Insight on Extraction and Characterisation of Biopolymers as the Green Coagulants for Microalgae Harvesting
Abstract
:1. Introduction
2. The Promising Future of Microalgae
2.1. Microalgae as Next Generation of Biofuel
2.2. Bioprocess Approach of Microalgae Biofuel
3. Extraction of Natural Coagulants
3.1. Plant Based Polymers
3.1.1. Primary Processing
3.1.2. Secondary Processing
3.1.3. Tertiary Processing
3.2. Microbial Based Polymers
- Preliminary identification of the natural coagulants-producing bacterium strain based on its mucoid and ropy colony morphology characteristics.
- Screening of bacteria and fungi to find microbial-based coagulants from bacterium strain.
- Determining the flocculating activity of microbial-based coagulants (natural coagulants) yielded from each bacterium strain by kaolin clay suspension.
- Optimising the culture conditions of bacteria to produce a higher amount of natural coagulant.
3.3. Animal Based Polymers
4. Strategy to Enhance Performance of Natural Coagulants in Microalgae Harvesting
4.1. Physical Characteristics
4.2. Chemical Characteristics
4.3. Thermal Characteristics
5. Application of Natural Coagulant in Microalgae Harvesting
Natural Coagulant | Operating Condition | Performance | Reference |
---|---|---|---|
Alkyl-grafted chiton Fe3O4–SiO2 | 0.013 g·L−1 dosage | 90% removal of Chlorella vulgaris | [128] |
M. oleifera | 8 mg·L−1 dosage | 76% removal of Chlorella vulgaris | [129] |
M.oleifera with chitosan | 8 mg·L−1 dosage | 96% removal of Chlorella vulgaris | [129] |
F. indica | 12 mg·mL−1 dosage | 60% removal of microalgae | [130] |
Pleurotus ostreatus strain HEI-8 | pH 3, glucose content 20 g·L−1, fungi pelletisation time 7 days, 100 rpm | 65% removal of Chlorella sp. | [131] |
Citrobacter freundii (No. W4) and Mucor circinelloides | pH 7, glucose concentration 1.47g·L−1 | 97% removal of Chlorella pyrenoidosa | [132] |
Tannin | 11 mg·L−1 dosage, pH 5 to 7 | 97% removal of Chlorella vulgaris | [133] |
Tannin | 5 mg·L−1 dosage, pH 7 | 80% removal of Oocystis microalgae | [134] |
Eucalyptus globulus | 20 mg·L−1 dosage | 95% removal of Scenedesmus sp. | [135] |
Cassia gum | 80 mg·L−1 dosage | 93% removal of Chlamydomonas sp. | [136] |
Cassia gum | 35 mg·L−1 dosage | 92% removal of Chlorella sp. | [136] |
6. Cost analysis of Natural Coagulants in Microalgae Harvesting
7. Potentially New Natural Coagulant Yet to Be Exploited and Applied
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kakoi, B.; Kaluli, J.W.; Ndiba, P.; Thiong’o, G. Optimization of Maerua Decumbent bio-coagulant in paint industry wastewater treatment with response surface methodology. J. Clean. Prod. 2017, 164, 1124–1134. [Google Scholar] [CrossRef]
- Yin, C.-Y. Emerging usage of plant-based coagulants for water and wastewater treatment. Process Biochem. 2010, 45, 1437–1444. [Google Scholar] [CrossRef] [Green Version]
- Choy, S.Y.; Prasad, K.M.N.; Wu, T.Y.; Ramanan, R.N. A review on common vegetables and legumes as promising plant-based natural coagulants in water clarification. Int. J. Environ. Sci. Technol. 2013, 12, 367–390. [Google Scholar] [CrossRef] [Green Version]
- Katarzyna, L.; Sai, G.; Singh, O.A. Non-enclosure methods for non-suspended microalgae cultivation: Literature review and research needs. Renew. Sustain. Energy Rev. 2015, 42, 1418–1427. [Google Scholar] [CrossRef] [Green Version]
- Gajda, I.; Stinchcombe, A.; Greenman, J.; Melhuish, C.; Ieropoulos, I. Microbial fuel cell—A novel self-powered wastewater electrolyser for electrocoagulation of heavy metals. Int. J. Hydrog. Energy 2017, 42, 1813–1819. [Google Scholar] [CrossRef] [Green Version]
- Razali, M.; Kim, J.; Attfield, M.; Budd, P.; Drioli, E.; Lee, Y.M.; Szekely, G. Sustainable wastewater treatment and recycle in membrane manufacturing. Green Chem. 2015, 17, 5196–5205. [Google Scholar] [CrossRef] [Green Version]
- Senthil Kumar, P. Adsorption of lead(II) ions from simulated wastewater using natural waste: A kinetic, thermodynamic and equilibrium study. Environ. Prog. Sustain. Energy 2014, 33, 55–64. [Google Scholar] [CrossRef]
- Cseri, L.; Baugh, J.; Alabi, A.; AlHajaj, A.; Zou, L.; Dryfe, R.A.; Budd, P.M.; Szekely, G. Graphene oxide–polybenzimidazolium nanocomposite anion exchange membranes for electrodialysis. J. Mater. Chem. A 2018, 6, 24728–24739. [Google Scholar] [CrossRef] [Green Version]
- Mehrotra, T.; Srivastava, A.; Rao, P.R.; Singh, R. A Novel Immobilized Bacterial Consortium Bioaugmented in a Bioreactor For Sustainable Wastewater Treatment. J. Pure Appl. Microbiol. 2019, 13, 371–383. [Google Scholar] [CrossRef] [Green Version]
- Mu, B.; Hassan, F.; Yang, Y. Controlled assembly of secondary keratin structures for continuous and scalable production of tough fibers from chicken feathers. Green Chem. 2020, 22, 1726–1734. [Google Scholar] [CrossRef]
- Le Phuong, H.A.; Izzati Ayob, N.A.; Blanford, C.F.; Mohammad Rawi, N.F.; Szekely, G. Nonwoven Membrane Supports from Renewable Resources: Bamboo Fiber Reinforced Poly(Lactic Acid) Composites. ACS Sustain. Chem. Eng. 2019, 7, 11885–11893. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Xiao, X.; Liu, G.; Xu, Z.; Wang, B.; Yu, C.; Ras, R.H.; Jiang, L. Efficient separation of immiscible oil/water mixtures using a perforated lotus leaf. Green Chem. 2019, 21, 6579–6584. [Google Scholar] [CrossRef]
- Zhu, C.; Huo, D.; Chen, Q.; Xue, J.; Shen, S.; Xia, Y. A Eutectic Mixture of Natural Fatty Acids Can Serve as the Gating Material for Near-Infrared-Triggered Drug Release. Adv. Mater. 2017, 29, 1703702. [Google Scholar] [CrossRef] [PubMed]
- Fei, F.; Le Phuong, H.A.; Blanford, C.F.; Szekely, G. Tailoring the Performance of Organic Solvent Nanofiltration Membranes with Biophenol Coatings. ACS Appl. Polym. Mater. 2019, 1, 452–460. [Google Scholar] [CrossRef]
- Lin, P.-C.; Wong, Y.-T.; Su, Y.-A.; Chen, W.-C.; Chueh, C.-C. Interlayer Modification Using Eco-friendly Glucose-Based Natural Polymers in Polymer Solar Cells. ACS Sustain. Chem. Eng. 2018, 6, 14621–14630. [Google Scholar] [CrossRef]
