Chemically Modified Biosorbents and Their Role in the Removal of Emerging Pharmaceutical Waste in the Water System
Abstract
:1. Introduction
2. Biosorption as a Process for Removing PACs in Water
2.1. Biosorbents
2.2. Plant and Animal Solid Waste Biosorbent
2.3. Microorganisms as Biosorbents
2.3.1. Bacterial
2.3.2. Fungi
2.3.3. Microalgae
2.4. Biocomposite
2.5. Desorption and Regeneration
3. Cost Evaluation
Future Perspectives for Biosorption
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Tran, N.H.; Gin, K.Y.H. Occurrence and removal of pharmaceuticals, hormones, personal care products, and endocrine disrupters in a full-scale water reclamation plant. Sci. Total Environ. 2017, 599–600, 1503–1516. [Google Scholar]
- Kostich, M.S.; Batt, A.L.; Lazorchak, J.M. Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation. Environ. Pollut. 2014, 184, 354–359. [Google Scholar] [PubMed]
- Lessa, E.F.; Nunes, M.L.; Fajardo, A.R. Chitosan/waste coffee-grounds composite: An efficient and eco-friendly adsorbent for removal of pharmaceutical contaminants from water. Carbohydr. Polym. 2018, 189, 257–266. [Google Scholar] [PubMed]
- Larsson, D.G.J. Pollution from drug manufacturing: Review and perspectives. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Z.; Lu, G.; Liu, J.; Jin, S. An integrated assessment of estrogenic contamination and feminization risk in fish in Taihu Lake, China. Ecotoxicol. Environ. Saf. 2012, 84, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Ikhwanuddin, M.; Bahar, H.; Ma, H.; Manan, H. Effect of estrogen hormone, 17β-estradiol on feminization of banana shrimp, Penaeus merguiensis (de Man, 1888) postlarvae and the identification of the age of external sex differentiation. Aquac. Rep. 2019, 13, 100177. [Google Scholar] [CrossRef]
- Porseryd, T.; Larsson, J.; Kellner, M.; Bollner, T.; Dinnetz, P.; Hallstrom, I.P. Altered non-reproductive behavior and feminization caused by developmental exposure to 17α-ethinylestradiol persist to adulthood in three-spined stickleback (Gasterosteus aculeatus). Aquatic Toxicol. 2019, 207, 142–152. [Google Scholar] [CrossRef]
- Quesada, H.B.; Baptista, A.T.A.; Cusioli, L.F.; Seibert, D.; Bezerra, C.O.; Bergamasco, R. Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review. Chemosphere 2019, 222, 766–780. [Google Scholar] [CrossRef]
- Hossain, A.; Nakamichi, S.; Habibullah-Al-Mamun, M.; Tani, K.; Masunaga, S.; Matsuda, H. Occurrence and ecological risk of pharmaceuticals in river surface water of Bangladesh. Environ. Res. 2018, 165, 258–266. [Google Scholar] [CrossRef]
- Asghar, M.A.; Zhu, Q.; Sun, S.; Peng, Y.; Shuai, Q. Suspect screening and target quantification of human pharmaceutical residues in the surface water of Wuhan, China, using UHPLC-Q-Orbitrap HRMS. Sci. Total Environ. 2018, 635, 828–837. [Google Scholar] [CrossRef]
- Bean, T.G.; Rattner, B.A.; Lazarus, R.S.; Day, D.D.; Burket, S.R.; Brooks, B.W.; Haddad, S.P.; Bowerman, W.W. Pharmaceuticals in water, fish and osprey nestlings in Delaware River and Bay. Environ. Pollut. 2018, 232, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Jaimes, J.A.; Postigo, C.; Melgoza-Aleman, R.M.; Acena, J.; Barcelo, D.; Lopez de Alda, M. Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: Occurrence and environmental risk assessment. Sci. Total Environ. 2018, 613–614, 1263–1274. [Google Scholar] [CrossRef] [PubMed]
- Fick, J.; Söderström, H.; Lindberg, R.H.; Phan, C.; Tysklind, M.; Larsson, D.G.J. Contamination of surface, ground, and drinking water from pharmaceutical production. Environ. Toxicol. Chem. 2009, 28, 2522–2527. [Google Scholar] [CrossRef] [PubMed]
- Azanu, D.; Styrishave, B.; Darko, G.; Weisser, J.J.; Abaidoo, R.C. Occurrence and risk assessment of antibiotics in water and lettuce in Ghana. Sci. Total Environ. 2018, 622–623, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Madikizela, L.M.; Tavengwa, N.T.; Chimuka, L. Status of pharmaceuticals in African water bodies: Occurrence, removal and analytical methods. J. Environ. Manag. 2017, 193, 211–220. [Google Scholar]
- Lindim, C.; van Gils, J.; Georgieva, D.; Mekenyan, O.; Cousins, I.T. Evaluation of human pharmaceutical emissions and concentrations in Swedish river basins. Sci. Total Environ. 2016, 572, 508–519. [Google Scholar]
- Carmona, E.; Andreu, V.; Pico, Y. Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: From waste to drinking water. Sci. Total Environ. 2014, 484, 53–63. [Google Scholar]
- Burns, E.E.; Carter, L.J.; Kolpin, D.W.; Thomas-Oates, J.; Boxall, A.B.A. Temporal and spatial variation in pharmaceutical concentrations in an urban river system. Water Res. 2018, 137, 72–85. [Google Scholar] [CrossRef]
- Praveena, S.M.; Shaifuddin, S.N.M.; Sukiman, S.; Nasir, F.A.M.; Hanafi, Z.; Kamarudin, N.; Ismail, T.H.T.; Aris, A.Z. Pharmaceuticals residues in selected tropical surface water bodies from Selangor (Malaysia): Occurrence and potential risk assessments. Sci. Total Environ. 2018, 642, 230–240. [Google Scholar]
- Matongo, S.; Birungi, G.; Moodley, B.; Ndungu, P. Pharmaceutical residues in water and sediment of msunduzi river, KwaZulu-Natal, South Africa. Chemosphere 2015, 134, 133–140. [Google Scholar] [CrossRef]
- Pereira, A.M.P.T.; Silva, L.J.G.; Laranjeiro, C.S.M.; Meisel, L.M.; Lino, C.M.; Pena, A. Human pharmaceuticals in Portuguese rivers: The impact of water scarcity in the environmental risk. Sci. Total Environ. 2017, 609, 1182–1191. [Google Scholar] [PubMed]
- Caban, M.; Lis, E.; Kumirska, J.; Stepnowski, P. Determination of pharmaceutical residues in drinking water in Poland using a new SPE-GC-MS(SIM) method based on Speedisk extraction disks and DIMETRIS derivatization. Sci. Total Environ. 2015, 538, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Mutiyar, P.K.; Gupta, S.K.; Mittal, A.K. Fate of pharmaceutical active compounds (PhACs) from River Yamuna, India: An ecotoxicological risk assessment approach. Ecotoxicol. Environ. Saf. 2018, 150, 297–304. [Google Scholar] [CrossRef]
