Sentinel-2 Application to the Surface Characterization of Small Water Bodies in Wetlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Image Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, Q.; Bai, J.; Huang, L.; Gu, B.; Lu, Q.; Gao, Z. A review of methodologies and success indicators for coastal wetland restoration. Ecol. Indic. 2016, 60, 442–452. [Google Scholar] [CrossRef]
- Zhang, L.; Thomas, S.; Mitsch, W.J. Design of real-time and long-term hydrologic and water quality wetland monitoring stations in South Florida, USA. Ecol. Eng. 2017, 108, 446–455. [Google Scholar] [CrossRef]
- Jin, H.; Huang, C.; Lang, M.W.; Yeo, I.Y.; Stehman, S.V. Monitoring of wetland inundation dynamics in the Delmarva Peninsula using Landsat time-series imagery from 1985 to 2011. Remote Sens. Environ. 2017, 190, 26–41. [Google Scholar] [CrossRef] [Green Version]
- Leibowitz, S.G. Isolated wetlands and their functions: An ecological perspective. Wetlands 2003, 23, 517–531. [Google Scholar] [CrossRef]
- Rebelo, L.-M.; Finlayson, C.M.; Strauch, A.; Rosenqvist, A.; Perennou, C.; Tøttrup, C.; Hilarides, L.; Paganini, M.; Wielaard, N.; Siegert, F.; et al. The Use of Earth Observation for Wetland Inventory, Assessment and Monitoring: An Information Source for the Ramsar Convention on Wetlands; Ramsar Technical Report, 10; Ramsar Convention Secretaria: Gland, Switzerland, 2018. [Google Scholar]
- Li, L.; Vrieling, A.; Skidmore, A.; Wang, T.; Muñoz, A.R.; Turak, E. Evaluation of MODIS Spectral Indices for Monitoring Hydrological Dynamics of a Small, Seasonally-Flooded Wetland in Southern Spain. Wetlands 2015, 35, 851. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Peng, Y.; Lang, M.; Yeo, I.-Y.; McCarty, G. Wetland inundation mapping and change monitoring using Landsat and airborne LiDAR data. Remote Sens. Environ. 2014, 141, 231–242. [Google Scholar] [CrossRef]
- Glasgow, H.B.; Burkholder, J.M.; Reed, R.E.; Lewitus, A.J.; Kleinman, J.E. Real-time remote monitoring of water quality: A review of current applications, and advancements in sensor, telemetry, and computing technologies. J. Exp. Mar. Biol. Ecol. 2004, 300, 409–448. [Google Scholar] [CrossRef]
- Guo, M.; Li, J.; Sheng, C.; Xu, J.; Wu, L. A Review of Wetland Remote Sensing. Sensors 2017, 17, 777. [Google Scholar] [CrossRef] [Green Version]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, J.; Xiao, X.; Xiao, T.; Yang, Z.; Zhao, G.; Zou, Z.; Qin, Y. Open Surface Water Mapping Algorithms: A Comparison of Water-Related Spectral Indices and Sensors. Water 2017, 9, 256. [Google Scholar] [CrossRef]
- Tian, S.; Zhang, X.; Tian, J.; Sun, Q. Random Forest Classification of Wetland Landcovers from Multi-Sensor Data in the Arid Region of Xinjiang, China. Remote Sens. 2016, 8, 954. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Abd-Elrahman, A.; Morton, J.; Wilhelm, V.L. Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system. GIsci. Remote Sens. 2018, 55, 243–264. [Google Scholar] [CrossRef]
- Rezaee, M.; Mahdianpari, M.; Zhang, Y.; Salehi, B. Deep Convolutional Neural Network for Complex Wetland Classification Using Optical Remote Sensing Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3030–3039. [Google Scholar] [CrossRef]
