Impact of Rice Intensification and Urbanization on Surface Water Quality in An Giang Using a Statistical Approach
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Collection of Water Samples and Analytical Methods
2.3. Statistical Analyses
2.3.1. Multivariate Statistical Analysis
2.3.2. Weighted Arithmetic Water Quality Index (WAWQI) Model
- WAWQI is weighted arithmetic water quality index;
- Qi is a quality rating of nth parameters, in which Vi is estimated value of nth parameters based on sample location, Vd is ideal value in pure water for nth parameters (pH = 7.0 and other parameters is 0); Si is permissible limits of nth parameters;
- Wi is the unit weight of nth parameters,, in which K is proportionality constant, .
3. Results
3.1. Statistical Assessment Using Correlation
3.2. Spatial Assessment of Water Quality Using DA
3.3. Water Quality Classification Using WAWQI
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix
Sampling Site | Dry Season | Wet Season | ||
---|---|---|---|---|
WAWQI | Water Classification | WAWQI | Water Classification | |
1 | 443 | Unsuitable for drinking | 51 | Bad |
2 | 66 | Bad | 65 | Bad |
3 | 241 | Unsuitable for drinking | 361 | Unsuitable for drinking |
4 | 123 | Unsuitable for drinking | 208 | Unsuitable for drinking |
5 | 64 | Bad | 66 | Bad |
6 | 222 | Unsuitable for drinking | 205 | Unsuitable for drinking |
7 | 101 | Unsuitable for drinking | 124 | Unsuitable for drinking |
8 | 198 | Unsuitable for drinking | 98 | Very Bad |
9 | 1847 | Unsuitable for drinking | 1489 | Unsuitable for drinking |
10 | 448 | Unsuitable for drinking | 239 | Unsuitable for drinking |
11 | 1813 | Unsuitable for drinking | 1584 | Unsuitable for drinking |
12 | 187 | Unsuitable for drinking | 198 | Unsuitable for drinking |
13 | 561 | Unsuitable for drinking | 487 | Unsuitable for drinking |
14 | 159 | Unsuitable for drinking | 312 | Unsuitable for drinking |
15 | 339 | Unsuitable for drinking | 361 | Unsuitable for drinking |
16 | 111 | Unsuitable for drinking | 368 | Unsuitable for drinking |
17 | 131 | Unsuitable for drinking | 151 | Unsuitable for drinking |
18 | 131 | Unsuitable for drinking | 349 | Unsuitable for drinking |
19 | 161 | Unsuitable for drinking | 43 | Good |
20 | 81 | Very Bad | 63 | Bad |
21 | 111 | Unsuitable for drinking | 61 | Bad |
22 | 63 | Bad | 143 | Unsuitable for drinking |
23 | 76 | Very Bad | 75 | Bad |
24 | 73 | Bad | 76 | Very Bad |
25 | 52 | Bad | 107 | Unsuitable for drinking |
26 | 595 | Unsuitable for drinking | 307 | Unsuitable for drinking |
27 | 217 | Unsuitable for drinking | 281 | Unsuitable for drinking |
28 | 34 | Good | 369 | Unsuitable for drinking |
29 | 736 | Unsuitable for drinking | 66 | Bad |
30 | 334 | Unsuitable for drinking | 97 | Very Bad |
31 | 334 | Unsuitable for drinking | 310 | Unsuitable for drinking |
32 | 61 | Bad | 62 | Bad |
33 | 67 | Bad | 48 | Good |
34 | 94 | Very Bad | 77 | Very Bad |
35 | 319 | Unsuitable for drinking | 139 | Unsuitable for drinking |
36 | 1075 | Unsuitable for drinking | 177 | Unsuitable for drinking |
37 | 277 | Unsuitable for drinking | 369 | Unsuitable for drinking |
38 | 185 | Unsuitable for drinking | 274 | Unsuitable for drinking |
39 | 78 | Very Bad | 40 | Good |
40 | 102 | Unsuitable for drinking | 49 | Good |