- Silva, A.; Delerue-Matos, C.; Figueiredo, S.A.; Freitas, O.M. The use of algae and fungi for removal of pharmaceuticals by bioremediation and biosorption processes: A Review. Water 2019, 11, 1555. [Google Scholar]
- Bottoni, P.; Caroli, S.; Caracciolo, A.B. Pharmaceuticals as priority water contaminants. Toxicol. Environ. Chem. 2010, 92, 549–565. [Google Scholar] [CrossRef]
- Akhtar, J.; Amin, N.A.S.; Shahzad, K. A review on removal of pharmaceuticals from water by adsorption. Desalin. Water Treat. 2016, 57, 12842–12860. [Google Scholar] [CrossRef]
- Hokkanen, S.; Bhatnagar, A.; Sillanpää, M. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res. 2016, 91, 156–173. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, T.; Zhang, Y.; Ge, F.; Steel, R.M.; Sun, L. Advances in technologies for pharmaceuticals and personal care products removal. J. Mater. Chem. A 2017, 5, 12001–12014. [Google Scholar]
- Silva, C.P.; Jaria, G.; Otero, M.; Esteves, V.I.; Calisto, V. Waste-based alternative adsorbents for the remediation of pharmaceutical contaminated waters: Has a step forward already been taken? Bioresour. Technol. 2018, 250, 888–901. [Google Scholar]
- Adewuyi, A.; Oderinde, R.A. Chemically modified vermiculite clay: A means to removing emerging contaminant from polluted water system in developing nation. Polym. Bull. 2019, 76, 4967–4989. [Google Scholar]
- Lach, J. Adsorption of chloramphenicol on commercial and modified activated carbons. Water 2019, 11, 1141. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Pan, C.; Zheng, X.; Liu, S.; Hu, F.; Xu, L.; Xu, G.; Peng, X. Removal of ciprofloxacin with aluminum-pillared kaolin sodium alginate beads (CA-Al-KABs): Kinetics, isotherms, and BBD model. Water 2020, 12, 905. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, A.Z.; Wang, H.; Hu, L.; Zhang, Y.; Xu, P. Treatment of produced water in the permian basin for hydraulic fracturing: Comparison of different coagulation processes and innovative filter media. Water 2020, 12, 770. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Yang, Y.; Lu, Y.; Chen, Y.; Li, W.; Wang, S. Effect of heavy metal Ions on steroid estrogen removal and transport in SAT using DLLME as a detection method of steroid estrogen. Water 2020, 12, 589. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Yang, W.; Zhang, Z.; Yang, Z.; Wang, Y. Adsorption of three pharmaceuticals on two magnetic ion-exchange resins. J. Environ. Sci. 2015, 31, 226–234. [Google Scholar]
- Nghiem, L.D.; Schafer, A.I.; Elimelech, M. Removal of natural hormones by nanofiltration membranes: Measurement, modeling, and mechanisms. Environ. Sci. Technol. 2004, 15, 1888–1896. [Google Scholar] [CrossRef] [PubMed]
- Rana, D.; Scheier, B.; Narbaitz, R.M.; Matsuura, T.; Tabe, S.; Jasim, S.Y.; Khulbe, K.C. Comparison of cellulose acetate (CA) membrane and novel CA membranes containing surface modifying macromolecules to remove pharmaceutical and personal care product micropollutants from drinking water. J. Membr. Sci. 2012, 409, 346–354. [Google Scholar]
- Rajapaksha, A.U.; Premarathna, K.S.D.; Gunarathne, V.; Ahmed, A.; Vithanage, M. Sorptive removal of pharmaceutical and personal care products from water and wastewater. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology; Butterworth–Heinemann, Elsevier: Oxford, UK, 2019; pp. 213–238. [Google Scholar]
- Feng, Y.; Wang, C.; Liu, J.; Zhang, Z. Electrochemical degradation of 17-alphaethinylestradiol (EE2) and estrogenic activity changes. J. Environ. Monit. 2010, 12, 404–408. [Google Scholar] [CrossRef]
- Sires, I.; Brillas, E. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review. Environ. Int. 2012, 40, 212–229. [Google Scholar] [CrossRef]
- Méndez-Arriaga, F.; Torres-Palma, R.; Pétrier, C.; Esplugas, S.; Gimenez, J.; Pulgarin, C. Ultrasonic treatment of water contaminated with ibuprofen. Water Res. 2008, 42, 4243–4248. [Google Scholar] [CrossRef]
- Ciríaco, L.; Anjo, C.; Correia, J.; Pacheco, M.; Lopes, A. Electrochemical degradation of ibuprofen on Ti/Pt/PbO 2 and Si/BDD electrodes. Electrochim. Acta 2009, 54, 1464–1472. [Google Scholar] [CrossRef]
- Madhavan, J.; Grieser, F.; Ashokkumar, M. Combined advanced oxidation processes for the synergistic degradation of ibuprofen in aqueous environments. J. Hazard. Mater. 2010, 178, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Salaeh, S.; Perisic, D.J.; Biosic, M.; Kusic, H.; Babic, S.; Stangar, U.L.; Dionysiou, D.D.; Bozic, A.L. Diclofenac removal by simulated solar assisted photocatalysis using TiO2-based zeolite catalyst; mechanisms, pathways and environmental aspects. Chem. Eng. J. 2016, 304, 289–302. [Google Scholar] [CrossRef]
- Hasan, Z.; Jhung, S.H. Removal of hazardous organics from water using metalorganic frameworks (MOFs): Plausible mechanisms for selective adsorptions. J. Hazard. Mater. 2015, 283, 329–339. [Google Scholar] [CrossRef]
- Fomina, M.; Gadd, G.M. Biosorption: Current perspectives on concept, definition and application. Bioresour. Technol. 2014, 160, 3–14. [Google Scholar] [CrossRef]
- Worch, E. Adsorption Technology in Water Treatment; de Gruyter, W., Ed.; Deutscher Kunstverlag: Berlin, Germany, 2012; p. 332. [Google Scholar]
- Rostamian, R.; Behnejad, H. A comprehensive adsorption study and modeling of antibiotics as a pharmaceutical waste by graphene oxide nanosheets. Ecotoxicol. Environ. Saf. 2018, 147, 117–123. [Google Scholar] [CrossRef]
- Basu, S.; Balakrishnan, M. Polyamide thin film composite membranes containing ZIF-8 for the separation of pharmaceutical compounds from aqueous streams. Sep. Purif. Technol. 2017, 179, 118–125. [Google Scholar] [CrossRef]
