Removal of Arsenic(III) Ion from Aqueous Media Using Complex Nickel-Aluminum and Nickel-Aluminum-Zirconium Hydroxides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Physicochemical Properties of Adsorbents
2.3. Adsorption Experiments
3. Results and Discussion
3.1. Physicochemical Properties of Adsorbents
3.2. Adsorption Capability of As(III)
3.3. Adsorption Kinetics
3.4. Effect of pH on the Adsorption of As(III)
3.5. As(III) Adsorption Isotherms
3.6. Comparison of Adsorption Capability of As(III)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld (accessed on 8 May 2020).
- Mohan, D.; Charles, P. Arsenic removal from water/wastewater using adsorbents-a critical review. J. Hazard. Mater. 2007, 142, 1–53. [Google Scholar] [CrossRef]
- Mandal, S.; Sahu, M.K.; Patel, R.K. Adsorption studies of arsenic(III) removal from water by zirconium polyacrylamide hybrid material (ZrPACM-34). Water Resour. Ind. 2013, 4, 51–67. [Google Scholar] [CrossRef] [Green Version]
- Hughes, M.F. Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 2002, 133, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Mandal, B.K.; Suzuki, K.T. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Siddique, A.E.; Rahman, M.; Hossain, M.I.; Karim, Y.; Hasibuzzaman, M.M.; Biswas, S.; Islam, M.S.; Rahman, A.; Hossen, F.; Mondal, V.; et al. Association between chronic arsenic exposure and the characteristic features of asthma. Chemosphere 2020, 246, 129750. [Google Scholar] [CrossRef]
- Paul, S.K.; Islam, M.S.; Hasibuzzaman, M.M.; Hossain, F.; Anjum, A.; Saud, Z.A.; Haque, M.M.; Sultana, P.; Haque, A.; Andric, K.B.; et al. Higher risk of hyperglycemia with greater susceptibility in females in chronic arsenic-exposed individuals in Bangladesh. Sci. Total Environ. 2019, 668, 1004–1012. [Google Scholar] [CrossRef]
- IARC Monographs on the Identification of Carcinogenic Hazards to Human. Available online: https://monographs.iarc.fr/agents-classified-by-the-iarc/ (accessed on 31 May 2020).
- Arsenic in Drinking Water. Available online: https://www.who.int/water_sanitation_health/water-quality/guidelines/arsenic-information/en/ (accessed on 31 May 2020).
- Vaishya, R.C.; Gupta, S.K. Modeling arsenic(III) adsorption from water by sulfate-modified iron oxide-coated sand (SMIOCS). J. Chem. Technol. Biotechnol. 2002, 89, 73–80. [Google Scholar] [CrossRef]
- Martinson, C.A.; Reddy, K.J. Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles. J. Colloid Interf. Sci. 2009, 336, 406–411. [Google Scholar] [CrossRef]
- Mandal, S.; Padhi, T.; Patel, R.K. Studies on the removal of arsenic(III) from water by a novel hybrid material. J. Hazard. Mater. 2011, 192, 899–908. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, G.; Paul Chen, J. Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent. J. Colloid Interf. Sci. 2011, 358, 230–237. [Google Scholar] [CrossRef]
- Ferguson, J.F.; Gavis, J. A review of arsenic cycle in natural waters. Water Res. 1972, 6, 1259–1274. [Google Scholar] [CrossRef]
- Wu, K.; Liu, T.; Xue, W.; Wang, X. Arsenic(III) oxidation/adsorption behaviors on a new bimetal adsorbent of Mn-oxide-doped Al oxide. Chem. Eng. J. 2012, 192, 343–349. [Google Scholar] [CrossRef]
- Ogata, F.; Nakamura, T.; Toda, M.; Otani, M.; Kawasaki, N. Evaluation of nickel-aluminum complex hydroxide for adsorption of chromium(VI) ion. Chem. Pharm. Bull. 2020, 68, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Ogata, F.; Ueta, E.; Kawasaki, N. Characteristics of a novel adsorbent Fe-Mg-type hydrotalcite and its adsorption capability of As(III) and Cr(VI) from aqueous solution. J. Ind. Eng. Chem. 2018, 59, 56–63. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, L.; Huang, H.; Jiang, Y.; Li, M.; Leng, Y. Removal of phosphorus by the core-shell bio-ceramic/Zn-layered double hydroxides (LDHs) composites for municipal wastewater treatment in constructed rapid infiltration system. Water Res. 2016, 96, 280–291. [Google Scholar] [CrossRef]