- Choy, S.Y.; Choy, S.Y.; Choy, S.Y.; Raghunandan, M.E.; Ramanan, R.N. Utilization of plant-based natural coagulants as future alternatives towards sustainable water clarification. J. Environ. Sci. 2014, 26, 2178–2189. [Google Scholar] [CrossRef]
- Saravanan, J.; Priyadharshini, D.; Soundammal, A.; Sudha, G.; Suriyakala, K. Wastewater Treatment using Natural Coagulants. Int. J. Civ. Eng. 2017, 4, 40–42. [Google Scholar] [CrossRef] [Green Version]
- Ang, W.L.; Mohammad, A. State of the art and sustainability of natural coagulants in water and wastewater treatment. J. Clean. Prod. 2020, 262, 121267. [Google Scholar] [CrossRef]
- Arnold, M.; Tainter, J.A.; Strumsky, D. Productivity of innovation in biofuel technologies. Energy Policy 2019, 124, 54–62. [Google Scholar] [CrossRef]
- Lam, M.K.; Lee, K.T. Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Appl. Energy 2012, 94, 303–308. [Google Scholar] [CrossRef]
- Pandey, A.; Pathak, V.V.; Kothari, R.; Black, P.N.; Tyagi, V.V. Experimental studies on zeta potential of flocculants for harvesting of algae. J. Environ. Manag. 2019, 231, 562–569. [Google Scholar] [CrossRef]
- Singh, A.; Olsen, S.I. A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl. Energy 2011, 88, 3548–3555. [Google Scholar] [CrossRef]
- Jayakumar, S.; Yusoff, M.M.; Rahim, M.H.A.; Maniam, G.P.; Govindan, N.J.R.; Reviews, S.E. The prospect of microalgal biodiesel using agro-industrial and industrial wastes in Malaysia. Renew. Sustain. Energy Rev. 2017, 72, 33–47. [Google Scholar] [CrossRef] [Green Version]
- Salama, E.-S.; Kurade, M.B.; Abou-Shanab, R.A.; El-Dalatony, M.M.; Yang, I.-S.; Min, B.; Jeon, B.-H. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew. Sustain. Energy Rev. 2017, 79, 1189–1211. [Google Scholar] [CrossRef]
- Abdullah, B.; Muhammad, S.A.F.a.S.; Shokravi, Z.; Ismail, S.B.; Kassim, K.A.; Mahmood, N.A.B.N.; Aziz, M.M.A. Fourth generation biofuel: A review on risks and mitigation strategies. Renew. Sustain. Energy Rev. 2019, 107, 37–50. [Google Scholar] [CrossRef]
- Thomas, D.M.; Mechery, J.; Paulose, S.V. Carbon dioxide capture strategies from flue gas using microalgae: A review. Environ. Sci. Pollut. Res. 2016, 23, 16926–16940. [Google Scholar] [CrossRef]
- Gerde, J.A.; Yao, L.; Lio, J.; Wen, Z.; Wang, T. Microalgae flocculation: Impact of flocculant type, algae species and cell concentration. Algal Res. 2014, 3, 30–35. [Google Scholar] [CrossRef]
- Wong, Y.K. Growth Medium Screening for Chlorella vulgaris Growth and Lipid Production. J. Aquac. Mar. Biol. 2017, 6. [Google Scholar] [CrossRef] [Green Version]
- Saleem, M.; Bachmann, R.T. A contemporary review on plant-based coagulants for applications in water treatment. J. Ind. Eng. Chem. 2019, 72, 281–297. [Google Scholar] [CrossRef]
- Zhu, L.; Li, Z.; Hiltunen, E. Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: Effects on biomass sedimentation, spent medium recycling and lipid extraction. Biotechnol. Biofuels 2018, 11, 183. [Google Scholar] [CrossRef]
- Ho, Y.-C.; Chua, S.-C.; Chong, F.-K. Coagulation-Flocculation Technology in Water and Wastewater Treatment. In Handbook of Research on Resource Management for Pollution and Waste Treatment; IGI Global: Hershey, PA, USA, 2020; pp. 432–457. [Google Scholar]
- Chethana, M.; Sorokhaibam, L.G.; Bhandari, V.M.; Raja, S.; Ranade, V.V. Green Approach to Dye Wastewater Treatment Using Biocoagulants. ACS Sustain. Chem. Eng. 2016, 4, 2495–2507. [Google Scholar] [CrossRef]
- Vijayaraghavan, G.; Sivakumar, T.; Adichakkravarthy, V. Application of plant based coagulants for waste water treatment. Int. J. Adv. Eng. Res. Stud. 2011, 1, 88–92. [Google Scholar]
- Ndabigengesere, A.; Narasiah, K.S.; Talbot, B.G. Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water Res. 1995, 29, 703–710. [Google Scholar] [CrossRef]
- Epalza, J.; Jaramillo, J.; Guarín, O. Extraction and Use of Plant Biopolymers for Water Treatment. In Desalination and Water Treatment; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Birima, A.H.; Hammad, H.A.; Desa, M.N.M.; Muda, Z.C. Extraction of natural coagulant from peanut seeds for treatment of turbid water. IOP Conf. Ser. Earth Environ. Sci. 2013, 16, 012065. [Google Scholar] [CrossRef]
- Sowmeyan, R.; Santhosh, J.; Latha, R. Effectiveness of herbs in community water treatment. Int. Res. J. Biochem. Bioinform. 2011, 1, 297–303. [Google Scholar]
- Ghebremichael, K.A.; Gunaratna, K.R.; Henriksson, H.; Brumer, H.; Dalhammar, G. A simple purification and activity assay of the coagulant protein from Moringa oleifera seed. Water Res. 2005, 39, 2338–2344. [Google Scholar] [CrossRef]
- Shan, T.C.; Matar, M.A.; Makky, E.A.; Ali, E.N. The use of Moringa oleifera seed as a natural coagulant for wastewater treatment and heavy metals removal. Appl. Water Sci. 2016, 7, 1369–1376. [Google Scholar] [CrossRef]
- Okuda, T.; Baes, A.; Nishijima, W.; Okada, M. Isolation and characterization of coagulant extracted from Moringa oleifera seed by salt solution. Water Res. 2001, 35, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Keeley, J.; Jarvis, P.; Judd, S.J. Coagulant Recovery from Water Treatment Residuals: A Review of Applicable Technologies. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2675–2719. [Google Scholar] [CrossRef] [Green Version]
- Meng, S.; Zhang, M.; Yao, M.; Qiu, Z.; Hong, Y.; Lan, W.; Xia, H.; Jin, X. Membrane Fouling and Performance of Flat Ceramic Membranes in the Application of Drinking Water Purification. Water 2019, 11, 2606. [Google Scholar] [CrossRef] [Green Version]
- Ulmert, H.D. Method for Treatment of Sludge from Waterworks and Wastewater Treatment Plants. Google Patents, U.S. Patent No. 7,713,419, 11 May 2010. [Google Scholar]
- Shukla, A.K.; Alam, J.; Alhoshan, M.; Dass, L.A.; Muthumareeswaran, M.R. Development of a nanocomposite ultrafiltration membrane based on polyphenylsulfone blended with graphene oxide. Sci Rep. 2017, 7, 41976. [Google Scholar] [CrossRef] [Green Version]
- Katayon, S.; Ng, S.C.; Johari, M.M.N.M.; Ghani, L.A.A. Preservation of coagulation efficiency ofMoringa oleifera, a natural coagulant. Biotechnol. Bioprocess Eng. 2006, 11, 489–495. [Google Scholar] [CrossRef]