- Qian, K.; Kumar, A.; Zhang, H.; Bellmer, D.; Huhnke, R. Recent advances in utilization of biochar. Renew. Sustain. Energy Rev. 2015, 42, 1055–1064. [Google Scholar] [CrossRef]
- Šolic, M.; Maletic, S.; Isakovski, M.K.; Nikic, J.; Watson, M.; Kónya, Z.; Trickovic, J. Comparing the adsorption performance of multiwalled carbon nanotubes oxidized by varying degrees for removal of low levels of copper, nickel and chromium (VI) from aqueous solutions. Water 2020, 12, 723. [Google Scholar] [CrossRef] [Green Version]
- Vijayaraghavan, K.; Yun, Y.S. Bacterial biosorbents and biosorption. Biotechnol. Adv. 2008, 26, 266–291. [Google Scholar] [CrossRef]
- Tadkaew, N.; Hai, F.I.; Mcdonald, J.A.; Khan, S.J.; Nghiem, L.D. Removal of trace organics by MBR treatment: The role of molecular properties. Water Res. 2011, 45, 2439–2451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adewuyi, A.; Pereira, F.V. Underutilized Luffa cylindrica sponge: A local bio-adsorbent for the removal of Pb (II) pollutant from water system. Beni-Suef Uni. J. Basic Appl. Sci. 2017, 6, 118–126. [Google Scholar]
- Ngah, W.S.W.; Hanafiah, M.A.K.M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresour. Technol. 2008, 99, 3935–3948. [Google Scholar]
- Ali, M.E.M.; Abd El-Aty, A.M.; Badawy, M.I.; Ali, R.K. Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga Scenedesmus obliquus. Ecotoxicol. Environ. Saf. 2018, 151, 144–152. [Google Scholar] [PubMed]
- Onal, Y.; Akmil-Basar, C.; Sarıcı-Ozdemir, C. Elucidation of the naproxen sodium adsorption onto activated carbon prepared from waste apricot: Kinetic, equilibrium and thermodynamic characterization. J. Hazard. Mater. 2007, 148, 727–734. [Google Scholar] [PubMed]
- Cazetta, A.L.; Martins, A.C.; Pezoti, O.; Bedin, K.C.; Beltrame, K.K.; Asefa, T.; Almeida, V.C. Synthesis and application of N–S-doped mesoporous carbon obtained from nanocasting method using bone char as heteroatom precursor and template. Chem. Eng. J. 2016, 300, 54–63. [Google Scholar]
- Rosli, N.; Ngadi, N.; Azman, M.A. Synthesis of modified spent tea for aspirin adsorption in aqueous solution. Inter. J. Rec. Technol. Eng. 2019, 8, 531–534. [Google Scholar]
- Mestre, A.S.; Pires, J.; Nogueira, J.M.F.; Carvalho, A.P. Activated carbons for the adsorption of ibuprofen. Carbon 2007, 45, 1979–1988. [Google Scholar] [CrossRef]
- Baccar, R.; Sarrà, M.; Bouzid, J.; Feki, M.; Blánquez, P. Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chem. Eng. J. 2012, 211–212, 310–317. [Google Scholar] [CrossRef]
- Mondal, S.; Aikat, K.; Halder, G. Biosorptive uptake of ibuprofen by chemically modified Parthenium hysterophorus derived biochar: Equilibrium, kinetics, thermodynamics and modeling. Ecol. Eng. 2016, 92, 158–172. [Google Scholar] [CrossRef]
- Essandoh, M.; Kunwar, B.; Pittman, C.U.; Mohan, D.; Mlsna, T. Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chem. Eng. J. 2015, 265, 219–227. [Google Scholar] [CrossRef]
- Mestre, A.S.; Bexiga, A.S.; Proença, M.; Andrade, M.; Pinto, M.L.; Matos, I.; Fonseca, I.M.; Carvalho, A.P. Activated carbons from sisal waste by chemical activation with K2CO3: Kinetics of paracetamol and ibuprofen removal from aqueous solution. Bioresour. Technol. 2011, 102, 8253–8260. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.V.F.N.; Belisário, M.; Galazzi, R.M.; Balthazar, D.C.; Pereira, M.G.; Ribeiro, J.N. Evaluation of two bioadsorbents for removing paracetamol from aqueous media. Electron. J. Biotechnol. 2011, 14, 1–10. [Google Scholar]
- Ornek, A.; Ozacar, M.; Sengil, I.A. Adsorption of Pb(II) onto formaldehyde or sulphuric acid treated acorn waste: Equilibrium and kinetic studies. Biochem. Eng. J. 2007, 37, 192–200. [Google Scholar] [CrossRef]
- Saka, C.; Sahin, O.; Kucuk, M.M. Applications on agricultural and forest waste adsorbentsfor the removal of lead (II) from contaminated waters. Int. J. Environ. Sci. Technol. 2012, 9, 379–394. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, V.; Pujari, N.; Matey, T.; Kulkarni, S. Enzymatic hydrolysis of cassava using wheat seedlings. Int. J. Sci. Eng. Technol. Res. 2014, 3, 1216–1219. [Google Scholar]
- Kulkarni, S.J. Use of biotechnology for synthesis of various products from different feedstocks-a review. Int. J. Adv. Res. Bio-Technol. 2014, 2, 1–3. [Google Scholar]
- Rajapaksha, A.U.; Vithanage, M.; Ahmad, M.; Seo, D.C.; Cho, J.S.; Lee, S.E.; Lee, S.S.; Ok, Y.S. Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar. J. Hazard. Mater. 2015, 290, 43–50. [Google Scholar]
- Chen, Y.; Wang, F.; Duan, L.; Yang, H.; Gao, J. Tetracycline adsorption onto rice husk ash, an agricultural waste: Its kinetic and thermodynamic studies. J. Mol. Liq. 2016, 222, 487–494. [Google Scholar] [CrossRef]
- Bernardo, M.; Rodrigues, S.; Lapa, N.; Matos, I.; Lemos, F.; Batista, M.K.S.; Carvalho, A.P.; Fonseca, I. High efficacy on diclofenac removal by activated carbon produced from potato peel waste. Int. J. Environ. Sci. Technol. 2016, 13, 1989–2000. [Google Scholar] [CrossRef]
- Pouretedal, H.R.; Sadegh, N. Effective removal of amoxicillin, cephalexin, tetracycline and penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood. J. Water Process Eng. 2014, 1, 64–73. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Johir, M.A.H.; Sornalingam, K. Single and competitive sorption properties and mechanism of functionalized biochar for removing sulfonamide antibiotics from water. Chem. Eng. J. 2017, 311, 348–358. [Google Scholar]
- Wang, H.; Chu, Y.; Fang, C.; Huang, F.; Song, Y.; Xue, X. Sorption of tetracycline on biochar derived from rice straw under different temperatures. PLoS ONE 2017, 12, e0182776. [Google Scholar]
