Changes in Extreme Precipitation across 30 Global River Basins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sourced Data and Global Basins
2.2. Extreme Precipitation Indices
2.3. Linear Trend Analysis
3. Results
3.1. Trend
3.2. Frequency Distribution Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bouwer, M.L. Have disaster losses increased due to anthropogenic climate change? Bull. Am. Meteorol. Soc. 2011, 92, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Gentine, P.; Zhou, S.; Sullivan, S.C.; Wang, R.; Zhang, Y.; Guo, S. Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Guo, S.; He, S.; Guo, J.; Hong, X.; Liu, Z. A copula-based analysis of projected climate changes to bivariate flood quantiles. J. Hydrol. 2018, 566, 23–42. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Z.; Guo, S.; Liao, W.; Zeng, Z.; Chen, X. Scenario-based projections of future urban inundation within a coupled hydrodynamic model framework: A case study in Dongguan City, China. J. Hydrol. 2017, 547, 428–442. [Google Scholar] [CrossRef]
- Salesa, D.; Amodio, A.M.; Rosskopf, C.M.; Garfì, V.; Cerdà, A. Three topographical approaches to survey soil erosion on a mountain trail affected by a forest fire. Barranc de la Manesa, Llutxent, Eastern Iberian Peninsula. J. Environ. Manag. 2020, 264, 110491. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, M.Y.; Zhang, J.Q. Spatial distribution pattern of soil-wind erosion on slope farmlands in the wind-water erosion crisscross region of the Loess Plateau, China. Chin. Sci. Bull. 2016, 61, 511. [Google Scholar] [CrossRef] [Green Version]
- Benaud, P.; Anderson, K.; Evans, M.; Farrow, L.; Brazier, R.E. National-scale geodata describe widespread accelerated soil erosion. Geoderma 2020, 371, 114378. [Google Scholar] [CrossRef]
- Singh, V.; Goyal, M.K. Spatio-temporal heterogeneity and changes in extreme precipitation over eastern Himalayan catchments India. Stoch. Environ. Res. Risk Assess. 2017, 31, 2527–2546. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, Z.; Lai, C.; Lin, W.; Wu, X.; Chen, X. A regional frequency analysis of precipitation extremes in Mainland China with fuzzy c-means and L-moments approaches. Int. J. Climatol. 2017, 37, 429–444. [Google Scholar] [CrossRef]
- Wang, Z.; Lai, C.; Chen, X.; Yang, B.; Zhao, S.; Bai, X. Flood hazard risk assessment model based on random forest. J. Hydrol. 2015, 527, 1130–1141. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111, D5. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Singh, V.P. Changes in extreme precipitation in Texas. J. Geophys. Res. 2010, 115, D14106. [Google Scholar] [CrossRef]
- Wu, X.; Guo, S.; Yin, J.; Yang, G.; Zhong, Y.; Liu, D. On the event-based extreme precipitation across China: Time distribution patterns, trends, and return levels. J. Hydrol. 2018, 562, 305–317. [Google Scholar] [CrossRef]
- Asadieh, B.; Krakauer, N.Y. Global trends in extreme precipitation: Climate models versus observations. Hydrol. Earth Syst. Sci. 2014, 11, 11369–11393. [Google Scholar] [CrossRef] [Green Version]
- Kitoh, A.; Endo, H. Changes in precipitation extremes projected by a 20-km mesh global atmospheric model. Weather Clim. Extremes 2015, 321, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Durran, D. Sensitivities of Extreme Precipitation to Global Warming Are Lower over Mountains than over Oceans and Plains. J. Clim. 2016, 29, 4779–4791. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, T. Significant increases in extreme precipitation and the associations with global warming over the global land monsoon regions. J. Clim. 2019, 32, 8465–8488. [Google Scholar] [CrossRef]
- Barlow, M. Influence of hurricane-related activity on North American extreme precipitation. Geophys. Res. Lett. 2010, 38, 155–170. [Google Scholar] [CrossRef]
- Costa, A.C.; Soares, A. Space-Time Interpolation and Uncertainty Assessment of an Extreme Precipitation Index Using Geostatistical Cosimulation. In Proceedings of the Workshops IEEE International Conference on Data Mining, Omaha, NE, USA, 28–31 October 2007; pp. 589–594. [Google Scholar]
