 117, 97–103. [Google Scholar] [CrossRef]
- Goransson, G.; Norrman, J.; Larson, M. Contaminated landslide runout deposits in rivers—Method for estimating long-term ecological risks. Sci. Total Environ. 2018, 642, 553–566. [Google Scholar] [CrossRef]
- Carlson, R.E. A trophic state index for lakes1. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Pomari, J.; Kane, D.D.; Nogueira, M.G. Application of multiple-use indices to assess reservoirs water quality and the use of plankton community data for biomonitoring purposes. Int. J. Hydrol. 2018, 2, 2. [Google Scholar]
- Assar, W.; Ibrahim, M.G.; Mahmod, W.; Fujii, M. Assessing the Agricultural Drainage Water with Water Quality Indices in the El-Salam Canal Mega Project, Egypt. Water 2019, 11, 1013. [Google Scholar] [CrossRef] [Green Version]
- Iticescu, C.; Georgescu, L.P.; Murariu, G.; Topa, C.; Timofti, M.; Pintilie, V.; Arseni, M. Lower Danube Water Quality Quantified through WQI and Multivariate Analysis. Water 2019, 11, 1305. [Google Scholar] [CrossRef] [Green Version]
- Iticescu, C.; Murariu, G.; Georgescu, L.P.; Burada, A.; Ţopa, C.M. Seasonal variation of the physico-chemical parameters and Water Quality Index (WQI) of Danube water in the transborder Lower Danube area. Rev. Chim. 2016, 67, 1843–1849. [Google Scholar]
- El-Serehy, H.A.; Abdallah, H.S.; Al-Misned, F.A.; Al-Farraj, S.A.; Al-Rasheid, K.A. Assessing water quality and classifying trophic status for scientifically based managing the water resources of the Lake Timsah, the lake with salinity stratification along the Suez Canal. Saudi J. Biol. Sci. 2018, 25, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Henny, C.N.S. Changes in water quality and trophic status associated with cage aquaculture in Lake Maninjau, Indonesia. IOP Conf. Series Earth Environ. Sci. 2016, 31. [Google Scholar] [CrossRef] [Green Version]
- Mahmudi, M.; Lusiana, E.D.; Arsad, S.; Buwono, N.R.; Darmawan, A.; Nisya, T.W.; Gurinda, G.A. A study on phosphorus-based carrying capacity and trophic status index of floating net cages area in Ranu Grati, Indonesia. AACL Bioflux 2019, 12, 1902–1908. [Google Scholar]
- Bac, N.A.; Viet, N.D.; Ha, N.T.T.; Huong, H.T.T. Identifying the eutrophication status of shallow waters based on the estimated trophic state index from satellite data. Vietnam J. Sci. Technol. 2017, 55, 4. [Google Scholar] [CrossRef]
- Gupta, R. Study on trophic state index of river mandakini at Chitrakoot, India. Int. J. Adv. Res. Eng. Appl. Sci. 2016, 5, 34–43. [Google Scholar]
- Taylor, R. Interpretation of the Correlation Coefficient: A Basic Review. J. Diagn. Med. Sonogr. 1990, 6, 35–39. [Google Scholar] [CrossRef]
- Chen, P.; Li, L.; Zhang, H. Spatio-Temporal Variations and Source Apportionment of Water Pollution in Danjiangkou Reservoir Basin, Central China. Water 2015, 7, 2591–2611. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Yang, J.; Li, Y.-H. An Empirical Study on the Effect of Information-Based Teaching of Ideological and Political Courses in Higher Vocational Colleges Based on Moso Teach. In e-Learning, e-Education, and Online Training; Springer: Cham, Switzerland, 2019; pp. 417–428. [Google Scholar]