References
- Venkatramanan, S.; Chung, S.; Ramkumar, T.; Rajesh, R.; Gnanachandrasamy, G. Assessment of groundwater quality using GIS and CCME WQI techniques: A case study of Thiruthuraipoondi city in Cauvery deltaic region, Tamil Nadu, India. Desalin. Water Treat. 2016, 57, 12058–12073. [Google Scholar] [CrossRef]
- Van Stokkom, H.; Witter, J. Implementing integrated flood risk and land-use management strategies in developed deltaic regions, exemplified by The Netherlands. Int. J. River Basin Manag. 2008, 6, 331–338. [Google Scholar] [CrossRef]
- Minh, H.V.T.; Ngoc, D.T.H.; Ngan, H.Y.; Men, H.V.; Van, T.N.; Ty, T.V. Assessment of groundwater level and quality: A case study in O Mon and Binh Thuy districts, Can Tho City, Vietnam. Fac. Eng. Naresuan Univ. 2016, 11, 25–33. [Google Scholar]
- Minh, H.V.T.; Avtar, R.; Kumar, P.; Tran, D.Q.; Ty, T.V.; Behera, H.C.; Kurasaki, M. Groundwater quality assessment using fuzzy-AHP in an Giang Province of Vietnam. Geosciences 2019, 9, 330. [Google Scholar] [CrossRef] [Green Version]
- El-Kowrany, S.I.; El-Zamarany, E.A.; El-Nouby, K.A.; El-Mehy, D.A.; Abo Ali, E.A.; Othman, A.A.; Salah, W.; El-Ebiary, A.A. Water pollution in the Middle Nile Delta, Egypt: An environmental study. J. Adv. Res. 2016, 7, 781–794. [Google Scholar] [CrossRef] [Green Version]
- Akaishi, F.; Satake, M.; Otaki, M.; Tominaga, N. Surface water quality and information about the environment surrounding Inle Lake in Myanmar. Limnology 2006, 7, 57–62. [Google Scholar] [CrossRef]
- Bowles, J. The Ayeyarwady River Endangered; Myanmar Development Research Institute (MDRI): Yangon, Myanmar, 2013; p. 42. [Google Scholar]
- Charron, D.F.; Thomas, M.K.; Waltner-Toews, D.; Aramini, J.J.; Edge, T.; Kent, R.A.; Maarouf, A.R.; Wilson, J. Vulnerability of waterborne diseases to climate change in Canada: A review. J. Toxicol. Env. Health Part A 2004, 67, 1667–1677. [Google Scholar] [CrossRef]
- Phung, D.; Huang, C.; Rutherford, S.; Chu, C.; Wang, X.; Nguyen, M. Climate change, water quality, and water-related diseases in the Mekong Delta Basin: A systematic review. Asia Pac. J. Public Health 2015, 27, 265–276. [Google Scholar] [CrossRef]
- Dat, T.Q.; Kanchit, L.; Thares, S.; Trung, N.H. Modeling the influence of river discharge and sea level rise on salinity intrusion in Mekong Delta. In Proceedings of the 1st Environment Asia International Conference, Bangkok, Thailand, 23–26 March 2011; Volume 35, pp. 685–701. [Google Scholar]
- Wilbers, G.-J.; Becker, M.; Nga, L.T.; Sebesvari, Z.; Renaud, F.G. Spatial and temporal variability of surface water pollution in the Mekong Delta, Vietnam. Sci. Total Environ. 2014, 485, 653–665. [Google Scholar] [CrossRef]
- Ikemoto, T.; Tu, N.P.C.; Watanabe, M.X.; Okuda, N.; Omori, K.; Tanabe, S.; Tuyen, B.C.; Takeuchi, I. Analysis of biomagnification of persistent organic pollutants in the aquatic food web of the Mekong Delta, South Vietnam using stable carbon and nitrogen isotopes. Chemosphere 2008, 72, 104–114. [Google Scholar] [CrossRef]