- Kansal, S.K.; Kumari, A. Potential of M. oleifera for the treatment of water and wastewater. Chem. Rev. 2014, 114, 4993–5010. [Google Scholar] [CrossRef]
- Ben Rebah, F.; Mnif, W.; Siddeeg, M.S. Microbial Flocculants as an Alternative to Synthetic Polymers for Wastewater Treatment: A Review. Symmetry 2018, 10, 556. [Google Scholar] [CrossRef] [Green Version]
- Adebami, G.; Adebayo-Tayo, B. Comparative effect of medium composition on bioflocculant production by microorganisms isolated from wastewater samples. Rep. Opin. 2013, 5, 46–53. [Google Scholar]
- Liu, W.; Cong, L.; Yuan, H.; Yang, J. The mechanism of kaolin clay flocculation by a cation-independent bioflocculant produced by Chryseobacterium daeguense W6. AIMS Environ. Sci. 2015, 2, 169–179. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Hao, D.; Hu, Z.; Song, D.; Yang, M. Characterization and flocculation mechanism of an alkali-activated polysaccharide flocculant from Arthrobacter sp. B4. Bioresour. Technol. 2014, 170, 574–577. [Google Scholar] [CrossRef]
- Li, Z.; Zhong, S.; Lei, H.-y.; Chen, R.-w.; Yu, Q.; Li, H.-L. Production of a novel bioflocculant by Bacillus licheniformis X14 and its application to low temperature drinking water treatment. Bioresour. Technol. 2009, 100, 3650–3656. [Google Scholar] [CrossRef]
- Zaki, S.A.; Elkady, M.F.; Farag, S.; Abd-El-Haleem, D. Characterization and flocculation properties of a carbohydrate bioflocculant from a newly isolated Bacillus velezensis 40B. J. Environ. Biol. 2013, 34, 51–58. [Google Scholar]
- Li, Y.; Xu, Y.; Song, R.; Tian, C.; Liu, L.; Zheng, T.; Wang, H. Flocculation characteristics of a bioflocculant produced by the actinomycete Streptomyces sp. hsn06 on microalgae biomass. BMC Biotechnol. 2018, 18, 58. [Google Scholar] [CrossRef]
- Manivasagan, P.; Kang, K.H.; Kim, D.G.; Kim, S.K. Production of polysaccharide-based bioflocculant for the synthesis of silver nanoparticles by Streptomyces sp. Int. J. Biol. Macromol. 2015, 77, 159–167. [Google Scholar] [CrossRef]
- Aljuboori, A.H.; Idris, A.; Abdullah, N.; Mohamad, R. Production and characterization of a bioflocculant produced by Aspergillus flavus. Bioresour. Technol. 2013, 127, 489–493. [Google Scholar] [CrossRef]
- Li-Fan, L.; Cheng, W. Characteristics and culture conditions of a bioflocculant produced by Penicillium sp. Biomed. Environ. Sci. 2010, 23, 213–218. [Google Scholar]
- Pu, S.Y.; Qin, L.L.; Che, J.P.; Zhang, B.R.; Xu, M. Preparation and application of a novel bioflocculant by two strains of Rhizopus sp. using potato starch wastewater as nutrilite. Bioresour. Technol. 2014, 162, 184–191. [Google Scholar] [CrossRef]
- Fang, D.; Shi, C. Characterization and flocculability of a novel proteoglycan produced by Talaromyces trachyspermus OU5. J. Biosci. Bioeng. 2016, 121, 52–56. [Google Scholar] [CrossRef]
- Rasti, H.; Parivar, K.; Baharara, J.; Iranshahi, M.; Namvar, F. Chitin from the Mollusc Chiton: Extraction, Characterization and Chitosan Preparation. Iran. J. Pharm. Res. IJPR 2017, 16, 366–379. [Google Scholar]
- Ummalyma, S.B.; Mathew, A.K.; Pandey, A.; Sukumaran, R.K. Harvesting of microalgal biomass: Efficient method for flocculation through pH modulation. Bioresour. Technol. 2016, 213, 216–221. [Google Scholar] [CrossRef]
- Riaño, B.; Molinuevo, B.; García-González, M.C. Optimization of chitosan flocculation for microalgal-bacterial biomass harvesting via response surface methodology. Ecol. Eng. 2012, 38, 110–113. [Google Scholar] [CrossRef]
- Tavera, M.J. Extraction and Efficiency of Chitosan from Shrimp Exoskeletons as Coagulant for Lentic Water Bodies. Int. J. Appl. Eng. Res. 2018, 13, 1060–1067. [Google Scholar]
- Han, N.T.; Trung, T.S.; Khanh Huye, N.T.; Minh, N.C.; Trang, T.T.L. Optimization of Harvesting of Microalgal Thalassiosira pseudonana Biomass Using Chitosan Prepared from Shrimp Shell Waste. Asian J. Agric. Res. 2016, 10, 162–174. [Google Scholar] [CrossRef] [Green Version]
- Mohd Yunos, F.H.; Nasir, N.M.; Wan Jusoh, H.H.; Khatoon, H.; Lam, S.S.; Jusoh, A. Harvesting of microalgae (Chlorella sp.) from aquaculture bioflocs using an environmental-friendly chitosan-based bio-coagulant. Int. Biodeterior. Biodegrad. 2017, 124, 243–249. [Google Scholar] [CrossRef]
- Yang, K.; Wang, G.; Chen, X.; Wang, X.; Liu, F. Treatment of wastewater containing Cu2+ using a novel macromolecular heavy metal chelating flocculant xanthated chitosan. Colloids Surf. A Phys. Eng. Asp. 2018, 558, 384–391. [Google Scholar] [CrossRef]
- Pontius, F.W. Chitosan as a Drinking Water Treatment Coagulant. Am. J. Civ. Eng. 2016, 4, 205–215. [Google Scholar] [CrossRef] [Green Version]
- De Queiroz Antonino, R.; Lia Fook, B.R.P.; de Oliveira Lima, V.A.; de Farias Rached, R.I.; Lima, E.P.N.; da Silva Lima, R.J.; Peniche Covas, C.A.; Lia Fook, M.V. Preparation and Characterization of Chitosan Obtained from Shells of Shrimp (Litopenaeus vannamei Boone). Mar. Drugs 2017, 15, 141. [Google Scholar] [CrossRef] [Green Version]
- Hyde, A.M.; Zultanski, S.L.; Waldman, J.H.; Zhong, Y.-L.; Shevlin, M.; Peng, F. Development. General principles and strategies for salting-out informed by the Hofmeister series. Org. Process Res. Dev. 2017, 21, 1355–1370. [Google Scholar] [CrossRef] [Green Version]
- Maurya, S.; Daverey, A. Evaluation of plant-based natural coagulants for municipal wastewater treatment. 3 Biotech 2018, 8, 77. [Google Scholar] [CrossRef]
- Kakoi, B.; Kaluli, J.W.; Ndiba, P.; Thiong’o, G. Banana pith as a natural coagulant for polluted river water. Ecol. Eng. 2016, 95, 699–705. [Google Scholar] [CrossRef]
- Menkiti, M.C.; Okoani, A.O.; Ejimofor, M.I. Adsorptive study of coagulation treatment of paint wastewater using novel Brachystegia eurycoma extract. Appl. Water Sci. 2018, 8, 189. [Google Scholar] [CrossRef] [Green Version]
- Koen, J.; Slabbert, M.M.; Booyse, M.; Bester, C. Honeybush (Cyclopia spp.) pollen viability and surface morphology. S. Afr. J. Bot. 2020, 128, 167–173. [Google Scholar] [CrossRef]