- Zhang, H.; Wang, Z.; Li, R.; Guo, J.; Li, Y.; Zhu, J.; Xie, X. TiO2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices. Chemosphere 2017, 185, 351–360. [Google Scholar] [CrossRef] [PubMed]
- El-Shafey, E.S.I.; Al-Lawati, H.; Al-Sumri, A.S. Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets. J. Environ. Sci. 2012, 24, 1579–1586. [Google Scholar]
- Balarak, D.; Mostafapour, F.K. Canola residual as a biosorbent for antibiotic metronidazole removal. Pharm. Chem. J. 2016, 3, 12–17. [Google Scholar]
- N’diaye, A.D.; Bollahi, M.A.; Kankou, M.S.A. Sorption of paracetamol from aqueous solution using groundnut shell as a low cost sorbent. J. Mater. Environ. Sci. 2019, 10, 553–562. [Google Scholar]
- Aziz, S.S.; Mushtaq, S.; Begum, N. Adsorption studies of acetic acid removal from waste water using seeds of Brassica nigra. Int. J. Eng. Res. Appl. 2017, 7, 1–3. [Google Scholar]
- Silva, B.; Martins, M.; Rosca, M.; Rocha, V.; Lago, A.; Neves, I.C.; Tavares, T. Waste-based biosorbents as cost-effective alternatives to commercial adsorbents for the retention of fluoxetine from water. Sep. Purif. Technol. 2020, 235, 116–139. [Google Scholar]
- Martins, A.C.; Pezoti, O.; Cazetta, A.L.; Bedin, K.C.; Yamazaki, D.A.S.; Bandoch, G.F.G.; Asefa, T.; Visentainer, J.V.; Almeida, V.C. Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies. Chem. Eng. J. 2015, 260, 291–299. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, G.; Naushad, M.; Al-Muhtaseb, A.; Hira, I.; Ahamad, T.; Kumar, A.; Ghfar, A.A.; Stadler, F.J. Visible photodegradation of ibuprofen and 2,4-D in simulated waste water using sustainable metal free-hybrids based on carbon nitride and biochar. J. Environ. Manag. 2019, 231, 1164–1175. [Google Scholar] [CrossRef]
- Wang, F.; Yang, B.; Wang, H.; Song, Q.; Tan, F.; Cao, Y. Removal of ciprofloxacin from aqueous solution by a magnetic chitosan grafted graphene oxide composite. J. Mol. Liq. 2016, 222, 188–194. [Google Scholar]
- Paunovic, O.; Pap, S.; Maletic, S.; Taggart, M.A.; Boskovic, N.; Sekulic, M.T. Ionisable emerging pharmaceutical adsorption onto microwave functionalised biochar derived from novel lignocellulosic waste biomass. J. Colloid Interface Sci. 2019, 547, 350–360. [Google Scholar] [CrossRef]
- Villaescusa, I.; Fiol, N.; Poch, J.; Bianchi, A.; Bazzicalupi, C. Mechanism of paracetamol removal by vegetable wastes: The contribution of π-π interactions, hydrogen bonding and hydrophobic effect. Desalination 2011, 270, 135–142. [Google Scholar] [CrossRef]
- Yusoff, N.A.; Ngadi, N.; Alias, H.; Jusoh, M. Chemically treated chicken bone waste as an efficient adsorbent for removal of acetaminophen. Chem. Eng. Trans. 2017, 56, 925–930. [Google Scholar]
- Khazri, H.; Ghorbel-Abid, I.; Kalfat, R.; Trabelsi-Ayadi, M. Extraction of clarithromycin and atenolol by cuttlefish bone powder. Environ. Technol. 2018, 38, 2662–2668. [Google Scholar] [CrossRef]
- Benjedim, S.; Romero-Cano, L.A.; Pérez-Cadenas, A.F.; Bautista-Toledo, M.I.; Lotfi, E.; Carrasco-Marín, F. Removal of emerging pollutants present in water using an E-coli biofilm supported onto activated carbons prepared from argan wastes: Adsorption studies in batch and fixed bed. Sci. Total Environ. 2020, 720, 137491. [Google Scholar] [CrossRef]
- Adewuyi, A.; Göpfert, A.; Adewuyi, O.A.; Wolff, T. Adsorption of 2-chlorophenol onto the surface of underutilized seed of Adenopus breviflorus: A potential means of treating waste water. J. Environ. Chem. Eng. 2016, 4, 664–672. [Google Scholar] [CrossRef]
- Kizilkaya, B.; Tekinay, A.A.; Dilgin, Y. Adsorption and removal of Cu (II) ions from aqueous solution using pretreated fish bones. Desalination 2010, 264, 37–47. [Google Scholar]
- Dahiya, S.; Tripathi, R.M.; Hegde, A.G. Biosorption of lead and copper from aqueous solutions by pre-treated crab and arca shell biomass. Bioresour. Technol. 2008, 99, 179–187. [Google Scholar] [CrossRef]
- Ojedokun, A.T.; Bello, O.S. Sequestering heavy metals from wastewater using cow dung. Water Resour. Ind. 2016, 13, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Vasanthakumar, K.; Bhagavanalu, D.V.S. Adsorption of basic dye from its aqueous solution on to bio-organic waste. J. Ind. Pollut. Control 2003, 19, 20–28. [Google Scholar]
- El Haddad, M.; Mamouni, R.; Slimani, R.; Saffaj, N.; Ridaoui, M.; ElAntri, S.; Lazar, S. Adsorptive removal of reactive yellow 84 dye from aqueous solutions onto animal bone meal. J. Mater. Environ. Sci. 2012, 3, 1019–1026. [Google Scholar]
- Nworu, J.S.; Enemose, E.A.; Osideru, O.O.; Emmanuel, O.A. Efficiency of animal (Cow, Donkey, Chicken and Horse) bones, in removal of hexavalent chromium from aqueous solution as a low cost adsorbent. Am. J. Appl. Chem. 2019, 7, 1–9. [Google Scholar]
- Banat, F.A.; Al-Asheh, S. The use of human hair waste as a phenol biosorbent. Adsorp. Sci. Technol. 2001, 19, 599–608. [Google Scholar] [CrossRef] [Green Version]
- Volesky, B.; Schiewer, S. Biosorption of metals. In Encyclopedia of Bioprocess Technology; Flickinger, M., Drew, S.W., Eds.; Wiley: New York, NY, USA, 1999; pp. 433–453. [Google Scholar]
- Aydin, S. Enhanced biodegradation of antibiotic combinations via the sequential treatment of the sludge resulting from pharmaceutical wastewater treatment using white-rot fungi Trametes versicolor and Bjerkandera adusta. Appl. Microbiol. Biotechnol. 2016, 100, 6491–6499. [Google Scholar] [CrossRef]
- Doyle, R.J.; Matthews, T.H.; Streips, U.N. Chemical basis for selectivity of metal ions by the Bacillus subtilis cell wall. J. Bacteriol. 1980, 143, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Phoenix, V.R.; Martinez, R.E.; Konhauser, K.O.; Ferris, F.G. Characterization and implications of the cell surface reactivity of Calothrixsp. strain KC97. Appl. Environ. Microbiol. 2002, 68, 4827–4834. [Google Scholar] [CrossRef] [Green Version]
