Structure and Physicochemical Properties of Water Treated under Methane with Low-Temperature Glow Plasma of Low Frequency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Water
2.1.2. Methane
2.2. Methods
2.2.1. Treatment of Water with GP
2.2.2. pH
2.2.3. Conductivity
2.2.4. Refractive Index
2.2.5. Differential Scanning Calorimetry (DSC)
2.2.6. Thermogravimetry
2.2.7. Fourier Transformation Infrared-Attenuated Total Reflectance (FTIR-ATR) Spectra
2.2.8. Electron Spin Resonance (ESR) Spectra
2.2.9. Ultraviolet/Visible (UV/IS) Absorption Spectra
2.2.10. Raman Spectra
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Białopiotrowicz, T.; Ciesielski, W.; Domański, J.; Doskocz, M.; Fiedorowicz, M.; Grąż, K.; Khachatryan, K.; Kołoczek, H.; Kozak, A.; Oszczęda, Z.; et al. Structure and physicochemical properties of water treated with low-temperature low-frequency plasma. Curr. Phys. Chem. 2016, 6, 312–320. [Google Scholar] [CrossRef]
- Jaworska, M.; Oszczęda, Z.; Tomasik, P. Water treated with low-temperature, low-pressure, low-frequency glow plasma as a stimulant of pathogenicity and reproduction of biopesticides. Part I. Entomopathogenic fungi. Pol. J. Nat. Sci. 2018, 33, 561–568. [Google Scholar]
- Murawski, M.; Schwarz, T.; Grygier, J.; Patkowski, K.; Oszczęda, Z.; Jelkin, I.; Kosiek, A.; Gruszecki, T.M.; Szymanowska, A.; Skrzypek, T.; et al. The utility of nanowater for ram semen cryopreservation. Exp. Biol. Med. 2015, 240, 611–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szymanowicz, J.; Schwartz, T.; Murawski, M.; Małopolska, M.; Oszczęda, Z.; Tuz, R.; Nowicki, J.; Bartkowski, P.M. Storage, of bear semen at 16–18 °C in thew long term commercial extender prepared witg deionized water or nanowater. Anim. Reprod. 2019, 16, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pater, A.; Zdaniewicz, M.; Satora, P.; Khachatryan, G.; Oszczęda, Z. Application of water treated with low-temperature, low-pressure glow plasma for quality improvement of barley malt. Biomolecules 2020, 10, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisulewska, E.; Ciesielski, W.; Jackowska, M.; Gąstoł, M.; Oszczęda, Z.; Tomasik, P. Cultivation of peppermint (Mentha piperita rubescens) using water treated with low-pressure, low-temperature glow plasma of low frequency. EJPAU. Ser. Biotechnol. 2018, 21, #01. [Google Scholar]
- Tomasik, P. Essentials of Nanotechnology in Food Technology and Cosmetics; Sophia Scientific Editorial Board: Warsaw, Poland, 2019. (In Polish) [Google Scholar]
- Oszczęda, Z.; Tomasik, P.; Ciesielski, W.; Kulawik, D. A Way of Removal of Permanent and Temporary Water Hardness Applying Low-Temperature, Low-Pressure Glow Plasma of Low-Frequency. Polish Patent Appl. 426720, 20 August 2018. [Google Scholar]
- Chwastowski, J.; Ciesielska, K.; Ciesielski, W.; Khachatryan, K.; Koloczek, H.; Kulawik, D.; Oszczeda, Z.; Tomasik, P.; Witczak, M. Structure and physicochemical properties of water treated under nitrogen with low-temperature glow plasma. Water 2020, 12, 1314. [Google Scholar] [CrossRef]
- Ciesielski, W.; Gąstoł, M.; Girek, T.; Kulawik, D.; Oszczęda, Z.; Pisulewska, E.; Tomasik, P. Water treated with low-pressure, low-temperature glow plasma affects the growth and essential oil of basil (Ocinum basilicum L.), private information. Int. Agrophys. submitted.
- Ciesielska, K.; Ciesielski, W.; Girek, T.; Kulawik, D.; Oszczęda, Z.; Tomasik, P. Cultivation of cress involving water treated under different atmospheres with low-temperature, low-pressure glow plasma of low-frequency, private information. Int. Agrophys. submitted.
- EngineeringToolbox. Available online: https://www.engineeringtoolbox.com/gases-solubility-water-d_1148.html (accessed on 4 June 2020).
- Blount, C.W.; Price, L.C. Solubility of Methane in Water under Natural Conditions. A Laboratory Studies, Report, US Dept. Energy. 1982; DOE/ET/12145-1. Available online: https://www.osti.gov/servlets/purl/5281520 (accessed on 4 January 2020).
- Ruppel, C.; Pohlman, J.; Casso, M. Data and Calculations to Support the Study of the Sea-Air Flux of Methane and Carbon Dioxide on the West Spitsbergen Margin in June 2014: U.S. Geological Survey Data Release. 2017. Available online: https://doi.org/10.5066/F7M906V0 (accessed on 4 January 2020).