- Asharuddin, S.M.; Othman, N.; Zin, N.S.M.; Tajarudin, H.A.; Din, M.F.M. Flocculation and antibacterial performance of dual coagulant system of modified cassava peel starch and alum. J. Water Process Eng. 2019, 31, 100888. [Google Scholar] [CrossRef]
- Wahab, M.A.; Boubakri, H.; Jellali, S.; Jedidi, N. Characterization of ammonium retention processes onto cactus leaves fibers using FTIR, EDX and SEM analysis. J. Hazard. Mater. 2012, 241–242, 101–109. [Google Scholar] [CrossRef]
- Zainorizuan, M.J.; Mohd-Asharuddin, S.; Othman, N.; Mohd Zin, N.S.; Tajarudin, H.A.; Yee Yong, L.; Alvin John Meng Siang, L.; Mohamad Hanifi, O.; Siti Nazahiyah, R.; Mohd Shalahuddin, A. A Chemical and Morphological Study of Cassava Peel: A Potential Waste as Coagulant Aid. MATEC Web Conf. 2017, 103, 06012. [Google Scholar] [CrossRef] [Green Version]
- Shak, K.P.Y.; Wu, T.Y. Optimized use of alum together with unmodified Cassia obtusifolia seed gum as a coagulant aid in treatment of palm oil mill effluent under natural pH of wastewater. Ind. Crops Prod. 2015, 76, 1169–1178. [Google Scholar] [CrossRef]
- Kolyva, F.; Stratakis, E.; Rhizopoulou, S.; Chimona, C.; Fotakis, C. Leaf surface characteristics and wetting in Ceratonia siliqua L. Flora Morphol. Distrib. Funct. Ecol. Plants 2012, 207, 551–556. [Google Scholar] [CrossRef]
- Saritha, V.; Karnena, M.K.; Dwarapureddi, B.K. “Exploring natural coagulants as impending alternatives towards sustainable water clarification”—A comparative studies of natural coagulants with alum. J. Water Process Eng. 2019, 32. [Google Scholar] [CrossRef]
- Kaya, M.; Sofi, K.; Sargin, I.; Mujtaba, M. Changes in physicochemical properties of chitin at developmental stages (larvae, pupa and adult) of Vespa crabro (wasp). Carbohydr. Polym. 2016, 145, 64–70. [Google Scholar] [CrossRef]
- Peng, N.; Ai, Z.; Fang, Z.; Wang, Y.; Xia, Z.; Zhong, Z.; Fan, X.; Ye, Q. Homogeneous synthesis of quaternized chitin in NaOH/urea aqueous solution as a potential gene vector. Carbohydr. Polym. 2016, 150, 180–186. [Google Scholar] [CrossRef]
- Lee, C.S.; Robinson, J.; Chong, M.F. A review on application of flocculants in wastewater treatment. Process. Saf. Environ. Prot. 2014, 92, 489–508. [Google Scholar] [CrossRef]
- Arasukumar, B.; Prabakaran, G.; Gunalan, B.; Moovendhan, M. Chemical composition, structural features, surface morphology and bioactivities of chitosan derivatives from lobster (Thenus unimaculatus) shells. Int. J. Biol. Macromol 2019, 135, 1237–1245. [Google Scholar] [CrossRef]
- Sudha, R.; Srinivasan, K.; Premkumar, P. Removal of nickel(II) from aqueous solution using Citrus Limettioides peel and seed carbon. Ecotoxicol. Environ. Saf. 2015, 117, 115–123. [Google Scholar] [CrossRef]
- Shak, K.P.Y.; Wu, T.Y. Synthesis and characterization of a plant-based seed gum via etherification for effective treatment of high-strength agro-industrial wastewater. Chem. Eng. J. 2017, 307, 928–938. [Google Scholar] [CrossRef]
- Subramonian, W.; Wu, T.Y.; Chai, S.-P. An application of response surface methodology for optimizing coagulation process of raw industrial effluent using Cassia obtusifolia seed gum together with alum. Ind. Crops Prod. 2015, 70, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Nashine, A.L.; Tembhurkar, A.R. Equilibrium, kinetic and thermodynamic studies for adsorption of As(III) on coconut (Cocos nucifera L.) fiber. J. Environ. Chem. Eng. 2016, 4, 3267–3273. [Google Scholar] [CrossRef]
- Mohd Asharuddin, S. Optimization of Biosorption Process Using Cucumis Melo Rind for the Removal of Fe, Mn and Pb Ions from Groundwater. Master’s Thesis, Universiti Tun Hussein Onn Malaysia, Parit Raja, Malaysia, 2015. [Google Scholar]
- Devi, B. Isolation, Partial Purification And Characterization Of Alkaline Serine Protease From Seeds of Cucumis Melo Var Agrestis. Int. J. Res. Eng. Technol. 2014, 3, 88–97. [Google Scholar] [CrossRef]
- Raghavendra, C.K.; Srinivasan, K. Influence of dietary tender cluster beans (Cyamopsis tetragonoloba) on biliary proteins, bile acid synthesis and cholesterol crystal growth in rat bile. Steroids 2015, 94, 21–30. [Google Scholar] [CrossRef]
- Kahsay, M.H.; RamaDevi, D.; Kumar, Y.P.; Mohan, B.S.; Tadesse, A.; Battu, G.; Basavaiah, K. Synthesis of silver nanoparticles using aqueous extract of Dolichos lablab for reduction of 4-Nitrophenol, antimicrobial and anticancer activities. OpenNano 2018, 3, 28–37. [Google Scholar] [CrossRef]
- Lim, B.-C.; Lim, J.-W.; Ho, Y.-C. Garden cress mucilage as a potential emerging biopolymer for improving turbidity removal in water treatment. Process Saf. Environ. Prot. 2018, 119, 233–241. [Google Scholar] [CrossRef]
- Chua, S.C.; Chong, F.K.; Ul Mustafa, M.R.; Mohamed Kutty, S.R.; Sujarwo, W.; Abdul Malek, M.; Show, P.L.; Ho, Y.C. Microwave radiation-induced grafting of 2-methacryloyloxyethyl trimethyl ammonium chloride onto lentil extract (LE-g-DMC) as an emerging high-performance plant-based grafted coagulant. Sci. Rep. 2020, 10, 3959. [Google Scholar] [CrossRef] [Green Version]
- Zaharuddin, N.D.; Noordin, M.I.; Kadivar, A. The use of Hibiscus esculentus (Okra) gum in sustaining the release of propranolol hydrochloride in a solid oral dosage form. Biomed. Res. Int 2014, 2014, 735891. [Google Scholar] [CrossRef] [Green Version]
- Ndahi Jones, A. The Zeta Potential In Crude Extracts Of Some Hibiscus Plants For Water Treatment. Arid Zone J. Eng. Technol. Environ. 2018, 14, 85–93. [Google Scholar]
- Khan, Z.; Hussain, S.Z.; Rehman, A.; Zulfiqar, S.; Shakoori, A.J.P.J.o.Z. Evaluation of cadmium resistant bacterium, Klebsiella pneumoniae, isolated from industrial wastewater for its potential use to bioremediate environmental cadmium. Pak. J. Zool. 2015, 47, 1533–1543. [Google Scholar]
- Chua, S.C.; Malek, M.A.; Chong, F.K.; Sujarwo, W.; Ho, Y.C. Red Lentil (Lens culinaris) Extract as a Novel Natural Coagulant for Turbidity Reduction: An Evaluation, Characterization and Performance Optimization Study. Water 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Ho, Y.C.; Norli, I.; Alkarkhi, A.F.; Morad, N. Extraction, characterization and application of malva nut gum in water treatment. J. Water Health 2015, 13, 489–499. [Google Scholar] [CrossRef]