- Kazy, S.K.; Das, S.K.; Sar, P. Lanthanum biosorption by a Pseudomonassp.: Equilibrium studies and chemical characterization. J. Ind. Microbiol. Biotechnol. 2006, 33, 773–783. [Google Scholar] [CrossRef]
- Vannela, R.; Verma, S.K. Cu2+ removal and recovery by SpiSORB: Batch stirred and up-flow packed bed columnar reactor systems. Bioprocess Biosyst. Eng. 2006, 29, 7–17. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Han, M.H.; Choi, S.B.; Yun, Y.S. Biosorption of reactive black 5 by Corynebacterium glutamicum biomass immobilized in alginate and polysulfone matrices. Chemosphere 2007, 68, 1838–1845. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Yun, Y.S. Chemical modification and immobilization of Corynebacterium glutamicum for biosorption of reactive black 5 from aqueous solution. Ind. Eng. Chem. Res. 2007, 46, 608–617. [Google Scholar] [CrossRef]
- Martins, M.; Sanches, S.; Pereira, I.A.C. Anaerobic biodegradation of pharmaceutical compounds: New insights into the pharmaceutical-degrading bacteria. J. Hazard. Mater. 2018, 357, 289–297. [Google Scholar]
- Wang, L.; Qiang, Z.; Li, Y.; Ben, W. An insight into the removal of fluoroquinolones in activated sludge process: Sorption and biodegradation characteristics. J. Environ. Sci. 2017, 56, 263–271. [Google Scholar] [CrossRef]
- Sun, H.; Wang, T.; Yang, Z.; Yu, C.; Wu, W. Simultaneous removal of nitrogen and pharmaceutical and personal care products from the effluent of waste water treatment plants using aerated solid-phase denitrification system. Bioresour. Technol. 2019, 287, 121389. [Google Scholar]
- Rana, R.S.; Singh, P.; Kandari, V.; Singh, R.; Dobhal, R.; Gupta, S. A review on characterization and bioremediation of pharmaceutical industries’ wastewater: An Indian perspective. Appl. Water Sci. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Tong, M.; Sun, X.; Li, B. A simple method to prepare poly (amic acid)-modified biomass for enhancement of lead and cadmium adsorption. Biochem. Eng. J. 2007, 33, 126–133. [Google Scholar] [CrossRef]
- Göksungur, Y.; Üren, S.; Güvenc, U. Biosorption of cadmium and lead ion by ethanol treated waste baker’s yeast biomass. Bioresour. Technol. 2005, 96, 103–109. [Google Scholar] [CrossRef]
- Dhankhar, R.; Hooda, A. Fungal biosorption—An alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ. Technol. 2011, 32, 467–491. [Google Scholar] [CrossRef]
- Ridvan, S.; Nalan, Y.; Adil, D. Biosorption of cadmium, lead, mercury and arsenic ions by fungus Penicillium purpurogenum. Sep. Sci. Technol. 2003, 39, 2039–2053. [Google Scholar]
- Gadd, G.M. Accumulation and transformation of metals by microorganisms. In Biotechnology: A Multi-Volume Comprehensive Treatise, Vol. 10 Special Processes; Rehm, H.J., Reed, G., Puhler, A., Stadler, P., Eds.; Wiley: Weinheim, Germany, 2001; pp. 225–264. [Google Scholar]
- Becker, D.; Rodriguez-Mozaz, S.; Insa, S.; Schoevaart, R.; Barceloó, D.; de Cazes, M.; Belleville, M.P.; Sanchez-Marcano, J.; Misovic, A.; Oehlmann, J.; et al. Removal of endocrine disrupting chemicals in wastewater by enzymatic treatment with fungal laccases. Org. Process Res. Dev. 2017, 21, 480–491. [Google Scholar] [CrossRef]
- Zhang, Y.; Geißen, S.U. Elimination of carbamazepine in a nonsterile fungal bioreactor. Bioresour. Technol. 2012, 112, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rodriguez, C.E.; García-Galán, M.J.; Blánquez, P.; Díaz-Cruz, M.S.; Barceló, D.; Caminal, G.; Vicent, T. Continuous degradation of a mixture of sulfonamides by Trametes versicolor and identification of metabolites from sulfapyridine and sulfathiazole. J. Hazard. Mater. 2012, 213–214, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Rodarte-Moralez, A.I.; Feijoo, G.; Moreira, M.T.; Lema, J.M. Operation of stirred tank reactors (STRs) and fixed-bed reactors (FBRs) with free and immobilized Phanerochaete chrysosporium for the continuous removal of pharmaceutical compounds. Biochem. Eng. J. 2012, 66, 38–45. [Google Scholar]
- Lucas, D.; Castellet-Rovira, F.; Villagrasa, M.; Badia-Fabregat, M.; Barceló, D.; Vicent, T.; Caminal, G.; Sarràb, M.; Rodríguez-Mozaz, S. The role of sorption processes in the removal of pharmaceuticals by fungal treatment of wastewater. Sci. Total Environ. 2018, 610–611, 1147–1153. [Google Scholar]
- González-Abradelo, D.; Pérez-Llano, Y.; Peidro-Guzmán, H.; Sánchez-Carbente, M.R.; Folch-Mallol, J.L.; Aranda, E.; Vaidyanathan, V.K.; Cabana, H.; Gunde-Cimerman, N.; Batista-García, R.A. First demonstration that ascomycetous halophilic fungi (Aspergillus sydowii and Aspergillus destruens) are useful in xenobiotic mycoremediation under high salinity conditions. Bioresour. Technol. 2019, 279, 287–296. [Google Scholar] [PubMed]
- Vasiliadou, I.A.; Sanchez-Vazquez, R.; Molina, R.; Martínez, F.; Melero, J.A.; Bautista, L.F.; Iglesias, J.; Morales, G. Biological removal of pharmaceutical compounds using white-rotfungi with concomitant FAME production of the residual biomass. J. Environ. Manag. 2016, 180, 228–237. [Google Scholar] [CrossRef]
- Badia-Fabregat, M.; Lucas, D.; Pereira, M.A.; Alves, M.A.; Pennanen, T.; Fritze, H.; Rodríguez-Mozaz, S.; Barceló, D.; Vicent, T.; Caminal, G. Continuous fungal treatment of non-sterile veterinary hospital effluent: Pharmaceuticals removal and microbial community assessment. Appl. Microbiol. Biotechnol. 2016, 100, 2401–2415. [Google Scholar] [CrossRef] [Green Version]
- Becker, D.; Varela Della Giustina, S.; Rodriguez-Mozaz, S.; Schoevaart, R.; Barcelo, D.; de Cazes, M.; Belleville, M.P.; Sanchez-Marcano, J.; de Gunzburg, J.; Couillerot, O.; et al. Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase—Degradation of compounds does not always eliminate toxicity. Bioresour. Technol. 2016, 219, 500–509. [Google Scholar]