- Pett, M.A.; Lackey, N.R.; Sullivan, J.J. Making Sense of Factor Analysis: The Use of Factor Analysis for Instrument Development in Health Care Research; Sage: Thousand Oaks, CA, USA, 2003. [Google Scholar]
- Chen, H.; Teng, Y.; Yue, W.; Song, L. Characterization and source apportionment of water pollution in Jinjiang River, China. Environ. Monit. Assess. 2013, 185, 9639–9650. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Mei, K.; Liu, X.; Wu, L.; Zhang, M.; Xu, J.; Wang, F. Spatial distribution and source apportionment of water pollution in different administrative zones of Wen-Rui-Tang (WRT) river watershed, China. Environ. Sci. Pollut. Res. 2013, 20, 5341–5352. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Lu, S.; Guo, X.; Lu, H.; Qin, P.; Bi, B.; Wan, Z.; Xi, B.; Zhang, T.; et al. Occurrence of typical antibiotics and source analysis based on PCA-MLR model in the East. Dongting Lake, China. Ecotoxicol. Environ. Safety 2018, 163, 145–152. [Google Scholar] [CrossRef]
- Doan, P.T.K.; Némery, J.; Schmid, M.; Gratiot, N. Eutrophication of turbid tropical reservoirs: Scenarios of evolution of the reservoir of Cointzio, Mexico. Ecol. Inform. 2015, 29, 192–205. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, C.; Zheng, G.; Xue, J.; Zhang, L. The establishment of season-specific eutrophication assessment standards for a water-supply reservoir located in Northeast. China based on chlorophyll-a levels. Ecol. Indic. 2018, 85, 11–20. [Google Scholar] [CrossRef]
- Meng, L.; Zuo, R.; Wang, J.S.; Yang, J.; Teng, Y.G.; Shi, R.T.; Zhai, Y.Z. Apportionment and evolution of pollution sources in a typical riverside groundwater resource area using PCA-APCS-MLR model. J. Contam. Hydrol. 2018, 218, 70–83. [Google Scholar] [CrossRef]
- Kuo, Y.-C.; Lee, M.-A.; Lu, M.-M. Association of Taiwan’s Rainfall Patterns with Large-Scale Oceanic and Atmospheric Phenomena. Adv. Meteorol. 2016, 2016, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.C.; Chen, W.B. Modeling hydrothermal, suspended solids transport and residence time in a deep reservoir. Int. J. Environ. Sci. Technol. 2012, 10, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Huang, T.; Ma, W.; Sun, X.; Zhang, H. Effects of rainfall patterns on water quality in a stratified reservoir subject to eutrophication: Implications for management. Sci. Total Environ. 2015, 521, 27–36. [Google Scholar] [CrossRef]
- Griffith, A.W.; Gobler, C.J. Harmful algal blooms: A climate change co-stressor in marine and freshwater ecosystems. Harmful Algae 2020, 91, 101590. [Google Scholar] [CrossRef]
- Moss, B. Allied attack: Climate change and eutrophication. Inland Waters 2011, 1, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, E.; Kronvang, B.; Olesen, J.E.; Audet, J.; Søndergaard, M.; Hoffmann, C.C.; Andersen, H.E.; Lauridsen, T.L.; Liboriussen, L.; Larsen, S.E.; et al. Climate change effects on nitrogen loading from cultivated catchments in Europe: Implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 2010, 663, 1–21. [Google Scholar] [CrossRef]