- Xia, H.; Zhao, W.; Li, A.; Bian, J.; Zhang, Z. Subpixel Inundation Mapping Using Landsat-8 OLI and UAV Data for a Wetland Region on the Zoige Plateau, China. Remote Sens. 2017, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Delgado, R.; Cazacu, C.; Adamescu, M. Rapid Assessment of Ecological Integrity for LTER Wetland Sites by Using UAV Multispectral Mapping. Drones 2019, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S. Automated Water Extraction Index: A New Technique for Surface Water Mapping Using Landsat Imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Tiner, R.W. Remotely-sensed indicators for monitoring the general condition of “natural habitat” in watersheds: An application for Delaware’s Nanticoke River watershed. Ecol. Indic. 2004, 4, 227–243. [Google Scholar] [CrossRef]
- Cools, J.; Johnston, R.; Hattermann, F.F.; Douven, W.; Zsuffa, I. Tools for wetland management: Lessons learnt from a comparative assessment. Environ. Sci. Policy 2013, 34, 138–145. [Google Scholar] [CrossRef]
- Sebastiá-Frasquet, M.-T.; Altur, V.; Sanchis, J.-A. Wetland Planning: Current Problems and Environmental Management Proposals at Supra-Municipal Scale (Spanish Mediterranean Coast). Water 2014, 6, 620–641. [Google Scholar] [CrossRef] [Green Version]
- Mediterranean Wetlands Observatory (MWO). Mediterranean Wetlands Outlook 2012; Technical report; Mediterranean Wetlands Observatory c/o Tour du Valat: Arles, France, 2012. [Google Scholar]
- Mediterranean Wetlands Observatory (MWO). Mediterranean Wetlands Outlook 2018; Technical report; Mediterranean Wetlands Observatory c/o Tour du Valat: Arles, France, 2018. [Google Scholar]
- Sanjaume, E.; Pardo-Pascual, J.E.; Segura-Beltran, F. Mediterranean Coastal Lagoons. In The Spanish Coastal Systems; Morales, J., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Sebastiá, M.T.; Rodilla, M.; Sanchis Blay, J.A.; Altur Grau, V.J.; Gadea Perez, M.I.; Falco Giaccaglia, S.L. Influence of nutrient inputs from a wetland dominated by agriculture on the phytoplankton community in a shallow harbour at the Spanish Mediterranean coast. Agric. Ecosyst. Environ. 2012, 152, 10–20. [Google Scholar] [CrossRef]
- Pena-Regueiro, J.; Sebastiá-Frasquet, M.-T.; Estornell Cremades, J. Analysis of highly variable water surfaces in humid areas using Remote Sensing. In Proceedings of the XVIII Congreso de la Asociación Española de Teledetección (AET 2019), Hacia una visión global del cambio climático, Valladolid, Spain, 24–27 September 2019. (In Spanish). [Google Scholar]
- Ramsar Sites Information Service. Available online: https://rsis.ramsar.org/ (accessed on 16 April 2020).
- IVIA. Available online: http://riegos.ivia.es/datos-meteorologicos (accessed on 16 April 2020).
- Soria García, J.M.; Romo, S.; Pastor Palacios, A.; García Picazo, A.; Aledón Catalá, T.; Calvo García, S.; Flor Izquierdo, J.; Arribas Fernández, I. Evaluación de la conservación de los humedales costeros de la Comunidad Valenciana mediante imágenes de Landsat. In Proceedings of the XVI Congreso de la Asociación Española de Teledetección. Teledetección: Humedales y Espacios Protegidos, Sevilla, Spain, 21–23 October 2015. [Google Scholar]
- EUNIS. Available online: https://eunis.eea.europa.eu/index.jsp (accessed on 16 April 2020).
- Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of Water Indices for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors 2018, 18, 2580. [Google Scholar] [CrossRef] [Green Version]
- Mcfeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery, Int. J. Remote Sens. 2006, 27, 3025–3033.
