Spatial Variability of Beach Impact from Post-Tropical Cyclone Katia (2011) on Northern Ireland’s North Coast
Abstract
:1. Preamble: Katia Cyclone Description
2. Introduction
3. Study Area
4. Methodology
5. Results
5.1. Wave Energy Spatial and Temporal Distribution
5.2. Morphological and Volumetric Beach Changes
5.2.1. Magilligan
5.2.2. Portrush, Southern Sector
5.2.3. Portrush, Northern Sector
5.2.4. Whiterocks
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Hurricane Center and Central Pacific Hurricane Center. Available online: https://www.nhc.noaa.gov (accessed on 18 April 2020).
- Finkl, C.W.; Kruempfel, C. Threats, obstacles and barriers to coastal environmental conservation: Societal perceptions and managerial positionalities that defeat sustainable development. In Proceedings of the 1st International Conference on Coastal Conservation and Management in the Atlantic and Mediterranean Seas, Algarve, Portugal, 17–20 April 2005; Veloso-Gomez, F., Taveira Pinto, F., da Neves, L., Sena, A., Ferreira, O., Eds.; University of Porto: Porto, Portugal, 2005; pp. 3–28. [Google Scholar]
- Molina, R.; Manno, G.; Lo Re, C.; Anfuso, G.; Ciraolo, G. A Methodological Approach to Determine Sound Response Modalities to Coastal Erosion Processes in Mediterranean Andalusia (Spain). J. Mar. Sci. Eng. 2020, 8, 154. [Google Scholar] [CrossRef] [Green Version]
- Klein, Y.L.; Osleeb, J.P.; Viola, M.R. Tourism generated earnings in the coastal zone: A regional analysis. J. Coast. Res. 2004, 20, 1080–1088. [Google Scholar]
- Jones, A.; Phillips, M. Disappearing Destinations; CABI: Wallingford, UK, 2011; p. 273. [Google Scholar]
- EEA. The Changing Face of Europe’s Coastal Areas; Report No 6. Luxembourg office for official publications of the European Communities; Breton, F., Meiner, A., Eds.; EEA: Copenhagen, Denmark, 2006. [Google Scholar]
- Tourism Northern Ireland. 2019. Available online: https://tourismni.com (accessed on 2 February 2020).
- Meyer-Arendt, K. Grand Isle, Louisiana: A historic US Gulf Coast Resort Adapts to Hurricanes, Subsidence and Sea Level Rise. In Disappearing Destinations; Jones, A., Phillips, M., Eds.; CABI: Wallingford, UK, 2011; pp. 203–217. [Google Scholar]
- Carter, R.W.G. Coastal Environments; Academic Press: Cambridge, MA, USA, 1988; p. 617. [Google Scholar]
- Dolan, R.; Davis, R.E. An intensity scale for Atlantic coast northeast storms. J. Coast. Res. 1992, 8, 352–364. [Google Scholar]
- Morton, R.A.; Sallenger, A.H. Morphological impacts of extreme storms on sandy beaches and barriers. J. Coast. Res. 2003, 19, 560–573. [Google Scholar]
- Sallenger, A. Island in a Storm: A Rising Sea, a Vanishing Coast, and a Nineteenth-Century Disaster that Warns of a Warmer World; Public Affairs: New York, NY, USA, 2009; p. 294. [Google Scholar]
- Beudin, A.; Ganju, N.K.; Defne, Z.; Aretxabaleta, A.L. Physical response of a back-barrier estuary to a post-tropical cyclone. JGR Oceans 2017, 122, 5888–5904. [Google Scholar] [CrossRef] [Green Version]
- Bonazzi, A.; Cusack, S.; Mitas, C.; Jewson, S. The spatial structure of European wind storms as characterized by bivariate extreme-value Copulas. Nat. Hazards Earth Syst. Sci. 2012, 12, 1769–1782. [Google Scholar] [CrossRef] [Green Version]