- Vyshkvarkova, E.V.; Voskresenskaya, E.N. Changes of extreme precipitation in Southern Russia. In IOP Conference Series Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 107. [Google Scholar]
- Shang, H.; Yan, J.; Gebremichael, M.; Ayalew, S.M. Trend analysis of extreme precipitation in the Northwestern Highlands of Ethiopia with a case study of Debre Markos. Hydrol. Earth Syst. Sci. 2011, 15, 1937–1944. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.; Cha, D.-H.; Park, C.; Lee, G.; Jin, C.-S.; Lee, D.-K.; Suh, M.-S.; Ahn, J.-B.; Min, S.-K.; Hong, S.-Y.; et al. Future changes in extreme precipitation indices over Korea. Int. J. Climatol. 2018, 38, 862–874. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Z.; Zhou, X.; Lai, C.; Lin, W.; Chen, X. Observed changes in precipitation extremes across 11 basins in China during 1961–2013. Int. J. Climatol. 2016, 36, 2866–2885. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, F.; Ding, Y. Spatial coherence of variations in seasonal extreme precipitation events over Northwest Arid Region, China. Int. J. Climatol. 2015, 35, 4642–4654. [Google Scholar] [CrossRef]
- Gupta, V.; Jain, M.K. Impact of enso, global warming, and land surface elevation on extreme precipitation in India. J. Hydrol. Eng. 2020, 25, 1. [Google Scholar] [CrossRef]
- Wang, A.K.; Dominguez, F.; Schmidt, A.R. Extreme precipitation spatial analog: In search of an alternative approach for future extreme precipitation in urban hydrological studies. Water 2019, 11, 1032. [Google Scholar] [CrossRef] [Green Version]
- Frich, P.; Alexander, L.V.; Della-Marta, P.; Gleason, B.; Haylock, M.; Tank, A.M.G.K.; Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Seekao, C.; Pharino, C. Assessment of the flood vulnerability of shrimp farms using a multicriteria evaluation and GIS: A case study in the Bangpakong Sub-Basin, Thailand. Environ. Earth Sci. 2016, 75, 1–13. [Google Scholar] [CrossRef]
- Min, S.K.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human contribution to more-intense precipitation extremes. Nature 2011, 470, 378–381. [Google Scholar] [CrossRef]
- Sarr, M.A.; Branger, F.; Zorome, M.; Kermadi, S.; Seidou, O. Recent trends in selected extreme precipitation indices in Senegal-A changepoint approach. J. Hydrol. Amsterdam. 2013, 505, 326–334. [Google Scholar] [CrossRef]
- Wu, X.; Guo, S.; Liu, D.; Hong, X.; Liu, Z.; Liu, P.; Chen, H. Characterization of rainstorm modes along the upper mainstream of Yangtze River during 2003-2016. Int. J. Climatol. 2018, 38, 1976–1988. [Google Scholar] [CrossRef]
- Caroletti, G.N.; Barstad, I. An assessment of future extreme precipitation in western Norway using a linear model. Hydrol. Earth Syst. Sci. 2010, 14, 2329–2341. [Google Scholar] [CrossRef] [Green Version]
- Soulis, E.D.; Sarhadi, A.; Tinel, M.; Suthar, M. Extreme precipitation time trends in Ontario, 1960-2010. Hydrol. Process. 2016, 30, 4090–4100. [Google Scholar] [CrossRef]
- López-Rodríguez, F.; García-Sanz-Calcedo, J.; Moral-García, F.J.; García-Conde, A.J. Statistical study of rainfall control: The Dagum distribution and applicability to the Southwest of Spain. Water 2019, 11, 453. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.-L.; Xia, Z.-Q.; Li, J.-K.; Cai, T. Climate change characteristics of Amur River. Water Sci. Eng. 2012, 6, 131–144. [Google Scholar]
- Mandal, S.; Srivastav, R.K.; Simonovic, S.P. Use of Beta Regression for Statistical Downscaling of Precipitation in the Campbell River Basin, British Columbia, Canada. J. Hydrol. 2016, 538, 49–62. [Google Scholar] [CrossRef]
- Sun, S.; Huang, G.; Fan, Y. Multi-indicator evaluation for extreme precipitation events in the past 60 years over the Loess Plateau. Water 2020, 12, 193. [Google Scholar] [CrossRef] [Green Version]
- Bartholy, J.; Pongrácz, R. Analysis of precipitation conditions for the Carpathian Basin based on extreme indices in the 20th century and climate simulations for 2050 and 2100. Phys. Chem. Earth 2010, 35, 43–51. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 171. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Guo, S.; Gu, L.; He, S.; Ba, H.; Tian, J.; Li, Q.; Chen, J. Projected changes of bivariate flood quantiles and estimation uncertainty based on multi-model ensembles over China. J. Hydrol. 2020, 585, 124760. [Google Scholar] [CrossRef]