- Fauzi Abdullah, M.; Jawad, A.H.; Hanani Mamat, N.F.; Ismail, K. Adsorption of methylene blue onto acid-treated mango peels: Kinetic, equilibrium and thermodynamic. Desalin. Water Treat. 2016, 59, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Lim, W.L.K.; Chung, E.C.Y.; Chong, C.H.; Ong, N.T.K.; Hew, W.S.; Kahar, N.b.; Goh, Z.J. Removal of fluoride and aluminium using plant-based coagulants wrapped with fibrous thin film. Process Saf. Environ. Prot. 2018, 117, 704–710. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, B.; Huang, Q.; Fu, X.; Liu, R.H. Microwave-assisted extraction of polysaccharides from Moringa oleifera Lam. leaves: Characterization and hypoglycemic activity. Ind. Crops Prod. 2017, 100, 1–11. [Google Scholar] [CrossRef]
- Kagithoju, S.; Godishala, V.; Nanna, R.S. Eco-friendly and green synthesis of silver nanoparticles using leaf extract of Strychnos potatorum Linn.F. and their bactericidal activities. 3 Biotech 2015, 5, 709–714. [Google Scholar] [CrossRef] [Green Version]
- Sennu, P.; Choi, H.-J.; Baek, S.-G.; Aravindan, V.; Lee, Y.-S. Tube-like carbon for Li-ion capacitors derived from the environmentally undesirable plant: Prosopis juliflora. Carbon 2016, 98, 58–66. [Google Scholar] [CrossRef]
- Ibrahim, A.; Yaser, A.Z. Colour removal from biologically treated landfill leachate with tannin-based coagulant. J. Environ. Chem. Eng. 2019, 7, 103483. [Google Scholar] [CrossRef]
- Rahman, M.M.; Sarker, P.; Saha, B.; Jakarin, N.; Shammi, M.; Uddin, M.K.; Sikder, M.T. Removal of turbidity from the river water using tamarindus indica and litchi chinensis seeds as natural coagulant. Int. J. Environ. Prot. Policy 2015, 3, 19. [Google Scholar] [CrossRef]
- Alpizar-Reyes, E.; Carrillo-Navas, H.; Gallardo-Rivera, R.; Varela-Guerrero, V.; Alvarez-Ramirez, J.; Pérez-Alonso, C. Functional properties and physicochemical characteristics of tamarind (Tamarindus indica L.) seed mucilage powder as a novel hydrocolloid. J. Food Eng. 2017, 209, 68–75. [Google Scholar] [CrossRef]
- Obiora-Okafo, I. Characterization and removal of colour from aqueous solution using bio-coagulants: Response surface methodological approach. J. Chem. Technol. Metall. 2019, 54, 1. [Google Scholar]
- Obiora-Okafo, I.; Onukwuli, O. Characterization and optimization of spectrophotometric colour removal from dye containing wastewater by Coagulation-Flocculation. Pol. J. Chem. Technol. 2018, 20, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Radini, I.A.; Hasan, N.; Malik, M.A.; Khan, Z. Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications. J. Photochem. Photobiol. B 2018, 183, 154–163. [Google Scholar] [CrossRef]
- Justina, M.D.; Muniz, B.R.B.; Bröring, M.M.; Costa, V.J.; Skoronski, E. Using vegetable tannin and polyaluminium chloride as coagulants for dairy wastewater treatment: A comparative study. J. Water Process Eng. 2018, 25, 173–181. [Google Scholar] [CrossRef]
- Kanneganti, A.; Talasila, M. MoO 3 Nanoparticles: Synthesis, Characterization and Its Hindering Effect on Germination of Vigna Unguiculata Seeds. Int. J. Eng. Res. Appl. 2014, 4, 116–120. [Google Scholar]
- Akhila, A. Essential oil-Bearing Grasses: The Genus Cymbopogon; CRC press: New York, NY, USA, 2009. [Google Scholar]
- Arnon-Rips, H.; Porat, R.; Poverenov, E. Enhancement of agricultural produce quality and storability using citral-based edible coatings; the valuable effect of nano-emulsification in a solid-state delivery on fresh-cut melons model. Food Chem. 2019, 277, 205–212. [Google Scholar] [CrossRef]
- Chua, S.-C.; Chong, F.-K.; Yen, C.-H.; Ho, Y.-C. Valorization of conventional rice starch in drinking water treatment and optimization using response surface methodology (RSM). Chem. Eng. Commun. 2019, 1–11. [Google Scholar] [CrossRef]
- Morantes, D.; Muñoz, E.; Kam, D.; Shoseyov, O.J.N. Highly charged cellulose nanocrystals applied as a water treatment flocculant. Nanomaterials 2019, 9, 272. [Google Scholar] [CrossRef] [Green Version]
- The, C.Y.; Budiman, P.M.; Shak, K.P.Y.; Wu, T.Y. Recent Advancement of Coagulation–Flocculation and Its Application in Wastewater Treatment. Ind. Eng. Chem. Res. 2016, 55, 4363–4389. [Google Scholar] [CrossRef]
- Muylaert, K.; Bastiaens, L.; Vandamme, D.; Gouveia, L. Harvesting of microalgae: Overview of process options and their strengths and drawbacks. In Microalgae-Based Biofuels and Bioproducts; Gonzalez-Fernandez, C., Muñoz, R., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 113–132. [Google Scholar] [CrossRef]
- Su, T.; Chen, T.; Zhang, Y.; Hu, P. Selective Flocculation Enhanced Magnetic Separation of Ultrafine Disseminated Magnetite Ores. Minerals 2016, 6, 86. [Google Scholar] [CrossRef] [Green Version]
- Chatsungnoen, T.; Chisti, Y. Flocculation and Electroflocculation for Algal Biomass Recovery. In Biomass, Biofuels and Biochemicals: Biofuels from Algae; Elsevier: Amsterdam, The Netherlands, 2019; pp. 257–286. [Google Scholar] [CrossRef]
- Branyikova, I.; Prochazkova, G.; Potocar, T.; Jezkova, Z.; Branyik, T. Harvesting of Microalgae by Flocculation. Fermentation 2018, 4, 93. [Google Scholar] [CrossRef] [Green Version]
- Freitas, T.K.F.S.; Oliveira, V.M.; de Souza, M.T.F.; Geraldino, H.C.L.; Almeida, V.C.; Fávaro, S.L.; Garcia, J.C. Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculentus) mucilage as natural coagulant. Ind. Crops Prod. 2015, 76, 538–544. [Google Scholar] [CrossRef]
- Singh, A.; Barman, R.; Anantha Singh, T.S. Effect of thermal Energy on Artificial Coagulation for the Treatment of Wastewater. J. Energy Res. Environ. Technol. 2017, 4, 117–119. [Google Scholar]
- Guo, H.; Hong, C.; Zhang, C.; Zheng, B.; Jiang, D.; Qin, W.J.B.t. Bioflocculants’ production from a cellulase-free xylanase-producing Pseudomonas boreopolis G22 by degrading biomass and its application in cost-effective harvest of microalgae. Bioresour. Technol. 2018, 255, 171–179. [Google Scholar] [CrossRef]