- Anfuso, G.; Rangel-Buitrago, N.; Cortés-Useche, C.; Iglesias Castillo, B.; Gracia, F.J. Characterization of storm events along the Gulf of Cadiz (eastern central Atlantic Ocean). Int. J. Climatol. 2016, 36, 3690–3707. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.; Anfuso, G. Winter wave climate, storms and regional cycles: The SW Spanish Atlantic coast. Int. J. Climatol. 2013, 33, 2142–2156. [Google Scholar] [CrossRef]
- Ferreira, Ó. Storm groups versus extreme single storms: Predicted erosion and management consequences. J. Coast. Res. 2005, 42, 221–227. [Google Scholar]
- Almeida, L.P.; Ferreira, O.; Vousdouskas, M.I.; Dodet, G. Historical variation and trends in storminess along the Portuguese South coast. Nat. Hazards Earth Syst. Sci. 2011, 11, 2407–2417. [Google Scholar] [CrossRef] [Green Version]
- Phillips, M. Consequences of short-term changes in coastal processes: A case study. Earth Surface Processe. Landf. 2008, 33, 2094–2107. [Google Scholar] [CrossRef]
- Phillips, M.; Crisp, S. Sea level trends and NAO influences: The Bristol Channel/Seven Estuary. Glob. Planet. Chang. 2010, 73, 211–218. [Google Scholar] [CrossRef]
- Dodet, G.; Castelle, B.; Masselink, G.; Scott, T.; Davidson, M.; Floc’h, F.; Jackson, D.; Suanez, S. Beach recovery from extreme storm activity during the 2013–14 winter along the Atlantic coast of Europe. Earth Surf. Process. Landf. 2019, 44, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Masselink, G.; Scott, T.; Poate, T.; Russell, P.; Davidson, M.; Conley, D. The extreme 2013/2014 winter storms: Hydrodynamic forcing and coastal response along the southwest coast of England. Earth Surf. Process. Landf. 2016, 41, 378–391. [Google Scholar] [CrossRef] [Green Version]
- Castelle, B.; Marieu, V.; Bujan, S.; Splinter, K.D.; Robinet, A.; Sénéchal, N.; Ferreira, S. Impact of the winter 2013–2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments. Geomorphology 2015, 238, 135–148. [Google Scholar] [CrossRef]
- Blaise, E.; Suanez, S.; Stephan, P.; Fichaut, B.; David, L.; Cuq, V.; Autret, R.; Houron, J.; Rouan, M.; Floc’h, F.; et al. Bilan des tempêtes de l’hiver 2013–2014 sur la dynamique du recul de trait de côte en Bretagne. Geomorphol. Relief Process. Environ. 2015, 21, 267–292. [Google Scholar] [CrossRef] [Green Version]
- Autret, R.; Dodet, G.; Fichaut, B.; Suanez, S.; David, L.; Leckler, F.; Ardhuin, F.; Ammann, J.; Grandjean, P.; Allemand, P.; et al. A comprehensive hydro-geomorphic study of cliff-top storm deposits on Banneg Island during winter 2013–2014. Mar. Geol. 2016, 382, 37–55. [Google Scholar] [CrossRef] [Green Version]
- Santos, V.M.; Haigh, I.D.; Wahl, T. Spatial and Temporal Clustering Analysis of Extreme Wave Events around the UK Coastline. J. Mar. Sci. Eng. 2017, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Van Loon, H.; Rodgers, J.C. The seesaw in winter temperatures between Greenland and Northern Europe: Part I. Gen. Descr. Mon. Weather Rev. 1978, 106, 296–310. [Google Scholar] [CrossRef] [Green Version]
- Grams, C.M.; Blumer, S.R. European high-impact weather caused by the downstream response to the extratropical transition of North Atlantic Hurricane Katia (2011). Geophys. Res. Lett. 2015, 42, 8738–8748. [Google Scholar] [CrossRef] [Green Version]