- Sánchez, M.; Santamarina, C.; Teymouri, M.; Gai, X. Coupled numerical modeling of gas hydrate-bearing sediments: From laboratory to field-scale analyses. JGR Solid Earth. 2018, 123, 10326–10348. [Google Scholar]
- Chong, Z.R.; Yang, S.H.B.; Babu, P.; Linga, P.; Li, X.-S. Review of natural gas hydrates as an energy resource: Prospects and challenges. Appl. Energy. 2016, 162, 1633–1652. [Google Scholar] [CrossRef]
- Hoffmann, R. Old gas, new gas. Am. Sci. 2006, 94, 16–18. [Google Scholar] [CrossRef]
- Winid, B.; Lewkiewicz, A. Mineral waters from Rymanow-Zdrój, relations between their chemical components in the period of the latest decade. Gosp. Sur. Mineral. 2006, 22, 51–72. (In Polish) [Google Scholar]
- Winid, B.; Lewkiewicz-Małysa, A. Curative mineral waters from Iwonicz Zdroj in view of their hydrodynamic indices. Gosp. Sur. Mineral. 2005, 21, 49–67. (In Polish) [Google Scholar]
- Chowaniec, J.; Operacz, T. Mineral and curative waters from Iwonicz Zdrój—Rudawka Rymanowska anticline. Biul. Państw. Inst. Geol. 2013, 456, 81–88. (In Polish) [Google Scholar]
- Available online: https://pl.wikipedia.org/wiki/Ryman%C3%B3w-Zdr%C3%B3j#Wody_mineralne (accessed on 3 January 2020).
- Available online: https://dvoryk-leva.com.ua/pl/health/279-voda-naftusya-pl (accessed on 3 January 2020).
- Oszczeda, Z.; Elkin, I.; Strek, W. Equipment for Treatment of Water with Plasma. Polish Patent PL 216025 B1, 28 February 2014. [Google Scholar]
- Chaplin, M. Water Structure and Science. 2016. Available online: www.1.lsbu.ac.uk/water/water_vibrational_spectrum.html (accessed on 22 February 2020).
- Ramya, K.R.; Venkathathan, A. Density functional theory study of oxygen clathrate hydrates. Indian J. Chem. 2013, 52A, 1063–1065. [Google Scholar]
Sample a | A(3494) | B(3265) | C(1633) | A/B | A/C | B/C |
---|---|---|---|---|---|---|
W | 0.0642 | 0.3266 | 0.1633 | 0.197 | 0.393 | 2.000 |
W0 | 0.1062 | 0.2542 | 0.1424 | 0.418 | 0.746 | 1.785 |
W05 | 0.1776 | 0.2748 | 0.1662 | 0.646 | 1.069 | 1.653 |
W515 | 0.1657 | 0.2666 | 0.1617 | 0.622 | 1.025 | 1.649 |
W1530 | 0.1658 | 0.2808 | 0.1662 | 0.590 | 0.998 | 1.690 |
W3060 | 0.1539 | 0.2818 | 0.1623 | 0.546 | 0.948 | 1.736 |
W6090 | 0.1517 | 0.2753 | 0.1607 | 0.551 | 0.944 | 1.713 |
W90120 | 0.1380 | 0.3004 | 0.1696 | 0.459 | 0.814 | 1.771 |
Sample a | Temperature at Peak (°C) | Heat Flow Intensity (W/g) | Heat of Vaporization (J/g) |
---|---|---|---|
Standard b | 100.00 c | n.d. d | 2257.0 c |
WM0 | 96.11 | −10.26 | 2057.1 |
WM5 | 94.81 | −10.48 | 2050.3 |
WM15 | 94.05 | −9.82 | 2049.9 |
WM30 | 89.37 | −11.20 | 2132.2 |
WM60 | 88.86 | −11.23 | 2154.1 |
WM90 | 94.11 | −10.00 | 2048.4 |
WM120 | 90.11 | −10.26 | 2106.3 |
Sample a (Immediately) | Cp | ΔH | ΔS |
---|---|---|---|
(J/g.K) | (J/g) | (J/g.K) | |
W | 34.377 | −1770 | 4.7690 |
WM0 | 35.837 | −1346 | 3.6266 |
WM5 | 32.980 | −1451 | 3.9095 |
WM15 | 26.107 | −1487 | 4.0065 |
WM30 | 33.935 | −1845 | 4.9710 |
WM60 | 36.378 | −1765 | 4.7555 |
WM90 | 31.559 | −1788 | 4.8175 |
WM120 | 32.847 | −1742 | 4.6935 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciesielska, A.; Ciesielski, W.; Khachatryan, K.; Koloczek, H.; Kulawik, D.; Oszczeda, Z.; Soroka, J.A.; Tomasik, P. Structure and Physicochemical Properties of Water Treated under Methane with Low-Temperature Glow Plasma of Low Frequency. Water 2020, 12, 1638. https://doi.org/10.3390/w12061638
Ciesielska A, Ciesielski W, Khachatryan K, Koloczek H, Kulawik D, Oszczeda Z, Soroka JA, Tomasik P. Structure and Physicochemical Properties of Water Treated under Methane with Low-Temperature Glow Plasma of Low Frequency. Water. 2020; 12(6):1638. https://doi.org/10.3390/w12061638
Chicago/Turabian StyleCiesielska, Aleksandra, Wojciech Ciesielski, Karen Khachatryan, Henryk Koloczek, Damian Kulawik, Zdzislaw Oszczeda, Jacek A. Soroka, and Piotr Tomasik. 2020. "Structure and Physicochemical Properties of Water Treated under Methane with Low-Temperature Glow Plasma of Low Frequency" Water 12, no. 6: 1638. https://doi.org/10.3390/w12061638
APA StyleCiesielska, A., Ciesielski, W., Khachatryan, K., Koloczek, H., Kulawik, D., Oszczeda, Z., Soroka, J. A., & Tomasik, P. (2020). Structure and Physicochemical Properties of Water Treated under Methane with Low-Temperature Glow Plasma of Low Frequency. Water, 12(6), 1638. https://doi.org/10.3390/w12061638