- Jindal, M.; Kumar, V.; Rana, V.; Tiwary, A.K. Aegle marmelos fruit pectin for food and pharmaceuticals: Physico-chemical, rheological and functional performance. Carbohydr. Polym. 2013, 93, 386–394. [Google Scholar] [CrossRef]
- Nagappan, S.; Devendran, S.; Tsai, P.-C.; Dinakaran, S.; Dahms, H.-U.; Ponnusamy, V.K.J.F. Passive cell disruption lipid extraction methods of microalgae for biofuel production—A review. Fuel 2019, 252, 699–709. [Google Scholar] [CrossRef]
- Amran, A.; Zaidi, N.S.; Muda, K.; Liew, W.L. Effectiveness of Natural Coagulant in Coagulation Process: A Review. Int. J. Eng. Technol. 2018, 7, 34–37. [Google Scholar] [CrossRef] [Green Version]
- Anku, W.W.; Mamo, M.A.; Govender, P. Phenolic compounds in water: Sources, reactivity, toxicity and treatment methods. In Phenolic Compounds-Natural Sources, Importance and Applications; InTechOpen: Rijeka, Croatia, 2017. [Google Scholar]
- Mubarak, M.; Shaija, A.; Suchithra, T.V. Flocculation: An effective way to harvest microalgae for biodiesel production. J. Environ. Chem. Eng. 2019, 7, 103221. [Google Scholar] [CrossRef]
- Tran, D.T.; Le, B.H.; Lee, D.J.; Chen, C.L.; Wang, H.Y.; Chang, J.S. Microalgae harvesting and subsequent biodiesel conversion. Bioresour. Technol. 2013, 140, 179–186. [Google Scholar] [CrossRef]
- Behera, B.; Balasubramanian, P. Natural plant extracts as an economical and ecofriendly alternative for harvesting microalgae. Bioresour. Technol. 2019, 283, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Zainorizuan, M.J.; Kumar, V.; Othman, N.; Asharuddin, S.; Yee Yong, L.; Alvin John Meng Siang, L.; Mohamad Hanifi, O.; Siti Nazahiyah, R.; Mohd Shalahuddin, A. Applications of Natural Coagulants to Treat Wastewater—A Review. MATEC Web Conf. 2017, 103. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.; Wu, X.; Jiang, H.; Yu, M.; Liu, Y.; Min, A.; Li, W.; Ruan, R. Edible fungi-assisted harvesting system for efficient microalgae bio-flocculation. Bioresour. Technol. 2019, 282, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Jin, W.; Tu, R.; Han, S.; Ji, Y.; Zhou, X. Harvesting of Microalgae Chlorella pyrenoidosa by Bio-flocculation with Bacteria and Filamentous Fungi. Waste Biomass Valorization 2020. [Google Scholar] [CrossRef]
- Mezzari, M.P.; da Silva, M.L.B.; Pirolli, M.; Perazzoli, S.; Steinmetz, R.L.R.; Nunes, E.O.; Soares, H.M. Assessment of a tannin-based organic polymer to harvest Chlorella vulgaris biomass from swine wastewater digestate phycoremediation. Water Sci. Technol. 2014, 70, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Barrado-Moreno, M.M.; Beltrán-Heredia, J.; Martín-Gallardo, J. Removal of Oocystis algae from freshwater by means of tannin-based coagulant. J. Appl. Phycol. 2016, 28, 1589–1595. [Google Scholar] [CrossRef]
- Cancela, Á.; Sánchez, Á.; Álvarez, X.; Jiménez, A.; Ortiz, L.; Valero, E.; Varela, P. Pellets valorization of waste biomass harvested by coagulation of freshwater algae. Bioresour. Technol. 2016, 204, 152–156. [Google Scholar] [CrossRef]
- Banerjee, C.; Ghosh, S.; Sen, G.; Mishra, S.; Shukla, P.; Bandopadhyay, R. Study of algal biomass harvesting through cationic cassia gum, a natural plant based biopolymer. Bioresour. Technol. 2014, 151, 6–11. [Google Scholar] [CrossRef]
- Link, K.P.; Dickson, A.D. The preparation of d-galacturonic acid from lemon pectic acid. J. Biol. Chem. 1930, 86, 491–497. [Google Scholar]
- Horst, W.J.; Wagner, A.; Marschner, H. Mucilage protects root meristems from aluminium injury. Zeitschrift für Pflanzenphysiologie 1982, 105, 435–444. [Google Scholar] [CrossRef]
- Muñoz, L.A.; Cobos, A.; Diaz, O.; Aguilera, J.M. Chia seeds: Microstructure, mucilage extraction and hydration. J. Food Eng. 2012, 108, 216–224. [Google Scholar] [CrossRef]
- Voiniciuc, C.; Schmidt, M.H.-W.; Berger, A.; Yang, B.; Ebert, B.; Scheller, H.V.; North, H.M.; Usadel, B.; Günl, M. MUCILAGE-RELATED10 produces galactoglucomannan that maintains pectin and cellulose architecture in Arabidopsis seed mucilage. Plant Physiol. 2015, 169, 403–420. [Google Scholar] [CrossRef] [PubMed]
- Jouki, M.; Mortazavi, S.A.; Yazdi, F.T.; Koocheki, A. Characterization of antioxidant–antibacterial quince seed mucilage films containing thyme essential oil. Carbohydr. Polym. 2014, 99, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Thanatcha, R.; Pranee, A.J.I.F.R.J. Extraction and characterization of mucilage in Ziziphus mauritiana Lam. Int. Food Res. J. 2011, 18, 201–212. [Google Scholar]
- Ghanem, M.E.; Han, R.-M.; Classen, B.; Quetin-Leclerq, J.; Mahy, G.; Ruan, C.-J.; Qin, P.; Perez-Alfocea, F.; Lutts, S. Mucilage and polysaccharides in the halophyte plant species Kosteletzkya virginica: Localization and composition in relation to salt stress. J. Plant. Physiol. 2010, 167, 382–392. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Luo, J.; Liu, P.; Zhang, C. Excellent lubricating behavior of Brasenia schreberi mucilage. Langmuir 2012, 28, 7797–7802. [Google Scholar] [CrossRef]
- Koocheki, A.; Mortazavi, S.A.; Shahidi, F.; Razavi, S.M.A.; Kadkhodaee, R.; Milani, J. Optimization of mucilage extraction from Qodume shirazi seed (Alyssum homolocarpum) using response surface methodology. J. Food Process Eng. 2010, 33, 861–882. [Google Scholar] [CrossRef]
- Yang, X.; Dong, M.; Huang, Z. Role of mucilage in the germination of Artemisia sphaerocephala (Asteraceae) achenes exposed to osmotic stress and salinity. Plant Physiol. Biochem. 2010, 48, 131–135. [Google Scholar] [CrossRef]
- Nayak, A.K.; Pal, D.; Pradhan, J.; Hasnain, M.S. Fenugreek seed mucilage-alginate mucoadhesive beads of metformin HCl: Design, optimization and evaluation. Int. J. Biol. Macromol. 2013, 54, 144–154. [Google Scholar] [CrossRef]
- Behrouzian, F.; Razavi, S.M.A.; Phillips, G.O. Cress seed (Lepidium sativum) mucilage, an overview. Bioact. Carbohydr. Diet. Fibre 2014, 3, 17–28. [Google Scholar] [CrossRef]
- Gani, P.; Mohamed Sunar, N.; Matias-Peralta, H.; Abdul Latiff, A.A. Effect of pH and alum dosage on the efficiency of microalgae harvesting via flocculation technique. Int. J. Green Energy 2017, 14, 395–399. [Google Scholar] [CrossRef]