- Chea, R.; Grenouillet, G.; Lek, S. Evidence of water quality degradation in lower Mekong Basin revealed by self-organizing map. PLoS ONE 2016, 11, e0145527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, M.; Stengel, C.; Trang, P.T.K.; Viet, P.H.; Sampson, M.L.; Leng, M.; Samreth, S.; Fredericks, D. Magnitude of arsenic pollution in the Mekong and Red River Deltas—Cambodia and Vietnam. Sci. Total Environ. 2007, 372, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Chau, N.D.G.; Sebesvari, Z.; Amelung, W.; Renaud, F.G. Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: Evidence from two provinces. Environ. Sci. Pollut. Res. 2015, 22, 9042–9058. [Google Scholar] [CrossRef] [PubMed]
- Bartram, J.; Ballance, R. Water Quality Monitoring: A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes; CRC Press: London, UK, 1996; p. 383. [Google Scholar]
- Mekong River Commission. Overview of the Hydrology of the Mekong Basin; PDR: Vientiane, Laos, 2005; p. 82. [Google Scholar]
- Wang, W.; Lu, H.; Ruby Leung, L.; Li, H.; Zhao, J.; Tian, F.; Yang, K.; Sothea, K. Dam construction in Lancang-Mekong River Basin could mitigate future flood risk from warming-induced intensified rainfall. Geophys. Res. Lett. 2017, 44, 10–378. [Google Scholar] [CrossRef]
- Open Development Mekong Population and Censuses. Available online: https://opendevelopmentmekong.net/topics/population-and-censuses (accessed on 26 May 2020).
- Mekong River Commission (MRC). Mekong Basin. Available online: http://www.mrcmekong.org/mekong-basin (accessed on 18 April 2020).
- Minh, H.V.T.; Kurasaki, M.; Ty, T.V.; Tran, D.Q.; Le, K.N.; Avtar, R.; Rahman, M.M.; Osaki, M. Effects of multi-dike protection systems on surface water quality in the Vietnamese Mekong Delta. Water 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Minh, H.V.T.; Avtar, R.; Mohan, G.; Misra, P.; Kurasaki, M. Monitoring and mapping of rice cropping pattern in flooding area in the Vietnamese Mekong Delta using Sentinel-1A data: A case of An Giang Province. ISPRS Int. J. Geo Inf. 2019, 8. [Google Scholar] [CrossRef] [Green Version]
- Tuan, L.A.; Minh, H.V.T.; Tuan, D.D.A.; Thao, N.T.P. Baseline Study for Community Based Water Management Project; Mekong Water Governance Program Vietnam: Hanoi, Vietnam, 2015. [Google Scholar]
- Fujii, H.; Fujihara, Y.; Hoshikawa, K. Expansion of full-dyke system and its impact in flood-prone rice area in the Mekong Delta. Trans. Jpn. Soc. Irrig. Drain. Rural Eng. 2013, 81, 271–278. [Google Scholar] [CrossRef]
- Nguyen, V.K.T.; Nguyen, V.D.; Fujii, H.; Kummu, M.; Merz, B.; Apel, H. Has dyke development in the Vietnamese Mekong Delta shifted flood hazard downstream? Hydrol. Earth Syst. Sci. 2017, 21, 3991–4010. [Google Scholar] [CrossRef] [Green Version]
- Ty, T.V. Scenario-based impact assessment of land use/cover and climate changes on water resources and demand: A case study in the Srepok River Basin, Vietnam—Cambodia. Water Resour. Manag. 2012, 26, 1387–1407. [Google Scholar] [CrossRef]
- DONRE Water Resource Distribution in an Giang. Available online: http://sotainguyenmt.angiang.gov.vn/TongQuan_TNN1.aspx (accessed on 2 September 2019).
- Allan, J.D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef] [Green Version]
- Johnson, L.; Gage, S. Landscape approaches to the analysis of aquatic ecosystems. Freshw. Biol. 1997, 37, 113–132. [Google Scholar] [CrossRef]
- Wikipedia. An Giang Provice. Available online: https://en.wikipedia.org/wiki/An_Giang_Province (accessed on 10 May 2020).