- Radha, A.V.; Kamath, P.V. Aging of trivalent metal hydroxide/oxide gels in divalent metal salt solutions: Mechanism of formation of layered double hydroxides (LDHs). Bull. Mater. Sci. 2003, 26, 661–666. [Google Scholar] [CrossRef]
- Ogata, F.; Nagai, N.; Toda, M.; Otani, M.; Nakamura, T.; Kawasaki, N. Evaluation of the interaction between borate ions and nickel-aluminum complex hydroxide for purification of wastewater. Chem. Pharm. Bull. 2019, 67, 487–492. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Xia, L.; Liu, Y.; Wu, J.; Chen, Q.; Song, S. Simultaneous sorption of arsenate and fluoride on calcined Mg-Fe-La hydrotalcite-like compound from water. ACS Sustain. Chem. Eng. 2018, 6, 16287–16297. [Google Scholar] [CrossRef]
- Chitrakar, R.; Tezuka, S.; Sonoda, A.; Sakane, K.; Ooi, K.; Hirotsu, T. Synthesis and phosphate uptake behavior of Zr4+ incorporated MgAl-layered double hydroxides. J. Colloid Interf. Sci. 2007, 313, 53–63. [Google Scholar] [CrossRef]
- Miyauchi, H.; Yamamoto, T.; Chitrakar, R.; Makita, Y.; Wang, Z.; Kawai, J.; Hirotsu, T. Phosphate adsorption site on zirconium ion modified MgAl-layered double hydroxides. Top Catal. 2009, 52, 714–723. [Google Scholar] [CrossRef]
- Ogata, F.; Iijima, S.; Toda, M.; Otani, M.; Nakamura, T.; Kawasaki, N. Characterization and phosphate adsorption capability of novel nickel-aluminum-zirconium complex hydroxide. Chem. Pharm. Bull. 2020, 68, 292–297. [Google Scholar] [CrossRef] [Green Version]
- Ymashita, T.; Ozawa, Y.; Nakajima, N.; Murata, T. Collection of uranium from sea water with hydrous oxide adsorbents. 1. Ion exchange properties and uranium adsorption of hydrous titanium(IV) oxide. Nippon Kagaku Kaishi 1978, 8, 1057–1061. [Google Scholar] [CrossRef]
- Ogata, F.; Ueta, E.; Toda, M.; Otani, M.; Kawasaki, N. Adsorption of phosphate ions from an aqueous solution by calcined nickel-cobalt binary hydroxide. Water Sci. Technol. 2017, 75, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Türk, T.; Alp, İ. Arsenic removal from aqueous solutions with Fe-hydrotalcite supported magnetite nanoparticle. J. Ind. Eng. Chem. 2014, 20, 732–738. [Google Scholar] [CrossRef]
- Lagergren, S. Zur theorie der sogenannten adsorption geloster stoffie, Kunglia Svenska Vetenskapsakademiens. Handlingar 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption process. Pro Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Raven, K.P.; Jain, A.; Loeppert, R.H. Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption evelopes. Environ. Sci. Technol. 1998, 32, 344–349. [Google Scholar] [CrossRef]
- Simonin, J.P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Ho, Y.S. Selection of optimum sorption isotherm. Carbon 2004, 42, 2115–2116. [Google Scholar] [CrossRef]
- Wu, K.; Liu, R.; Li, T.; Liu, H.; Peng, J.; Qu, J. Removal of arsenic(III) from aqueous solution using a low-cost by-product in Fe-removal plants-Fe-based backwashing sludge. Chem. Eng. J. 2013, 226, 292–401. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.T. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–471. [Google Scholar]
- Li, H.T.; Xu, M.C.; Shi, Q.; He, B.L. Isotherm analysis of phenol adsorption on polymeric adsorbents from nanoaqueous solution. J. Colloid. Interf. Sci. 2004, 271, 47–54. [Google Scholar] [CrossRef]
- Abe, I.; Hayashi, K.; Kitagawa, M. Studies on the adsorption of surfactants on activated carbons. I. Adsorption of nonionic surfactants. Yukagaku 1976, 25, 145–150. [Google Scholar]