Bacterial Strain | Flocculating Activity in Removal of Kaolin (%) | Reference |
---|---|---|
Bacillus agaradhaerens C9 | 81 | [49] |
Bacillus sp. XF-56 | 94 | [49] |
Arthrobacter sp. B4 | 99 | [50] |
Bacillus licheniformis X14 | 98 | [47,51] |
Bacillus velezensis 40B | >98 | [52] |
Chryseobacterium daeguense W6 | 97 | [48] |
Klebsiella sp. ZZ-3 | 95 | [53] |
Streptomyces sp. MBRC-91 | 96 | [54] |
Aspergillus flavus (source NI 3) | >90 | [55] |
Penicillum strain HHE-P7 | 96 | [47,56] |
Aspergillus flavus (source NI) | 97 | [55] |
Rhizopus sp. M9 & Rhizopus sp. M17 | 90 | [57] |
Talaromyces sp. | 93 | [58] |
Chitosan | Operating Condition | Flocculation Ability | Reference |
---|---|---|---|
Chitosan | 214 mg·L−1, pH 8 and 131 rpm | 92% removal of Chlorella vulgaris | [61] |
Chitosan (Plaemon serratus) | 15 mg·L−1 at 67 nephelometric turbidity units (NTU) raw water, flocculation time of 20 min | 89% removal of sewage wastewater | [62] |
Chitosan (shrimp) | 4 mg·L−1, pH 6 and flocculation time of 10 min | 95% removal of Thalassiosira pseudonana microalgae | [63] |
Chitosan | 30 mg·L−1, pH 7, flocculation time of 20 min | 98% removal of Chlorella vulgaris | [64] |
Chitosan | 4 mg·L−1, pH 4 and flocculation time of 10 min | 90% removal of Thalassiosira pseudonana microalgae | [63] |
Chitosan | 20 mg·L−1, pH 9.9, flocculation time of 10 min | 90% removal of Thalassiosira pseudonana microalgae | [63] |
Xanthated chitosan | 50 mg·L−1, pH 6.0, slow stirring for 10 min and settling for 10 min | >97% removal of Cu2+ | [65] |
Natural Coagulant | Surface Morphology | Surface Charge | Molecular Weight | Functional Group | Elemental Property | Thermogravimetry Analysis | Differential Scanning Calorimetry | Performance | Reference |
---|---|---|---|---|---|---|---|---|---|
Banana peel (Musa acuminate) | -N/A- | -N/A- | -N/A- | C=O, O-H, N–H | -N/A- | -N/A- | -N/A- | 0.4 g·L−1 dosage, 67% removal of chemical oxygen demand (COD) from municipal wastewater | [69] |
Banana pith | -N/A- | -N/A- | -N/A- | O-H, C-H, C-OO, C-H, COOH | O (44%), C (32%), (36 %), H (4.2%), N (1.5%), S (0.86%) | -N/A- | -N/A- | 0.1 kg·m−3 dosage, pH 4, 99% removal of COD from river water | [70] |
Brachystegia eurycoma extract | Compact structure with dispersed but continuous crack-like openings, absence of irregular surfaces, randomly formed aggregates and/or loosely bound cluster | -N/A- | -N/A- | O–H, N–H, O=H, C–N, C≡C, C=C–H and H–C–H | -N/A- | 334.44 °C to 361.73 °C | −1.708 mV | 5 g·L−1 dosage, pH 8, 97% removal of COD from paint wastewater | [71] |
Brassica spp. seed protein | Pollen grain surface | −6.8 mV | 6.5 kDa | -N/A- | -N/A- | 95 °C | -N/A- | -N/A- | [29,72] |
Cassava peel starch | Polygonal and spherical starch granules, rough surface | -4.37 mV | 1.057 × 105 kDa | O-H, C-H | Ca, K and Na | -N/A- | -N/A- | 7.5 mg·L−1 dosage, pH 7, 93% removal of total suspended solid (TSS) from dam water 50 mg·L−1 dosage, pH 7, 100% removal of E. coli from dam water | [73] |
Cactus leaves | Presence of cracks and cavities | -N/A- | -N/A- | O-H, C=O, COOH | Na, K, Ca, Mg | -N/A- | -N/A- | 10 mg·L−1 dosage, 90% removal of kaolin | [2,74] |
Cassava Peel (periderm and cortex) | Non-porous and heterogeneous characteristics, smooth and globular in shape | -N/A- | -N/A- | O-H, CH, CH2, C=O, C-O, COOH | K2O (5.5%), CaO (4.2%), Fe2O3 (1.5%), SO3 and SiO2 (0.87%), Al2O3 (0.74%), C (0.10%), | -N/A- | -N/A- | -N/A- | [75] |
Cassia obtusifolia seed gum | Fibrous networks with rough surface and porosity | -N/A- | -N/A- | O-H, C-H, C=O, | -N/A- | 289 °C | -N/A- | 2.47 g·L−1 dosage, 82% removal of TSS, settling time of 35.16 min | [76] |
Ceratonia silique seed gums | Rough cuticle on the adaxial and the abaxial surface, stomatal pores | -N/A- | 5–8 kDa | O-H | -N/A- | -N/A- | -N/A- | -N/A- | [29,77] |
Chitin | Microporous, fish scale shaped nanofibrous surface | +18 mV | -N/A- | N-H, O-H, C-H, C=O | -N/A- | -N/A- | -N/A- | 0.3 g·L−1 dosage, pH 6, 68% removal of turbidity from surface water | [78,79,80] |
Chitosan extracted from lobster shell (Thenus unimaculatus) | Rough surface, irregular block, crystalline with cluster and porosity structure | -N/A- | -N/A- | R-NH2, O-H | Ca, K, Na, Mg and Fe | -N/A- | -N/A- | -N/A- | [81,82] |
Citrus Limettioides peels | Porous structure | -N/A- | -N/A- | CH, CH2, CH3, C=O, COOH, M(RCOO)n, | O, Na, Ca | -N/A- | -N/A- | -N/A- | [75,83] |
C. obtusifolia seed gum | Rough, fibrous, porous and bulky | +6.41 mV | -N/A- | O-H, C-H, CH3, CH2 | -N/A- | 280–300 °C | -N/A- | 19 × 10−3 mol gum, 6 × 10−2 mol of NaOH, 87% removal of TSS and 85% removal of COD from palm oil mill effluent (POME) at 50 °C | [84,85] |
Cocos nucifera seed protein | Porous structure, clustered, aggregated shapes | -N/A- | 5.6 kDa | O-H, N-H | -N/A- | -N/A- | -N/A- | 10 g·L−1 dosage, 96% removal of As(III) in 8 h, 80 rpm and 50 °C | [29,86] |
Cucumis melo peels | -N/A- | -N/A- | 54 kDa | O-H, N-H, CH, CH2, CH3, C=O, R–COOH, M(RCOO)n, C-O or –C-N | -N/A- | -N/A- | -N/A- | 0.5 g·L−1 dosage, pH 7, 91% removal of Mn(II) 0.5 g·L−1 dosage, pH 6.5, 91% removal of Pb(II) | [75,87,88] |
Cyamopsis tetragonoloba seed gums | Nanoparticles | −6.66 mV | 50–800 kDa | O-H | -N/A- | -N/A- | -N/A- | -N/A- | [29,89] |
Dolichos lablab seed gums | Aggregated free, rough | -N/A- | -N/A- | N–H, O-H, C–H, C–C, –COOH | C, O | -N/A- | -N/A- | 0.6 mL·L−1 dosage, pH 11, 99% removal of turbidity | [29,90] |
Garden cress (Lepidium Sativum) | Flake-shaped structures with non-uniform distribution and emerged as interconnected channels, porous and heterogenous characteristics | −16 mV | -N/A- | O–H, C-H, C=O, OCH3 | -N/A- | -N/A- | -N/A- | 15 mg·L−1 dosage, pH 5, 99% removal of turbidity from river water | [91] |
Grafted 2-methacryloyloxyethyl trimethyl ammonium chloride lentil extract | More compact and less porous compared to lentil extract | +15.08 mV | -N/A- | -N/A- | C (62%), O (36%), Cl (2.0%) | -N/A- | -N/A- | 5.09 mL·g−1 dosage, pH 10, 99% removal of turbidity in surface water and industrial wastewater | [92] |