- Esterhuizen-Londt, M.; Schwartz, K.; Pflugmacher, S. Using aquatic fungi for pharmaceutical bioremediation: Uptake of acetaminophen by Mucor hiemalis does not result in an enzymatic oxidative stress response. Fungal Biol. 2016, 120, 1249–1257. [Google Scholar]
- Palli, L.; Castellet-Rovira, F.; Péerez-Trujillo, M.; Caniani, D.; Sarrá-Adroguer, M.; Gori, R. Preliminary evaluation of Pleurotus ostreatus for the removal of selected pharmaceuticals from hospital wastewater. Biotechnol. Prog. 2017, 33, 1529–1537. [Google Scholar]
- Pointing, S.B. Feasibility of bioremediation by white-rot fungi. Appl. Microbiol. Biotechnol. 2001, 57, 20–33. [Google Scholar]
- Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr. Opin. Biotechnol. 2013, 24, 405–413. [Google Scholar]
- Xiong, J.Q.; Govindwar, S.; Kurade, M.B.; Paeng, K.J.; Roh, H.S.; Khan, M.A.; Jeon, B.H. Toxicity of sulfamethazine and sulfamethoxazole and their removal by a green microalga, Scenedesmus obliquus. Chemosphere 2019, 218, 551–558. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Kurade, M.B.; Jeon, B.H. Can microalgae remove pharmaceutical contaminants from water? Trends Biotechnol. 2017, 36, 30–44. [Google Scholar] [CrossRef]
- Matamoros, V.; Uggetti, E.; García, J.; Bayona, J.M. Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: A laboratory scale study. J. Hazard. Mater. 2016, 301, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Peng, F.Q.; Ying, G.G.; Yang, B.; Liu, S.; Lai, H.J.; Liu, Y.S.; Chen, Z.F.; Zhou, G.J. Biotransformation of progesterone and norgestrel by two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa): Transformation kinetics and products identification. Chemosphere 2014, 95, 581–588. [Google Scholar] [CrossRef]
- González-Pleiter, M.; Gonzalo, S.; Rodea-Palomares, I.; Leganés, F.; Rosal, R.; Boltes, K.; Marco, E.; Fernández-Piñas, F. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment. Water Res. 2013, 47, 2050–2064. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Kurade, M.B.; Abou-Shanab, R.A.I.; Ji, M.K.; Choi, J.; Kim, J.O.; Jeon, B.H. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresour. Technol. 2016, 205, 183–190. [Google Scholar] [CrossRef]
- Ding, T.; Yang, M.; Zhang, J.; Lin, K.; Li, J.; Gan, J. Toxicity, degradation and metabolic fate of ibuprofen on freshwater diatom Naviculasp. J. Hazard. Mater. 2017, 330, 127–134. [Google Scholar]
- Hom-Diaz, A.; Jaen-Gil, A.; Bello-Laserna, I.; Rodríguez-Mozaz, S.; Vincent, T.; Barceló, D.; Blánquez, P. Performance of a microalgal photobioreactor treating toilet wastewater: Pharmaceutically active compound removal and biomass harvesting. Sci. Total Environ. 2017, 592, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Escapa, C.; Coimbra, R.; Paniagua, S.; García, A.; Otero, M. Paracetamol and salicylic acid removal from contaminated water by microalgae. J. Environ. Manag. 2017, 203, 799. [Google Scholar] [CrossRef] [PubMed]
- Amorim, C.L.; Moreira, I.S.; Maia, A.S.; Tiritan, M.E.; Castro, P.M.L. Biodegradation of ofloxacin, norfloxacin, and ciprofloxacin as single and mixed substrates by Labrys portucalensis F11. Appl. Microbiol. Biotechnol. 2014, 98, 3181–3190. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Hai, F.I.; Nghiem, L.D.; Nguyen, L.N.; Roddick, F.; Price, W.E. Removal of bisphenol a and diclofenac by a novel fungal membrane bioreactor operated under non-sterile conditions. Int. Biodeterior. Biodegrad. 2013, 85, 483–490. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Xia, W.; Teng, B.; Liu, X.; Zhang, W. Zirconium cross-linked chitosan composite: Preparation, characterization and application in adsorption of Cr(VI). Chem. Eng. J. 2013, 229, 1–8. [Google Scholar] [CrossRef]
- Rahim, M.; Haris, M.R.H.M. Application of biopolymer composites in arsenic removal from aqueous medium: A review. J. Radiat. Res. Appl. Sci. 2015, 8, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Karoui, S.; Ben, A.R.; Mougin, K.; Ghorbal, A.; Assadi, A.; Amrane, A. Synthesis of novel biocomposite powder for simultaneous removal of hazardous ciprofloxacin and methylene blue: Central composite design, kinetic and isotherm studies using Brouers-Sotolongo family models. J. Hazard. Mater. 2020, 387, 121675. [Google Scholar] [CrossRef]
- Mashile, G.P.; Mpupa, A.; Nqombolo, A.; Dimpe, K.M.; Nomngongo, P.N. Recyclable magnetic waste tyre activated carbon-chitosan composite as an effective adsorbent rapid and simultaneous removal of methylparaben and propylparaben from aqueous solution and wastewater. J. Water Process Eng. 2020, 33, 101011. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Xie, X.; Zhu, J.; Li, R.; Qin, T. Removal of norfloxacin from aqueous solution by clay-biochar composite prepared from potato stem and natural attapulgite. Colloids Surf. A 2017, 514, 126–136. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, X.; Wu, Y.; Huang, H.; Peng, X.; Zeng, G.; Zhong, H.; Liang, J.; Ren, M.M. Graphene-based materials, fabrication, characterization and application for the decontamination of wastewater and waste gas and hydrogen storage/generation. Adv. Colloid Interface Sci. 2013, 195–196, 19–40. [Google Scholar] [CrossRef]
- Zhang, S.; Dong, Y.; Yang, Z.; Yang, W.; Wu, J.; Dong, C. Adsorption of pharmaceuticals on chitosan-based magnetic composite particles with core-brush topology. Chem. Eng. J. 2016, 304, 325–334. [Google Scholar] [CrossRef]
- Babel, S.; Kurniawan, T. A Low-cost adsorbents for heavy metals uptake from contaminated water: A review. J. Hazard. Mater. 2003, 97, 219–243. [Google Scholar] [CrossRef]
