Hydroclimatic Variability at Local, Regional and Global Scales
Abstract
:1. Introduction
2. Contributed Papers
3. Conclusions
Funding
Conflicts of Interest
References
- Curtis, S. Hydroclimatology. Int. J. Climatol. 2010, 30, 2129. [Google Scholar] [CrossRef]
- McGregor, G.R. Hydroclimatology, modes of climatic variability and stream flow, lake and groundwater level variability: A progress report. Prog. Phys. Geog. 2017, 41, 496–512. [Google Scholar] [CrossRef] [Green Version]
- McGregor, G.R. Climate and rivers. River Res. Appl. 2019, 35, 1119–1140. [Google Scholar] [CrossRef]
- Ju, J.; Slingo, J. The Asian summer monsoon and ENSO. Quart. J. R. Meteorol. Soc. 1995, 121, 1133–1168. [Google Scholar] [CrossRef]
- Tamaddun, K.A.; Kalra, A.; Bernardez, M.; Ahmad, S. Effects of ENSO on temperature, precipitation, and potential evapotranspiration of North India’s monsoon: An analysis of trend and entropy. Water 2019, 11, 189. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, K.; Shahid, S.; Wang, X.; Nawaz, N.; Khan, N. Evaluation of gridded precipitation datasets over arid regions of Pakistan. Water 2019, 11, 210. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, K.; Shahid, S.; Nawaz, N. Impacts of climate variability and change on seasonal drought characteristics of Pakistan. Atmos. Res. 2018, 214, 364–374. [Google Scholar] [CrossRef]
- Wang, Y.; He, B.; Takase, K. Effects of temporal resolution on hydrological model parameters and its impact on prediction of river discharge. Hydrol. Sci. J. 2009, 54, 886–898. [Google Scholar] [CrossRef] [Green Version]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Ziese, M.; Rudolf, B. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 2014, 115, 15–40. [Google Scholar] [CrossRef] [Green Version]
- Jaweso, D.; Abate, B.; Bauwe, A.; Lennartz, B. Hydro-meteorological trends in the upper Omo-Ghibe river basin, Ethiopia. Water 2019, 11, 1951. [Google Scholar] [CrossRef] [Green Version]
- Ricard, S.; Sylvain, J.-D.; Anctil, F. Exploring an alternative configuration of the hydroclimatic modeling chain, based on the notion of asynchronous objective functions. Water 2019, 11, 2012. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Xu, Z.; Zuo, D.; Ban, C. Hydro-meteorological trends in the Yarlung Zangbo river basin and possible associations with large-scale circulation. Water 2020, 12, 144. [Google Scholar] [CrossRef] [Green Version]
- Citrini, A.; Camera, C.; Beretta, G.P. Nossana spring (northern Italy) under climate change: Projections of future discharge rates and water availability. Water 2020, 12, 387. [Google Scholar] [CrossRef] [Green Version]
- Gattinoni, P.; Francani, V. Depletion risk assessment of the Nossana Spring (Bergamo, Italy) based on the stochastic modeling of recharge. Hydrogeol. J. 2010, 18, 325–337. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curtis, S. Hydroclimatic Variability at Local, Regional and Global Scales. Water 2020, 12, 1490. https://doi.org/10.3390/w12051490
Curtis S. Hydroclimatic Variability at Local, Regional and Global Scales. Water. 2020; 12(5):1490. https://doi.org/10.3390/w12051490
Chicago/Turabian StyleCurtis, Scott. 2020. "Hydroclimatic Variability at Local, Regional and Global Scales" Water 12, no. 5: 1490. https://doi.org/10.3390/w12051490
APA StyleCurtis, S. (2020). Hydroclimatic Variability at Local, Regional and Global Scales. Water, 12(5), 1490. https://doi.org/10.3390/w12051490