H. esculentus | Compact, cross linkage of molecules | -N/A- | 100 kDa | O–H, C–H, C=O | -N/A- | 180 °C | 36.12 mV | -N/A- | [3,93] |
Kenaf crude extract (KCE) | -N/A- | −8.3 mV | -N/A- | -N/A- | -N/A- | -N/A- | -N/A- | 100 mg·L−1 dosage, 85% removal of kaolin, 40 mg·L−1, 83% removal of turbidity from river water | [94] |
Klebsiella pneumoniae | -N/A- | -N/A- | -N/A- | COO−, O-H, N-H | C, N, O | -N/A- | -N/A- | pH 7, 40% removal of Cd | [2,95] |
Lens culinaris | Rough surface with pores and obvious surface abrasions | −3.58 mV | -N/A- | O–H, C-H, COOH, C=O, C-O | C (60%), O (40%), K (0.39%) | -N/A- | -N/A- | 26.3 mg·L−1 dosage, 99% removal of kaolin, 3 min settling time | [96] |
Lentil extract | Highly porous surface, scattered pieces of compounds attached | −5.91 mV | -N/A- | O–H, C-H, C=O, N-H, C-O-C | C (59%), O (39%) | 280 °C | -N/A- | -N/A- | [92] |
Maerua decumbent | -N/A- | -N/A- | -N/A- | O-H, C-H, N-H, C=O, C-O, C-N | C (39%), O (42%) H (3.8%), N (1.2%), S (0.31%) | -N/A- | -N/A- | 1 kg·m−3 dosage, pH 5.56, settling time 52.31 min, 99% removal of turbidity from paint industry wastewater 0.8 kg·m−3 dosage, pH 5.11, settling time 53.53 min, 79% removal of COD from paint industry wastewater | [1] |
Malva nut gum | A branch-like surface structure | −58.7 mV | 2.3 × 105 kDa | -N/A- | -N/A- | -N/A- | -N/A- | 0.06 mg·L−1 dosage, pH 3.01, 97% removal of kaolin | [97] |
Mango peels | Well-pronounced heterogeneous cavities that are well distributed | -N/A- | -N/A- | O-H, N-H, CH, CH2, CH3, C=O, C-O or –C-N | C, H, N, S | -N/A- | -N/A- | -N/A- | [75,98] |
Moringa oleifera | Group-like, composed of many small particles | +6 mV | 6.5 kDa | O-H, C-H, C=O, N-H, C-OH, S=O | -N/A- | -N/A- | -N/A- | 50 mg·L−1 dosage, 94% removal of kaolin | [2,94,99,100] |
Nirmali seeds | highly porous with reticulated structure | -N/A- | 12 kDa | COOH, O-H | -N/A- | -N/A- | -N/A- | 1.5 mg·L−1 dosage, 96% removal of turbidity from surface water | [2,101] |
okra | Porous and rough | −8.3 mV | -N/A- | -N/A- | Mg (7.2%), Al (4.1%), Si (3.7%), P (11.8%), S (8.2%), Cl (7.7%), K (22.0%), Ca (7.5%), O (27.8%) | -N/A- | -N/A- | 3 g·L−1 dosage, 85% removal of fluoride from hydrofluoric acid synthetic wastewater 20 mg·L−1 dosage, 94% removal of kaolin, 40 mg·L−1 dosage, 98% removal of turbidity from river water | [99] |
Prosopis spp. seed gums | Homogenous in size and shape with a flake-like morphology | -N/A- | 62 kDa | -N/A- | -N/A- | Ca, Mg, Fe, Zn | -N/A- | -N/A- | [29,94,102] |
Sabdariffa crude extract (SCE) | -N/A- | −6.4 mV | -N/A- | -N/A- | -N/A- | -N/A- | -N/A- | 60 mg·L−1 dosage, 88% removal of kaolin, 40 mg·L−1 dosage, 96% removal of turbidity from river water | [94] |
Sago | Smooth and solid surface with no pores | -N/A- | -N/A- | N-H, O-H, C=O | -N/A- | -N/A- | -N/A- | 0.1 g·L−1 dosage, pH 7, 69% removal of turbidity from surface water | [78] |
Tannin | -N/A- | −13.6 mV | 1250 kDa | O-H, R-NH2, C=O, COOH | -N/A- | 200 °C | -N/A- | 14 mg·L−1 dosage, 75% removal from kaolin 11 mg·L−1 dosage, pH 5 to 7, 97% removal of Chlorella vulgaris | [2,29,103] |
Tamarindus indica seed gums | No fissures, cracks or interruptions | -N/A- | 700–880 kDa | -N/A- | -N/A- | 97.67 °C | 128.40 J/g | 15 ppm dosage, 94% removal of turbidity from river water | [29,104,105] |
Telfairia occidentalis seed | Coarse fibrous substance largely composed of cellulose and lignin, presence of pores (micro-, macro- and mesopores, compact net structure | -N/A- | -N/A- | O-H, N-H, C=H | -N/A- | -N/A- | -N/A- | 247.40 mg·L−1 dosage, pH 2, 99% removal of dye in 34.32 mg·L−1 concentration with 540 settling time | [106,107] |
T. foenum graecum seed gums | -N/A- | -N/A- | 32.3 kDa | O-H, C-H, C=O, N-H, C-OH, C-O-C | C,O | 295 °C to 430 °C | -N/A- | -N/A- | [29,108] |
Vegetable tannin | -N/A- | -N/A- | -N/A- | -N/A- | -N/A- | 430 °C | -N/A- | pH 7, removal of color and turbidity from dairy wastewater | [109] |
Vigna unguiculata seed proteins | Fairly uniform, hexagonal structure, spiked or rugged surface, rough surface, coarse fibrous | -N/A- | 6 kDa | O-H, N-H, C=O, C=C-H, C=CH, C-H | -N/A- | -N/A- | -N/A- | 256.09 mg·L−1 dosage, pH 2, 99% removal of dye of 16.7 mg·L−1 with 540 min settling time | [29,106,107,110] |
Coagulant | Energy Consumption (Mega Joule per Metric Tons, MJ/MT of Microalgae) | Greenhouse Gas (GHG) Emission (kg CO2 eqv/MT of Microalgae) | Cost Analysis ($/MT) |
---|---|---|---|
Chitosan | 300 | 70 | 9.02 |
Alum | 200 | 50 | 0.28 |
Plant-based coagulant | 175 | 40 | 0.037 |
Possible Natural Coagulant | Scientific Name | Reference |
---|---|---|
Cowpea | Vigna unguiculata | [138] |
Chia seeds | Salvia hispanica L. | [139] |
Rockcress | Arabidopsis thaliana | [140] |
Quince seed | Cydonia oblonga | [141] |
Jujube | Ziziphus mauritiana Lam | [142] |
Seashore mallow | Kosteletzkya virginica | [143] |
Watershield | Brasenia schreberi | [144] |
Beet root | Alyssum homolocarpum | [145] |
Levant wormseed | Artemisia sphaerocephala | [146] |
Fenugreek seed | Trigonella foenum-graecum L. | [147] |
Cress seed | Lepidium sativum | [148] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ang, T.-H.; Kiatkittipong, K.; Kiatkittipong, W.; Chua, S.-C.; Lim, J.W.; Show, P.-L.; Bashir, M.J.K.; Ho, Y.-C. Insight on Extraction and Characterisation of Biopolymers as the Green Coagulants for Microalgae Harvesting. Water 2020, 12, 1388. https://doi.org/10.3390/w12051388
Ang T-H, Kiatkittipong K, Kiatkittipong W, Chua S-C, Lim JW, Show P-L, Bashir MJK, Ho Y-C. Insight on Extraction and Characterisation of Biopolymers as the Green Coagulants for Microalgae Harvesting. Water. 2020; 12(5):1388. https://doi.org/10.3390/w12051388
Chicago/Turabian StyleAng, Teik-Hun, Kunlanan Kiatkittipong, Worapon Kiatkittipong, Siong-Chin Chua, Jun Wei Lim, Pau-Loke Show, Mohammed J. K. Bashir, and Yeek-Chia Ho. 2020. "Insight on Extraction and Characterisation of Biopolymers as the Green Coagulants for Microalgae Harvesting" Water 12, no. 5: 1388. https://doi.org/10.3390/w12051388