- Zeng, Z.; Lai, C.; Wang, Z.; Chen, X.; Zhang, Z.; Cheng, X. Intensity and spatial heterogeneity of design rainstorm under nonstationarity and stationarity hypothesis across mainland China. Theor. Appl. Climatol. 2019, 138, 1795–1808. [Google Scholar] [CrossRef]
- Trenberth, K.E. Atmospheric Moisture Residence Times and Cycling: Implications for Rainfall Rates and Climate Change. Clim. Chang. 1998, 39, 667–694. [Google Scholar] [CrossRef]
- Bothe, O.; Fraedrich, K.; Zhu, X. Precipitation climate of Central Asia and the large-scale atmospheric circulation. Theor. Appl. Climatol. 2012, 108, 345–354. [Google Scholar] [CrossRef]
- Loubere, P.; Creamer, W.; Haas, J. Evolution of the El Nino-Southern Oscillation in the late Holocene and insolation driven change in the tropical annual SST cycle. Global Planet. Chang. 2013, 100, 129–144. [Google Scholar] [CrossRef]
- Kiktev, D.; Sexton, D.M.H.; Alexander, L.; Folland, C.K. Comparison of Modeled and Observed Trends in Indices of Daily Climate Extremes. J. Clim. 2003, 16, 3560–3571. [Google Scholar] [CrossRef]
- Knippertz, P.; Martin, J.E. Tropical plumes and extreme precipitation in subtropical and tropical West Africa. Q. J. R. Meteorol. Soc. 2005, 131, 2337–2365. [Google Scholar] [CrossRef] [Green Version]
- Pielke, R.A. Reanalysis of US National Weather Service flood loss database. Nat. Hazards Rev. 2005, 6, 13–22. [Google Scholar]
- Hallegatte, S.; Green, C.; Nicholls, R.J.; Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Chang. 2013, 3, 802–806. [Google Scholar] [CrossRef]
- Taye, M.T.; Willems, P. Temporal variability of hydro-climatic extremes in the Blue Nile basin. Water Res. 2012, 48, 3513. [Google Scholar]
- Evangelista, D.S.P.; Moisés, S.E.S.C.; Constantino, S.M.H.; de Melo Barbosa, A.L. Precipitation and air temperature extremes in the Amazon and northeast Brazil. Int. J. Climatol. 2018, 39, 579–595. [Google Scholar]
ID | Name | Continent | Area (106 km2) | Climate |
---|---|---|---|---|
1 | Kolyma | Asia | 0.66 | Semi-humid |
2 | Yukon | North America | 0.83 | Semi-humid |
3 | Lena | Asia | 2.46 | Semi-humid |
4 | Mackenzie | North America | 1.67 | Semi-humid |
5 | Dnieper | Europe | 0.5 | Humid |
6 | Volga | Europe | 1.37 | Humid |
7 | Yenisei | Asia | 2.82 | Humid |
8 | Ob | Asia | 3.11 | Semi-humid |
9 | Saskatchewan River | North America | 0.38 | Semi-humid |
10 | Don | Asia | 0.45 | Semi-humid |
11 | Danube | Europe | 0.78 | Humid |
12 | Amur | Asia | 2.13 | Semi-humid |
13 | Columbia | North America | 0.71 | Semi-humid |
14 | Saint Lawrence River | North America | 0.3 | Semi-humid |
15 | Syr Darya River | Asia | 2.2 | Arid |
16 | Amu darya | Asia | 4.65 | Arid |
17 | Tarim River | Asia | 1.02 | Arid |
18 | Huanghe | Asia | 0.84 | Semi-arid |
19 | Colorado | North America | 0.81 | Arid |
20 | Mississippi | North America | 1.32 | Semi-humid |
21 | Yangtze | Asia | 1.84 | Humid |
22 | Grand River | North America | 0.57 | Semi-arid |
23 | Ganges | Asia | 1.54 | Humid |
24 | Nile | Africa | 3.8 | Semi-arid |
25 | Amazon | South America | 5.93 | Humid |
26 | Great Artesian Basin | Oceania | 1.75 | Arid |
27 | Orange River | Africa | 1.02 | Semi-arid |
28 | Murray | Oceania | 0.96 | Semi-arid |
29 | N.Dvina | Asia | 0.28 | Humid |
30 | Zhujiang | Asia | 0.45 | Humid |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Wang, Z.; Wu, X.; Yin, J.; Qian, S.; Zhan, J. Changes in Extreme Precipitation across 30 Global River Basins. Water 2020, 12, 1527. https://doi.org/10.3390/w12061527
Feng X, Wang Z, Wu X, Yin J, Qian S, Zhan J. Changes in Extreme Precipitation across 30 Global River Basins. Water. 2020; 12(6):1527. https://doi.org/10.3390/w12061527
Chicago/Turabian StyleFeng, Xin, Zhaoli Wang, Xushu Wu, Jiabo Yin, Shuni Qian, and Jie Zhan. 2020. "Changes in Extreme Precipitation across 30 Global River Basins" Water 12, no. 6: 1527. https://doi.org/10.3390/w12061527
APA StyleFeng, X., Wang, Z., Wu, X., Yin, J., Qian, S., & Zhan, J. (2020). Changes in Extreme Precipitation across 30 Global River Basins. Water, 12(6), 1527. https://doi.org/10.3390/w12061527