- Ángel-Martínez, M.C. Aplicación de la Teledetección en la Localización de Superficies de Agua; CEDEX: Madrid, Spain, 1994. [Google Scholar]
- Klemenjak, S.; Waske, B.; Valero, S.; Chanussot, J. Unsupervised river detection in RapidEye data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 6860–6863. [Google Scholar]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; Lewis Publisher: Boca Raton, FL, USA, 1999. [Google Scholar]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Gallant, A. The challenges of remote monitoring of wetlands. Remote Sens. 2015, 7, 10938–10950. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, G.; Avdan, U. Mapping and Monitoring Wetlands Using SENTINEL 2 Satellite Imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Soria-García, J.M.; Romo, S.; Aledón-Catalá, T.; Flor-Izquierdo, J.; Calvo-García, S.; Pastor-Palacios, A.; García-Picazo, A.; Arribas-Fernández, I. Monitoring autumnal flooding in the Albufera Natural Park (Valencia, Spain) by Lansat imagery. In Proceedings of the XVI Congreso de la Asociación Española de Teledetección, Teledetección: Humedales y Espacios Protegidos, Sevilla, Spain, 21–23 October 2015. [Google Scholar]
- Wilson, N.R.; Norman, L.M.; Villarreal, M.; Gass, L.; Tiller, R.; Salywon, A. Comparison of remote sensing indices for monitoring of desert cienegas. Arid Land Res. Manag. 2016, 30, 460–478. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of Dynamic Thresholds for the Normalized Difference Water Index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Verpoorter, C.; Kutser, T.; Tranvik, L. Automated mapping of water bodies using Landsat multispectral data. Limnol. Oceanogr.-Meth. 2012, 10, 1037–1050. [Google Scholar] [CrossRef]
- Ramsey, E.W.; Laine, S.C. Comparison of Landsat Thematic Mapper and High Resolution Photography to Identify Change in Complex Coastal Wetlands. J. Coast. Res. 1997, 13, 281–292. [Google Scholar]
- Zomer, R.J.; Trabucco, A.; Ustin, S.L. Building spectral libraries for wetlands land cover classification and hyperspectral remote Sensing. J. Environ. Manag. 2009, 90, 2170–2177. [Google Scholar] [CrossRef]
- Sun, F.; Sun, W.; Chen, J.; Gong, P. Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. Int. J. Remote Sens. 2012, 33, 6854–6875. [Google Scholar] [CrossRef]
- Jara, C.; Delegido, J.; Ayala, J.; Lozano, P.; Armas, A.; Flores, V. Study of wetlands in the Ecuadorian Andes through the comparison of Landsat-8 and Sentinel-2 images. Rev. Teledetección 2019, 53, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Fickas, K.C.; Cohen, W.B.; Yang, Z. Landsat-based monitoring of annual wetland change in the Willamette Valley of Oregon, USA from 1972 to 2012. Wetl. Ecol. Manag. 2016, 24, 73. [Google Scholar] [CrossRef]
Year | Coordinates | ||||
---|---|---|---|---|---|
Wetland | 2016 | 2017 | 2018 | UTM X | UTM Y |
Prat Cabanes | 231.09 | 414.74 | 200.54 | 768076.000 | 4447370.000 |
Sagunto | 226.60 | 662.61 | 234.38 | 732200.000 | 4392210.000 |
Safor | 285.29 | 791.36 | 405.74 | 738207.000 | 4316410.000 |
Pego-Oliva | 380.57 | 924.31 | 360.97 | 767731.000 | 4298290.000 |
Code | Annex I Habitat Types | Prat Cabanes | Sagunto | Safor | Pego-Oliva |
---|---|---|---|---|---|
Cover (ha) | |||||
1150 | Coastal lagoons | 19.40 | 79.74 | 12.55 | |
1410 | Mediterranean salt meadows (Juncetalia maritimi) | 97.00 | 46.49 | 150.60 | |