- Srinivasan, R. Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking water. Adv. Mater. Sci. Eng. 2011, 2011, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Gao, B.; Fang, J.; Zhang, M.; Chen, H.; Zhou, Y.; Creamer, A.E.; Sun, Y.; Yang, L. Characterization and environmental applications of clay-biochar composites. Chem. Eng. J. 2014, 242, 136–143. [Google Scholar] [CrossRef]
- Fosso-Kankeu, E.; Waanders, F.B.; Steyn, F.W. The preparation and characterization of clay-biochar composites for the removal of metal pollutants. In Proceedings of the Seventh International Conference on Latest Trends in Engineering & Technology, Irene, Pretoria, South Africa, 26–27 November 2015. [Google Scholar]
- Wang, W.; Zheng, B.; Deng, Z.; Feng, Z.; Fu, L. Kinetics and equilibriums for adsorption of poly(vinyl alcohol) from aqueous solution onto natural bentonite. Chem. Eng. J. 2013, 214, 343–354. [Google Scholar] [CrossRef]
- Kumar, A.S.K.; Kalidhasan, S.; Rajesh, V.; Rajesh, N. Application of cellulose-clay composite biosorbent toward the effective adsorption and removal of chromium from industrial wastewater. Ind. Eng. Chem. Res. 2012, 51, 58–69. [Google Scholar] [CrossRef]
- Amin, M.F.M.; Heijman, S.G.J.; Rietveld, L.C. Clay–starch combination for micropollutants removal from wastewater treatment plant effluent. Water Sci. Technol. 2016, 73, 1719–1727. [Google Scholar] [CrossRef] [PubMed]
- Sophia, A.C.; Lima, E.C.; Allaudeen, N.; Rajan, S. Application of graphene based materials for adsorption of pharmaceutical traces from water and wastewater-a review. Desalin. Water Treat. 2016, 57, 27573–27586. [Google Scholar]
- Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502. [Google Scholar] [CrossRef]
- Georgakilas, V.; Otyepka, M.; Bourlinos, A.B.; Chan-dra, V.; Kim, N.; Kemp, K.C.; Hobza, P.; Zboril, R.; Kim, K.S. Functionalization of graphene: Covalent andnon-covalent approaches, derivatives and applications. Chem. Rev. 2012, 112, 6156–6214. [Google Scholar] [CrossRef]
- Tang, Y.; Guo, H.; Xiao, L.; Yu, S.; Gao, N.; Wang, Y. Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloids Surf. A Physicochem. Eng. Asp. 2013, 424, 74–80. [Google Scholar] [CrossRef]
- Cao, B.; Ansari, A.; Yi, X.; Rodrigues, D.F.; Hu, Y. Gypsum scale formation on graphene oxide modified reverse osmosis membrane. J. Membr. Sci. 2018, 552, 132–143. [Google Scholar] [CrossRef]
- Chu, K.H.; Fathizadeh, M.; Yu, M.; Flora, J.R.V.; Jang, A.; Jang, M.; Park, C.M.; Yoo, S.S.; Her, N.; Yoon, Y. Evaluation of removal mechanisms in a graphene oxide-coated ceramic ultrafiltration membrane for retention of natural organic matter, pharmaceuticals, and inorganic salts. ACS Appl. Mater. Interfaces 2017, 9, 40369–40377. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Kong, H.; Li, P.; Shao, J.; He, Y. Photo-Fenton degradation of amoxicillin via magnetic TiO2-graphene oxide-Fe3O4 composite with a submerged magnetic separation membrane photocatalytic reactor (SMSMPR). J. Hazard. Mater. 2019, 373, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, X.; Tanner, E.E.L.; Compton, R.G. Catechol adsorption on graphene nanoplatelets, isotherm, flat to vertical phase transition and desorption kinetics. Chem. Sci. 2017, 8, 4771–4778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyetibo, G.O.; Ishola, S.T.; Ikeda-Ohtsubo, W.; Miyauchi, K.; Ilori, M.O.; Endo, G. Mercury bioremoval by Yarrowia strains isolated from sediments of mercury polluted estuarine water. Appl. Microbiol. Biotechnol. 2015, 99, 3651–3657. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, P.; Show, S.; Banerjee, S.; Halder, G. Mechanistic insight into sorptive elimination of ibuprofen employing bidirectional activated biochar from sugarcane bagasse: Performance evaluation and cost estimation. J. Environ. Chem. Eng. 2018, 6, 5287–5300. [Google Scholar] [CrossRef]
- de Andrade, J.l.R.; Oliveira, M.F.; da Silva, M.G.; Vieira, M.G. Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: A Review. Ind. Eng. Chem. Res. 2018, 57, 3103–3127. [Google Scholar] [CrossRef]
- Gupta, V.K.; Ali, I. Removal of lead and chromium from wastewater using bagasse fly ash a sugar industry waste. J. Colloid Interface Sci. 2004, 271, 321–328. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Insight into biochar properties and its cost analysis. Biomass Bioenergy 2016, 84, 76–86. [Google Scholar] [CrossRef]
- Gandhi, M.R.; Meenakshi, S. Recent advancement in heavy metal removal onto silica-based adsorbents and chitosan composites−A review. In A Book on Ion Exchange, Adsorption and Solvent Extraction; Naushad, M., Al-Othman, Z.A., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2013; pp. 201–230. [Google Scholar]
PACs | Country | Concentration (ng L−1) * | Reference |
---|---|---|---|
Antibiotics | |||
Erythromycin | Bangladesh | 6.46 | [9] |
Metronidazole | China | 5.10 | [10] |
Sulfamethoxazole | USA | 14.73 | [11] |
Trimethoprim | Mexico | 74.00 | [12] |
Ciprofloxacin | India | 6,500,000 | [13] |
Amoxicillin | Ghana | 2.70 | [14] |
Trimethoprim | Kenya | 2650 | [15] |
Tetracyclin | Ghana | 30.00 | [14] |
Anti-hyperglycemic | |||
Metformin | Sweden | 8.40 | [16] |
Lipid regulator | |||
Gemfibrozil | Spain | 3735.00 | [17] |
Analgesics and Anti-inflammatories | |||
Acetaminophen | UK | 9822.00 | [18] |
Diclofenac | Malaysia | 15.49 | [19] |
Ibuprofen | South-Africa | 846.00 | [20] |
Ketoprofen | Portugal | 86.90 | [21] |
Naproxen | Poland | 13.40 | [22] |
Anti-depressives | |||
Diazepam | India | 305.00 | [23] |
Fluoxetine | Portugal | 25.37 | [21] |
Biosorbent | Type of Chemical Modification | PAC | Qe (mg g−1) | pH | Kinetic Model | Time (min) | Reference |
---|---|---|---|---|---|---|---|
Scenedesmus obliquus (Alga) | Alkaline (NaOH) | CEFA PARA IBU TRAM CIP | 68.00 58.00 42.00 42.00 39.00 | 7.80 7.80 7.80 7.80 7.80 | PS PS PS PS PS | 45 45 45 45 45 | [56] |
Waste apricot | Metal salt (ZnCl2) impregnation | Naproxen | 106.38 | 5.8 | PS | 60 | [57] |