- Hart, R.E.; Evans, J.L. A Climatology of the Extratropical Transition of Atlantic Tropical Cyclones. J. Clim. 2001, 14, 546–564. [Google Scholar] [CrossRef]
- Cooper, J.A.G.; Orford, J.D. Hurricanes as agents of mesoscale coastal change in Western Britain and Ireland. J. Coast. Res. 1998, 26, 123–128. [Google Scholar]
- MacClenahan, P.; McKenna, J.; Cooper, J.A.G.; O’Kane, B. Identification of highest magnitude coastal storm events over western Ireland on the basis of wind speed and duration thresholds. Int. J. Climatol. 2001, 21, 829–842. [Google Scholar] [CrossRef]
- Guisado-Pintado, E.; Jackson, D.W.T. Multi-scale variability of storm Ophelia 2017: The importance of synchronised environmental variables in coastal impact. Sci. Total Environ. 2018, 630, 287–301. [Google Scholar] [CrossRef] [PubMed]
- Guisado-Pintado, E.; Jackson, D.W.T. Coastal Impact from High-Energy Events and the Importance of Concurrent Forcing Parameters: The Cases of Storm Ophelia (2017) and Storm Hector (2018) in NW Ireland. Front. Earth Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Kossin, J.P.; Emanuel, K.A.; Vecchi, G.A. The poleward migration of the location of tropical cyclone maximum intensity. Nature 2014, 509, 349–352. [Google Scholar] [CrossRef] [Green Version]
- Goldenberg1, S.; Landsea, C.; Mestas-Nuñez, A.; Gray, W. The Recent Increase in Atlantic Hurricane Activity: Causes and Implications. Science 2001, 293, 474–479. [Google Scholar] [CrossRef] [Green Version]
- Lozano, I.; Devoy, R.J.N.; May, W.; Andersen, U. Storminess and vulnerability along the Atlantic coastlines of Europe: Analysis of storm records and greenhouse gases induced climate scenario. Mar. Geol. 2004, 210, 205–225. [Google Scholar] [CrossRef]
- Jackson, D.W.T.; Cooper, J.A.G.; del Rio, L. Geological control of beach morphodynamic state. Mar. Geol. 2005, 216, 297–314. [Google Scholar] [CrossRef]
- Jackson, D.W.T.; Cooper, J.A.G. Application of the equilibrium planform concept to natural beaches in Northern Ireland. Coast. Eng. J. 2009, 57, 112–123. [Google Scholar] [CrossRef]
- Lynch, K.; Jackson, D.W.T.; Cooper, J.A.G. The fetch effect on aeolian sediment transport on a sandy beach: A case study from Magilligan Strand, Northern Ireland. Earth Surf. Process. Landf. 2016, 41, 1129–1135. [Google Scholar] [CrossRef] [Green Version]
- Backstrom, J.T.; Jackson, D.W.T.; Cooper, J.A.G. Shoreface Dynamics of two High-Energy Beaches in Northern Ireland. J. Coast. Res. 2007, 50, 594–598. [Google Scholar]
- Carter, R.W.G.; Bartlett, D.J. Coastal Erosion in Northeast Ireland—Part I: Sand beaches, dunes and river mouths. Ir. Geogr. 1990, 23, 1–6. [Google Scholar] [CrossRef]
- Plets, R.; Clements, A.; Quinn, L.; Strong, J.; Breen, J.; Edwards, H. Marine substratum map of the Causeway Coast, Northern Ireland. J. Maps. 2012, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Rangel-Buitrago, N.; Anfuso, G. Coastal storm characterization and morphological impacts on sandy coasts. Earth Surf. Process. Landf. 2011, 36, 1997–2010. [Google Scholar] [CrossRef]
- Lee, G.; Nicholls, R.J.; Birkemeier, W.A. Storm-induced profile variability of the beach-nearshore profile at Duck, North Carolina, USA, 1981–1991. Mar. Geol. 1998, 148, 163–177. [Google Scholar] [CrossRef]