- Zhou, Z.-Z.; Huang, T.-L.; . Ma, W.-X.; Li, Y.; Zeng, K. Impacts of water quality variation and rainfall runoff on Jinpen Reservoir, in Northwest. China. Water Sci. Eng. 2015, 8, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Chu, K.-W.; Chuang, L.Z.-H. Sustainable coastal zone planning based on historical coastline changes: A model from case study in Tainan, Taiwan. Landsc. Urban Plan. 2018, 174, 24–32. [Google Scholar] [CrossRef]
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E.; Lancelot, C.; Likens, G.E. Controlling eutrophication: Nitrogen and phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef] [PubMed]
- Saraswat, C.; Kumar, P.; Mishra, B.K. Assessment of stormwater runoff management practices and governance under climate change and urbanization: An. analysis of Bangkok, Hanoi and Tokyo. Environ. Sci. Policy 2016, 64, 101–117. [Google Scholar] [CrossRef]
- Cui, Y.; Zhu, G.; Li, H.; Luo, L.; Cheng, X.; Jin, Y.; Trolle, D. Modeling the response of phytoplankton to reduced external nutrient load in a subtropical Chinese reservoir using DYRESM-CAEDYM. Lake Reserv. Manag. 2016, 32, 146–157. [Google Scholar] [CrossRef] [Green Version]
- Selbig, W.R. Evaluation of leaf removal as a means to reduce nutrient concentrations and loads in urban stormwater. Sci. Total Environ. 2016, 571, 124–133. [Google Scholar] [CrossRef]
- Bu, X.; Xue, J.; Zhao, C.; Wu, Y.; Han, F.; Zhu, L. Sediment. and nutrient removal by integrated tree-grass riparian buffers in Taihu Lake watershed, eastern China. J. Soil Water Conserv. 2016, 71, 129–136. [Google Scholar] [CrossRef]
- Nazari-Sharabian, M.; Ahmad, S.; Karakouzian, M. Climate Change and Eutrophication: A Short Review. Eng. Technol. Appl. Sci. Res. 2018, 8, 3668–3672. [Google Scholar]
- Xia, R.; Zhang, Y.; Critto, A.; Wu, J.; Fan, J.; Zheng, Z.; Zhang, Y. The Potential Impacts of Climate Change Factors on Freshwater Eutrophication: Implications for Research and Countermeasures of Water Management in China. Sustainability 2016, 8, 229. [Google Scholar] [CrossRef] [Green Version]
- Lewtas, K.; Paterson, M.; Venema, H.D.; Roy, D. Manitoba Prairie Lakes: Eutrophication and In-Lake Remediation Treatments Literature Review; IISD: Winnipeg, BC, Canada, 2015. [Google Scholar]
Parameters | Descriptive Statistic | Shihmen Reservoir | Liyutan Reservoir | Wushantou Reservoir | Chengchinghu Reservoir |
---|---|---|---|---|---|
Water quality | |||||
Total phosphorus (mg/L) | Min | 0.004 | 0.00 | 0.00 | 0.01 |
Mean | 0.03 | 0.02 | 0.02 | 0.05 | |
Max | 0.38 | 0.10 | 0.03 | 0.25 | |
Standard Deviation | 0.02 | 0.00 | 0.01 | 0.01 | |
Chlorophyll-a (µg/L) | Min | 0.10 | 0.10 | 0.10 | 0.25 |
Mean | 4.70 | 6.17 | 0.44 | 10.67 | |
Max | 56.80 | 58.80 | 3.30 | 46.33 | |
Standard Deviation | 4.70 | 3.60 | 1.34 | 2.72 | |
Water temperature (°C) | Min | 8.80 | 12.20 | 5.82 | 18.26 |
Mean | 21.70 | 22.38 | 20.08 | 27.28 | |
Max | 30.80 | 32.70 | 29.80 | 32.30 | |