Bone char | Acid (H2SO4) | Ibuprofen | 56.78 | 4.00 | PS | 360 | [58] |
Spent tea Modified Spent tea | Unmodified Surface grafting (Polyethyleneimine) | Aspirin Aspirin | - - | 3.00 3.00 | - - | 30 30 | [59] |
cork waste | Alkaline (K2CO3) | Ibuprofen | 416.70 | 2–4 | PS | 360 | [60] |
Olive waste | Acid impregnation (H3PO4) | Ibuprofen Ketoprofen Naproxen Diclofenac | 12.60 24.70 39.50 56.20 | 4.12 4.12 4.12 4.12 | PS PS PS PS | 1560 1560 1560 1560 | [61] |
Parthenium hysterophorus weed | Alkaline (NaOH) | Ibuprofen | 90.46 | 4.00 | PS | 120 | [62] |
Pine wood chips | Pyrolysis followed by organic solvent | Salicylic acid Ibuprofen | 22.70 10.74 | 2.00 | PS PS | 960 960 | [63] |
Sisal waste | Alkaline (K2CO3) | Ibuprofen Paracetamol | 140.10 124.30 | 4.00 6.00 | PS PS | 1440 1440 | [64] |
Sugar cane bagasse Vegetable sponge | H2O (Extraction) H2O (Extraction) | Paracetamol Paracetamol | 0.12 0.04 | 7.00 7.00 | - - | - - | [65] |
Biosorbent | PACs | Adsorption Capacity (mg g−1) | Kinetic Model | Mechanism | pH Used | Con (mg L−1) | Reference |
---|---|---|---|---|---|---|---|
Rice husk ash | Tetracycline | 8.37 | PS | Complexation | >7.7 | 5–20 | [71] |
Potato peel waste (activated carbon) | Diclofenac | 74.00 | PS | π-π electron donor-acceptor interaction | 5 | 0–100 | [72] |
Vine wood | Amoxicillin, Cephalexin, Tetracycline and Penicillin G | 1.98–8.41 | PS | - | 2 | 20–200 | [73] |
Bamboo biochar | Sulfamethazine, sulfamethoxazole, and sulfathiazole | 25.11–40.11 | PS | Lewis acid-base interactions, hydrogen bonding and π-π Electron-donor-acceptor interactions | 3–6.5 | 1–50 | [74] |
Rice husk | Tetracycline | 3.89–13.85 | - | π–π electron-donor acceptor | 5.5 | 0.5–32 | [75] |
Reed straw | Sulfamethoxazole | 23.35 | - | Hydrogen bonding and π-π electron donor–acceptor | 4 | 5–30 | [76] |
Date palm | Ciprofloxacin | 25.30–53.20 | PS | Cation exchange and hydrogen bonding | 6 | 50–300 | [77] |
Canola biomass | Metronidazole | 21.42 | PS | Electrostatic interaction | 7 | 0–100 | [78] |
Groundnut shell | Paracetamol | 3.02 | - | - | - | 10–100 | [79] |
Brassica nigra | Acetic acid | 0.96 | - | - | - | 0.5 * | [80] |
Biosorbent | PAC | Mode of Study | SBET (m2 g−1) | Qe (mg g−1) | Isotherm | Desorption (%) | ∆G° (kJ mol−1) | Reference |
---|---|---|---|---|---|---|---|---|
CA-Al-KABs | Ciprofloxacin | Batch | 10.595 | 68.36 | Langmuir | - | −0.944 | [32] |
SCG CW PB | Fluoxetine | Batch | <4 <4 <4 | 14.31 4.74 6.53 | Sips | - | - | [81] |
MNS | Tetracycline | Batch | 1524 | 455.33 | Temkin | - | - | [82] |
MCGO | Ciprofloxacin | 388.3 | 282.9 | Freundlich and Langmuir | >80 | - | [84] | |
WPK | Naproxen | Batch | 601.9 | 73.14 | Langmuir | - | - | [85] |
GS YB CB | Paracetamol | Batch | - - - | 1.74 0.77 0.99 | Langmuir | - | - | [86] |
CTCBW | Acetaminophen | Batch | 80.586 | - | Freundlich | - | [87] | |
CBP | Clarithromycin Atenolol | 19.26 | 34.5 39.5 | Freundlich Langmuir | - | −838 | [88] | |
ASCK | Paracetamol Amoxicillin | Batch and fixed bed | 1908 | 502.26 282.42 | L-F L-F | - | - | [89] |
ASK | Paracetamol Amoxicillin | Batch and fixed bed | 1635 | 453.39 228.39 | L-F L-F | - | - | [89] |
ASP | Paracetamol Amoxicillin | Batch and fixed bed | 420 | 318.84 198.73 | L-F L-F | - | - | [89] |
PACs | Fungi | Mechanism of Action | Reference |
---|---|---|---|
Estrone, 17 β-estradiol, 17 α-ethinyl-estradiol and estriol | Myceliophthora thermophile and Trametes versicolor | Biodegradation Adsorption | [115] |
Carbamazepine | Phanerochaete chrysosporium | Biodegradation Biosorption | [116] |
Sulfapyridine, sulfapyridine, and sulfamethazine | Trametes versicolor | Biodegradation Biosorption | [117] |
Diclofenac, ibuprofen, naproxen, carbamazepine, and diazepam | Phanerochaete chrysosporium | Biodegradation Biosorption | [118] |
Carbamazepine, diclofenac, iopromide and venlafaxine | Trametes versicolor Irpex lacteus Ganoderma lucidum Stropharia rugosoannulata Gymnopilus luteofolius Agrocybe erebia | Biosorption | [119] |
Bio-composite | PAC | SBET (m2 g−1) | Qe (mg g−1) | Removal (%) | Desorption (%) | Solvent for Desorption | Reference |
---|---|---|---|---|---|---|---|
CCGC | Metamizol Acetylsalicylic acid Acetaminophen Caffeine | - - - - | 6.29 9.92 7.52 8.21 | >70 >85 >60 >80 | >55 >85 >55 >80 | Ethanol and water | [3] [3] [3] [3] |
NMVC | 4-aminoantipyrine | 96 | 6.53 | 98.40 | 76 | Water | [30] |
MCGO | Ciprofloxacin | 388.30 | 282.90 | >80 | Methanol | [84] | |
Phragmites-Australis | Ciprofloxacin | 8.90 | 17.30 | 76.66 | - | - | [141] |
MWACC | Methylparaben Propylparaben | 1281 | 85.90 90.00 | 100 100 | >95 >95 | Methanol | [142] |
APB | Norfloxacin | 90.40 | 5.24 | 92.70 | >84 | Methanol | [143] |
RGO-M | Ciprofloxacin Norfloxacin | - - | 18.22 22.20 | - - | - - | - - | [144] [144] |
CBM | Diclofenac sodium Tetracycline hydrochloride | 27.54 | 164.00 40.20 | >70 >55 | >60 >60 | Ethanol and water | [145] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adewuyi, A. Chemically Modified Biosorbents and Their Role in the Removal of Emerging Pharmaceutical Waste in the Water System. Water 2020, 12, 1551. https://doi.org/10.3390/w12061551
Adewuyi A. Chemically Modified Biosorbents and Their Role in the Removal of Emerging Pharmaceutical Waste in the Water System. Water. 2020; 12(6):1551. https://doi.org/10.3390/w12061551
Chicago/Turabian StyleAdewuyi, Adewale. 2020. "Chemically Modified Biosorbents and Their Role in the Removal of Emerging Pharmaceutical Waste in the Water System" Water 12, no. 6: 1551. https://doi.org/10.3390/w12061551
APA StyleAdewuyi, A. (2020). Chemically Modified Biosorbents and Their Role in the Removal of Emerging Pharmaceutical Waste in the Water System. Water, 12(6), 1551. https://doi.org/10.3390/w12061551