- Loureiro, C.; Ferreira, Ó.; Cooper, J.A.G. Non-uniformity of storm impacts on three high-energy embayed beaches. J. Coast. Res. 2014, 70, 326–331. [Google Scholar] [CrossRef]
- Holthuijsen, L.; Booij, N.; Ris, R.C. A Spectral Wave Model for the Coastal Zone. In Proceedings of the 2nd International Symposium on Ocean Wave Measurement and Analysis, New Orleans, LA, USA, 25–28 July 1993; pp. 630–641. [Google Scholar]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. 1999, 104, 7649–7666. [Google Scholar] [CrossRef] [Green Version]
- EMODnet Bathymetry Consortium. EMODnet Digital Bathymetry (DTM). EMODnet Bathymetry Consort. 2018. [CrossRef]
- Loureiro, C.; Ferreira, O.; Cooper, J.A.G. Geologically constrained morphological variability and boundary effects on embayed beaches. Mar. Geol. 2012, 339–331, 1–15. [Google Scholar] [CrossRef]
- Matias, A.; Carrasco, A.R.; Loureiro, C.; Masselink, G.; Andriolo, U.; McCall, R.; Ferreira, O.; Plomaritis, T.A.; Pacheco, A.; Guerreiro, M. Field measurements and hydrodynamic modelling to evaluate the importance of factors controlling overwash. Coast. Eng. 2019, 152, 103523. [Google Scholar] [CrossRef] [Green Version]
- Salmon, S.; Holthuijsen, L. Modeling depth-induced wave breaking over complex coastal bathymetries. Coast. Eng. 2015, 105, 21–35. [Google Scholar] [CrossRef]
- Komar, P.D. Beach Processes and Sedimentation; Prentice Hall: Upper Saddle River, NJ, USA, 1998; p. 544. [Google Scholar]
- Harley, M.D.; Turner, I.L.; Short, A.D.; Ranasinghe, R. A reevaluation of coastal embayment rotation: The dominance of cross-shore versus alongshore sediment transport processes, Collaroy-Narrabeen Beach, southeast Australia. J. Geophys. Res. 2011, 166, F04033. [Google Scholar] [CrossRef]
- Aagaard, T.; Masselink, G. The Surf Zone. In Handbook of Beach and Shoreface Morphodynamics; Short, A.D., Ed.; Wiley: Hoboken, NJ, USA, 1999; pp. 72–118. [Google Scholar]
- Backstrom, J.; Jackson, D.; Cooper, A.; Loureiro, C. Contrasting geomorphological storm response from two adjacent shorefaces. Earth Surf. Process. Landf. 2015, 40, 2112–2120. [Google Scholar] [CrossRef] [Green Version]
- Cooper, J.A.G.; Jackson, D.W.T.; Navas, F.; McKenna, J.; Malvarez, G. Identifying storm impacts on an embayed, high-energy coastline: Examples from western Ireland. Mar. Geol. 2004, 210, 261–280. [Google Scholar] [CrossRef]
- Loureiro, C.; Cooper, J.A.G. Temporal variability in winter wave conditions and storminess in the Northwest of Ireland. Ir. Geogr. 2018, 51, 155–170. [Google Scholar]
- Scheffers, A.; Scheffers, S.; Kelletat, D.; Browne, T. Wave-emplaced coarse debris and Megaclasts in Ireland and Scotland: Boulder transport in a high energy littoral environment. J. Geol. 2009, 117, 553–573. [Google Scholar] [CrossRef]
- Erdmann, W.; Kelletat, D.; Kuckuck, M. Boulder ridges and Washover features in Galway Bay, western Ireland. J. Coast. Res. 2017, 33, 997–1021. [Google Scholar] [CrossRef]
- Hickey, K.R.; Connolly-Johnston, C. The Impact of Hurricane Debbie (1961) and Hurricane Charley (1986) on Ireland. In Advances in Hurricane Research—Modelling, Meteorology, Preparedness and Impacts; Hickey, K., Ed.; InTech: Rijeka, Croatia, 2012; Chapter 9. [Google Scholar]
- NOAA. National Hurricane Center: Post-Tropical Cyclone Ophelia Discussion Number 28 NWS; Miami FL AL172017 1100 PM AST Sun; NOAA: Silver Spring, MD, USA, 2017. [Google Scholar]