1420 | Mediterranean and thermo-Atlantic halophilous scrubs (Sarcocornetea fruticosi) | 19.40 | 27.25 | ||
1510 | Mediterranean salt steppes (Limonietalia) | 4.82 | |||
3150 | Natural eutrophic lakes with Magnopotamion or Hydrocharition-type vegetation | 248.97 | 25.10 | ||
3160 | Natural dystrophic lakes and ponds | 186.73 | 12.55 | ||
3170 | Mediterranean temporary ponds | 19.40 | |||
3280 | Constantly flowing Mediterranean rivers with Paspalo-Agrostidion species and hanging curtains of Salix and Populus alba | 62.24 | 25.10 | ||
5330 | Thermo-Mediterranean and pre-desert scrub | 0.35 | 125.5 0 | ||
6110 | Rupicolous calcareous or basophilic grasslands of the Alysso-Sedion albi | 25.10 | |||
6220 | Pseudo-steppe with grasses and annuals of the Thero-Brachypodietea | 62.75 | |||
6420 | Mediterranean tall humid grasslands of the Molinio-Holoschoenion | 194.00 | 0.37 | 62.24 | 150.60 |
6430 | Hydrophilous tall herb fringe communities of plains and of the montane to alpine levels | 62.24 | 12.55 | ||
7210 | Calcareous fens with Cladium mariscus and species of the Caricion davallianae | 388.00 | 133.60 | 622.43 |
Wetland | Orthophoto | Sentinel-2A/B | |
---|---|---|---|
Data | Spatial Resolution | Data | |
Prat Cabanes-Torreblanca | 28 July 2018 | 0.25 m | 30 July 2018 |
5 July 2017 | 0.25 m | 5 July 2017 | |
Sagunto | 8 July 2018 | 0.25 m | 5 July 2018 |
18 June 2017 | 0.25 m | 15 June 2017 | |
17 November 2016 | n. i. * | 17 November 2016 | |
Safor | 13 June 2018 | 0.25 m | 20 June 2018 |
18 August 2017 | 0.25 m | 4 August 2017 | |
11 November 2016 | n. i. * | 7 November 2016 | |
Pego-Oliva | 13 June 2018 | 0.25 m | 20 June 2018 |
11 November 2016 | n. i. * | 7 November 2016 |
INDEX | EQUATION | SOURCE | SENTINEL-2 BANDS |
---|---|---|---|
NDWI | [(GREEN − NIR)/(GREEN + NIR)] | [31] | [(B03 − B08)/(B03 + B08)] |
MNDWI | [(GREEN – SWIR)/(GREEN + SWIR)] | [32] | [(B03 − B11)/(B03 + B11)] |
CEDEX | (NIR/RED) − (NIR/SWIR) | [33] | (B05/B04) − (B05/B11) |
RE-NDWI | [(GREEN − NIR)/(GREEN + NIR)] | [34] | [(B03 − B05)/(B03 + B05)] |
AWEI(SH) | BLUE + 2.5× GREEN − 1.5 × (NIR + SWIR) − 0.25 − SWIR | [17] | [B02 + 2.5 × B03 − 1.5 × (B08 + B011) − 0.25 × B12] |
AWEI (NSH) | 4 × (GREEN−MIR) − (0.25 × NIR + 2.75 × SWIR) | [17] | [4 × (B03 − B11) − (0.25 × B08 + 2.75 × B12)] |
B_BLUE | (BLUE − NIR)/(BLUE + NIR) | This study | (B02 − B08)/(B02 + B08) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pena-Regueiro, J.; Sebastiá-Frasquet, M.-T.; Estornell, J.; Aguilar-Maldonado, J.A. Sentinel-2 Application to the Surface Characterization of Small Water Bodies in Wetlands. Water 2020, 12, 1487. https://doi.org/10.3390/w12051487
Pena-Regueiro J, Sebastiá-Frasquet M-T, Estornell J, Aguilar-Maldonado JA. Sentinel-2 Application to the Surface Characterization of Small Water Bodies in Wetlands. Water. 2020; 12(5):1487. https://doi.org/10.3390/w12051487
Chicago/Turabian StylePena-Regueiro, Jesús, Maria-Teresa Sebastiá-Frasquet, Javier Estornell, and Jesús Antonio Aguilar-Maldonado. 2020. "Sentinel-2 Application to the Surface Characterization of Small Water Bodies in Wetlands" Water 12, no. 5: 1487. https://doi.org/10.3390/w12051487
APA StylePena-Regueiro, J., Sebastiá-Frasquet, M.-T., Estornell, J., & Aguilar-Maldonado, J. A. (2020). Sentinel-2 Application to the Surface Characterization of Small Water Bodies in Wetlands. Water, 12(5), 1487. https://doi.org/10.3390/w12051487