Standard Deviation | 4.71 | 1.05 | 0.34 | 0.23 | |
Total hardness (mg/L as CaCO3) | Min | 19.40 | 104.00 | 82.70 | 101.16 |
Mean | 93.13 | 157.73 | 120.68 | 221.01 | |
Max | 143.00 | 384.00 | 4.47 | 541.80 | |
Standard Deviation | 16.52 | 6.51 | 13.80 | 30.87 | |
SS (mg/L) | Min | 0.40 | 0.70 | 1.48 | 4.10 |
Mean | 10.10 | 4.32 | 0.77 | 12.25 | |
Max | 1650.00 | 50.25 | 53.20 | 32.08 | |
Standard Deviation | 60.40 | 1.27 | 8.64 | 0.86 | |
pH | Min | 6.82 | 6.50 | 0.28 | 7.33 |
Mean | 8.21 | 8.16 | 8.11 | 8.07 | |
Max | 9.54 | 9.60 | 8.88 | 8.62 | |
Standard Deviation | 0.50 | 0.15 | 0.09 | 0.06 | |
Nitrate (mg/L) | Min | 0.01 | 0.01 | 0.01 | 0.13 |
Mean | 0.31 | 0.54 | 0.50 | 0.68 | |
Max | 1.91 | 5.30 | 0.35 | 1.44 | |
Standard Deviation | 0.17 | 0.19 | 0.15 | 0.05 | |
Nitrite (mg/L) | Min | 0.0003 | 0.00 | 0.00 | 0.01 |
Mean | 0.0059 | 0.01 | 0.00 | 0.04 | |
Max | 0.1170 | 0.23 | 0.02 | 0.20 | |
Standard Deviation | 0.0070 | 0.01 | 0.01 | 0.01 | |
COD (mg/L) | Min | 1.39 | 4.00 | 0.53 | 4.00 |
Mean | 4.99 | 9.46 | 6.24 | 7.61 | |
Max | 56.59 | 48.82 | 35.02 | 29.75 | |
Standard Deviation | 5.57 | 1.63 | 1.67 | 1.65 | |
Ammonia (mg/L) | Min | 0.01 | 0.00 | 0.01 | 0.01 |
Mean | 0.04 | 0.33 | 0.07 | 0.08 | |
Max | 0.35 | 1.30 | 0.49 | 0.58 | |
Standard Deviation | 0.05 | 0.06 | 0.03 | 0.03 | |
SD (meter) | Min | 0.10 | 0.40 | 0.43 | 0.35 |
Mean | 1.73 | 2.14 | 0.25 | 0.98 | |
Max | 3.80 | 5.50 | 2.90 | 1.78 | |
Standard Deviation | 0.84 | 0.12 | 0.61 | 0.03 | |
Weather | |||||
Air temperature (°C) | Min | 11.40 | 11.40 | 11.40 | 17.90 |
Mean | 22.94 | 23.12 | 24.89 | 25.75 | |
Max | 31.80 | 30.80 | 30.60 | 31.20 | |
Standard Deviation | 5.51 | 5.33 | 4.68 | 3.71 | |
Relative humidity (%) | Min | 57.00 | 55.00 | 59.00 | 59.00 |
Mean | 77.15 | 75.90 | 74.78 | 74.86 | |
Max | 93.00 | 98.00 | 90.00 | 93.00 | |
Standard Deviation | 8.06 | 8.55 | 7.03 | 6.00 | |
Total precipitation (mm) | Min | 0.00 | 0.00 | 0.00 | 0.00 |
Mean | 2.08 | 2.08 | 2.21 | 3.44 | |
Max | 66.80 | 36.00 | 62.00 | 52.66 | |
Standard Deviation | 9.01 | 9.92 | 8.77 | 5.62 | |
Sunshine percentage (%) | Min | 0.00 | 0.00 | 0.00 | 0.00 |
Mean | 39.21 | 41.32 | 56.53 | 60.21 | |
Max | 91.90 | 91.10 | 91.70 | 92.70 | |
Standard Deviation | 31.34 | 30.05 | 25.54 | 27.08 | |
Cloud amount (okta) | Min | 1.00 | 0.30 | 0.00 | 0.00 |
Mean | 6.50 | 6.49 | 4.65 | 4.64 | |
Max | 10.00 | 10.00 | 9.60 | 10.00 | |
Standard Deviation | 2.81 | 2.85 | 2.41 | 2.51 |
Reservoir Name | Component/Factor | Initial Eigenvalue | KMO & Bartlett’s Test | p-Value | ||
---|---|---|---|---|---|---|
Total | % of Variance | % Cumulative | ||||
Shihmen Reservoir | 1 | 2.70 | 27.01 | 63.18 | 0.77 | 0.000086 |
2 | 2.32 | 23.21 | ||||
3 | 1.30 | 12.96 | ||||
Liyutan Reservoir | 1 | 4.55 | 32.49 | 61.50 | 0.71 | 0.000012 |
2 | 2.62 | 18.68 | ||||
3 | 1.30 | 10.35 | ||||
Wushantou Reservoir | 1 | 2.45 | 27.22 | 62.65 | 0.74 | 0.000046 |
2 | 1.90 | 21.05 | ||||
3 | 1.29 | 14.37 | ||||
Chengchinghu Reservoir | 1 | 3.05 | 38.07 | 71.52 | 0.73 | 0.000031 |