- Anfuso, G.; Pranzini, E.; Vitale, G. An integrated approach to coastal erosion problems in northern Tuscany (Italy): Littoral morphological evolution and cell distribution. Geomorphology 2011, 129, 204–214. [Google Scholar] [CrossRef]
- Loureiro, C.; Ferreira, O. Mechanisms and timescales of beach rotation. In Sandy Beach Morphodynamics; Jackson, D.W.T., Short, A.D., Eds.; Elsevier: Dordrecht, The Netherlands, 2020; in press. [Google Scholar]
- Coco, G.; Senechal, N.; Rejas, A.; Bryan, K.R.; Capo, S.; Parisot, J.P.; Brown, J.A.; MacMahan, J.H.M. Beach response to a sequence of extreme storms. Geomorphology 2014, 204, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, P.; Brown, J.; Wisse, P.; Karunarathna, H. Effects of storm clustering on beach/dune evolution. Mar. Geol. 2015, 370, 63–75. [Google Scholar] [CrossRef]
- Ojeda, E.; Guillen, J. Shoreline dynamics and beach rotation of artificial embayed beaches. Mar. Geol. 2008, 253, 51–62. [Google Scholar] [CrossRef]
- Turki, I.; Medina, R.; Coco, G.; Gonzalez, M. An equilibrium model to predict shoreline rotation of pocket beaches. Mar. Geol. 2013, 346, 220–232. [Google Scholar] [CrossRef]
- Thomas, T.; Phillips, M.R.; Lock, G. An analysis of subaerial beach rotation and influences of environmental forcing adjacent to the proposed Swansea Bay tidal lagoon. Appl. Geogr. 2015, 62, 276–293. [Google Scholar] [CrossRef]
- Burvingt, O.; Masselink, G.; Russell, P.; Scott, T. Classification of beach response to extreme storms. Geomorphology 2017, 295, 722–737. [Google Scholar] [CrossRef] [Green Version]
Site Name Location | Sand Grain Size (mm) | Beach Slope (tan β) | Tidal Range (m) | Beach Type | Local Geomorphology |
---|---|---|---|---|---|
Magilligan | 0.17 | 0.0375 | 1.6 | Intermediate to dissipative | Extensive dune systems, tidal inlet, sand ridge plain |
Portrush northern | 0.186 | 0.0320 | 1.5 | Dissipative | Modified dunes, human modification (sea wall) along coastline |
Whiterocks | 0.197 | 0.0352 | 1.5 | Intermediate | Extensive dune system behind beach |
Location/Date | 7 to 9 September | 9 to 10 | 10 to 11 | 11 to 14 | Whole Period 7th to 14th |
Magilligan | −184.3 | +82.9 | +20.7 | +50.9 | +64.4 |
Location/date | 12 to 13 September | 13 to 14 | 14 to 15 | - | Whole Period 12th to 15th |
Portrush southern | −1.1 | +512.3 | −226.9 | - | +123.9 |
Portrush northern | −432.6 | +253.5 | +9.5 | - | −233.3 |
Whiterocks | +316.5 | +158.6 | +109.2 | - | +623.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anfuso, G.; Loureiro, C.; Taaouati, M.; Smyth, T.; Jackson, D. Spatial Variability of Beach Impact from Post-Tropical Cyclone Katia (2011) on Northern Ireland’s North Coast. Water 2020, 12, 1380. https://doi.org/10.3390/w12051380
Anfuso G, Loureiro C, Taaouati M, Smyth T, Jackson D. Spatial Variability of Beach Impact from Post-Tropical Cyclone Katia (2011) on Northern Ireland’s North Coast. Water. 2020; 12(5):1380. https://doi.org/10.3390/w12051380
Chicago/Turabian StyleAnfuso, Giorgio, Carlos Loureiro, Mohammed Taaouati, Thomas Smyth, and Derek Jackson. 2020. "Spatial Variability of Beach Impact from Post-Tropical Cyclone Katia (2011) on Northern Ireland’s North Coast" Water 12, no. 5: 1380. https://doi.org/10.3390/w12051380