- Tiwari, D.; Lee, S.M. Novel hybrid materials in the remediation of ground waters contaminated with As(III) and As(V). Chem. Eng. J. 2012, 204-206, 23–31. [Google Scholar] [CrossRef]
- Hlavay, J.; Polyak, K. Determination of surface properties of iron hydroxide-coated alumina adsorbent prepared for removal of arsenic from drinking water. J. Colloid Interf. Sci. 2005, 284, 71–77. [Google Scholar] [CrossRef]
- Yoshida, I.; Kobayashi, H.; Ueno, K. Selective adsorption of arsenic ions on silica gel impregnated with ferric hydroxide. Anal. Lett. 1976, 9, 1125–1133. [Google Scholar] [CrossRef]
- Makris, K.C.; Sarkar, D.; Datta, R. Evaluating a drinking-water waste by-product as a novel sorbent for arsenic. Chemosphere 2006, 64, 730–741. [Google Scholar] [CrossRef]
Adsorbents | Surface pH | Number of Hydroxyl Groups (mmol g−1) | Specific Surface Area (m2 g−1) |
---|---|---|---|
NA11 | 7.98 | 1.92 | 22.8 |
NA12 | 7.63 | 1.62 | 26.4 |
NAZ1 | 6.18 | 1.08 | 51.9 |
NAZ2 | 6.21 | 1.51 | 27.8 |
Adsorbents | qe | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||||
---|---|---|---|---|---|---|---|---|---|
k1 (h−1) | qe (mg g−1) | r2 | χ2 | k2 (g mg−1 h−1) | qe (mg g−1) | r2 | χ2 | ||
NA11 | 8.6 | 0.093 | 3.9 | 0.817 | 1.8 × 102 | 0.110 | 9.1 | 0.978 | 1.8 |
NAZ1 | 14.9 | 6.4 | 6.4 | 0.961 | 2.9 × 10 | 0.066 | 15.2 | 0.992 | 1.4 |
Adsorbents | Temperature (°C) | Langmuir Constants | Freundlich Constants | ||||
---|---|---|---|---|---|---|---|
Ws (mg g−1) | a (L mg−1) | r2 | logk | 1/n | r2 | ||
NA11 | 10 | 6.1 | 0.02 | 0.965 | −0.1 | 0.91 | 0.970 |
25 | 9.3 | 0.04 | 0.982 | −0.1 | 0.56 | 0.991 | |
45 | 15.4 | 0.006 | 0.989 | −1.4 | 0.13 | 0.996 | |
NAZ1 | 10 | 6.3 | 0.09 | 0.996 | −0.3 | 0.70 | 0.989 |
25 | 15.3 | 0.01 | 0.935 | −0.4 | 0.97 | 0.768 | |
45 | 16.6 | 0.10 | 0.977 | 0.29 | 0.54 | 0.999 |
Adsorbents | Adsorption Capability (mg/g) | pH | Temp. (°C) | Initial Concentration (mg/L) | Contact Time (h) | Adsorbent (g/L) | Ref. |
---|---|---|---|---|---|---|---|
ZrPACM-43 | 0.8 | <5 | 50 | 100 | 2 | 13 | [3] |
Al-HDTMA-sericite | 0.433 | 4.5 | - | 2 | Approximately 6.7 | 1 | [38] |
Iron hydroxide-coated alumina | 9.0 | 6.6 | 20 × 0.5 | 7.5−135 | 48 | 1–25 | [39] |
Silica gel impregnated with ferric hydroxide | 4.5 | 7.0 | 20–23 | 1 | 15 | - | [40] |
WTRs | 15 | 6.0–6.5 | 23 | 375–3000 | 48 | 25–200 | [41] |
NA11 | 9.3 | 5.5–6.4 | 25 | 100 | 24 | 2 | This study |
NAZ1 | 15.3 | 5.9–6.2 | 25 | 100 | 24 | 2 | This study |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogata, F.; Nagai, N.; Toda, M.; Otani, M.; Saenjum, C.; Nakamura, T.; Kawasaki, N. Removal of Arsenic(III) Ion from Aqueous Media Using Complex Nickel-Aluminum and Nickel-Aluminum-Zirconium Hydroxides. Water 2020, 12, 1697. https://doi.org/10.3390/w12061697
Ogata F, Nagai N, Toda M, Otani M, Saenjum C, Nakamura T, Kawasaki N. Removal of Arsenic(III) Ion from Aqueous Media Using Complex Nickel-Aluminum and Nickel-Aluminum-Zirconium Hydroxides. Water. 2020; 12(6):1697. https://doi.org/10.3390/w12061697
Chicago/Turabian StyleOgata, Fumihiko, Noriaki Nagai, Megumu Toda, Masashi Otani, Chalermpong Saenjum, Takehiro Nakamura, and Naohito Kawasaki. 2020. "Removal of Arsenic(III) Ion from Aqueous Media Using Complex Nickel-Aluminum and Nickel-Aluminum-Zirconium Hydroxides" Water 12, no. 6: 1697. https://doi.org/10.3390/w12061697
APA StyleOgata, F., Nagai, N., Toda, M., Otani, M., Saenjum, C., Nakamura, T., & Kawasaki, N. (2020). Removal of Arsenic(III) Ion from Aqueous Media Using Complex Nickel-Aluminum and Nickel-Aluminum-Zirconium Hydroxides. Water, 12(6), 1697. https://doi.org/10.3390/w12061697