2 | 1.79 | 22.43 | ||||
3 | 1.01 | 11.02 |
Parameters | Factor | ||
---|---|---|---|
1 | 2 | 3 | |
Shihmen Reservoir | |||
Air temperature | 0.03 | 0.35 | 0.79 |
Water temperature | 0.04 | 0.13 | 0.88 |
Total precipitation | 0.10 | 0.86 | 0.09 |
SD | −0.06 | −0.76 | −0.29 |
Chl-a | 0.80 | 0.15 | 0.12 |
TP | 0.25 | 0.75 | 0.17 |
SS | 0.13 | 0.97 | 0.02 |
Liyutan Reservoir | |||
Water temperature | 0.23 | 0.06 | 0.81 |
Air temperature | 0.11 | 0.04 | 0.92 |
pH | 0.70 | 0.10 | 0.11 |
Total precipitation | 0.72 | 0.07 | 0.30 |
SD | −0.18 | −0.75 | −0.18 |
Chl-a | 0.17 | 0.75 | 0.21 |
TP | 0.09 | 0.71 | 0.13 |
COD | 0.13 | 0.77 | 0.17 |
Ammonia | 0.25 | 0.77 | 0.02 |
Wushantou Reservoir | |||
Chl-a | 0.75 | 0.05 | 0.25 |
SD | −0.14 | −0.11 | −0.73 |
TP | 0.79 | −0.08 | −0.14 |
Total precipitation | 0.13 | 0.09 | 0.71 |
Air temperature | 0.06 | 0.95 | 0.01 |
Water temperature | 0.08 | 0.94 | 0.02 |
SS | 0.05 | 0.03 | 0.93 |
Chengchinghu Reservoir | |||
Water temperature | 0.03 | 0.04 | 0.95 |
SD | −0.72 | −0.15 | −0.12 |
Chl-a | 0.09 | 0.71 | 0.13 |
TP | 0.13 | 0.76 | 0.03 |
COD | 0.74 | 0.01 | 0.13 |
Ammonia | 0.88 | 0.83 | 0.11 |
Nitrate | 0.11 | 0.76 | 0.02 |
Nitrite | 0.13 | 0.81 | 0.08 |
SS | 0.91 | 0.08 | 0.001 |
Total precipitation | 0.82 | 0.12 | 0.09 |
Air temperature | 0.003 | 0.20 | 0.85 |
Model | B | Sig. | % Contribution | R2 |
---|---|---|---|---|
Shihmen Reservoir | ||||
Constant | 1.14 × 10−14 | 0.00 | - | 0.89 |
Factor 1 | 1.17 | 0.00 | 16% | |
Factor 2 | 3.75 | 0.00 | 51% | |
Factor 3 | 2.40 | 0.00 | 33% | |
Liyutan Reservoir | ||||
Constant | −1.286 × 10−14 | 0.00 | - | 0.82 |
Factor 1 | 2.17 | 0.00 | 35% | |
Factor 2 | 2.38 | 0.00 | 38% | |
Factor 3 | 1.65 | 0.00 | 27% | |
Wushantou Reservoir | ||||
Constant | −2.329 × 10−14 | 0.00 | - | 0.84 |
Factor 1 | 0.62 | 0.00 | 19% | |
Factor 2 | 1.25 | 0.00 | 40% | |
Factor 3 | 1.29 | 0.00 | 41% | |
Chengchinghu Reservoir | ||||
Constant | 1.872 × 10−14 | 0.00 | - | 0.81 |
Factor 1 | 3.24 | 0.00 | 58% | |
Factor 2 | 1.43 | 0.00 | 25% | |
Factor 3 | 0.93 | 0.00 | 17% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savira Agatha Putri, M.; Lin, J.-L.; Chiang Hsieh, L.-H.; Zafirah, Y.; Andhikaputra, G.; Wang, Y.-C. Influencing Factors Analysis of Taiwan Eutrophicated Reservoirs. Water 2020, 12, 1325. https://doi.org/10.3390/w12051325
Savira Agatha Putri M, Lin J-L, Chiang Hsieh L-H, Zafirah Y, Andhikaputra G, Wang Y-C. Influencing Factors Analysis of Taiwan Eutrophicated Reservoirs. Water. 2020; 12(5):1325. https://doi.org/10.3390/w12051325
Chicago/Turabian StyleSavira Agatha Putri, Marsha, Jr-Lin Lin, Lin-Han Chiang Hsieh, Yasmin Zafirah, Gerry Andhikaputra, and Yu-Chun Wang. 2020. "Influencing Factors Analysis of Taiwan Eutrophicated Reservoirs" Water 12, no. 5: 1325. https://doi.org/10.3390/w12051325
APA StyleSavira Agatha Putri, M., Lin, J. -L., Chiang Hsieh, L. -H., Zafirah, Y., Andhikaputra, G., & Wang, Y. -C. (2020). Influencing Factors Analysis of Taiwan Eutrophicated Reservoirs. Water, 12(5), 1325. https://doi.org/10.3390/w12051325