- Yoshida, Y.; Lee, H.S.; Trung, B.H.; Tran, H.-D.; Lall, M.K.; Kakar, K.; Xuan, T.D. Impacts of mainstream hydropower Dams on fisheries and agriculture in lower Mekong Basin. Sustainability 2020, 12, 2408. [Google Scholar] [CrossRef] [Green Version]
- Tran, D.; Weger, J. Barriers to implementing irrigation and drainage policies in An Giang Province, Mekong Delta, Vietnam. Irrig. Drain. 2018, 67, 81–95. [Google Scholar] [CrossRef] [Green Version]
- The Southern Regional Hydro-meteorological Center. Supply and Exploit Data. Available online: http://www.kttv-nb.org.vn/index.php/dich-vu-kttv/cung-cap-khai-thac-so-lieu (accessed on 6 June 2020).
- Helena, B.; Pardo, R.; Vega, M.; Barrado, E.; Fernandez, J.M.; Fernandez, L. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res. 2000, 34, 807–816. [Google Scholar] [CrossRef]
- Avtar, R.; Kumar, P.; Singh, C.K.; Sahu, N.; Verma, R.L.; Thakur, J.K.; Mukherjee, S. Hydrogeochemical assessment of groundwater quality of Bundelkhand, India using statistical approach. Water Qual. Expo. Health 2013, 5, 105–115. [Google Scholar] [CrossRef]
- Kido, M.; Yustiawati; Syawal, M.S.; Sulastri; Hosokawa, T.; Tanaka, S.; Saito, T.; Iwakuma, T.; Kurasaki, M. Comparison of general water quality of rivers in Indonesia and Japan. Environ. Monit. Assess. 2008, 156, 317. [Google Scholar] [CrossRef] [PubMed]
- Shammi, M.; Rahman, M.M.; Islam, M.A.; Bodrud-Doza, M.; Zahid, A.; Akter, Y.; Quaiyum, S.; Kurasaki, M. Spatio-temporal assessment and trend analysis of surface water salinity in the coastal region of Bangladesh. Environ. Sci. Pollut. Res. 2017, 24, 14273–14290. [Google Scholar] [CrossRef]
- Avtar, R.; Kumar, P.; Singh, C.; Mukherjee, S. A comparative study on hydrogeochemistry of Ken and Betwa Rivers of Bundelkhand using statistical approach. Water Qual. Expo. Health 2011, 2, 169–179. [Google Scholar] [CrossRef]
- Kumar, P.; Ram, A. Chapter 4: Integrating major ion chemistry with statistical analysis for geochemical assessment of groundwater quality in coastal aquifer of Saijo plain, Ehime prefecture, Japan. In Water Quality: Indicators, Human Impact and Environmental Health; Nova Publication: Haryana, India, 2013; pp. 99–108. [Google Scholar]
- Avtar, R.; Kumar, P.; Oono, A.; Saraswat, C.; Dorji, S.; Hlaing, Z. Potential application of remote sensing in monitoring ecosystem services of forests, mangroves and urban areas. Geocarto. Int. 2017, 32, 874–885. [Google Scholar] [CrossRef]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis, 3rd ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1992; p. 642. [Google Scholar]
- Ogbozige, F.J.; Adie, D.B.; Abubakar, U.A. Water quality assessment and mapping using inverse distance weighted interpolation: A case of River Kaduna, Nigeria. Niger. J. Technol. 2018, 37, 249–261. [Google Scholar] [CrossRef] [Green Version]
- Ke, W.; Cheng, H.P.; Yan, D.; Lin, C. The application of cluster analysis and inverse distance-weighted interpolation to appraising the water quality of Three Forks Lake. Procedia Environ. Sci. 2011, 10, 2511–2517. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, R.; Sakizadeh, M. Comparison of interpolation methods for the estimation of groundwater contamination in Andimeshk-Shush Plain, Southwest of Iran. Environ. Sci. Pollut. Res. 2016, 23, 2758–2769. [Google Scholar] [CrossRef] [PubMed]
- Avtar, R.; Kumar, P.; Surjan, A.; Gupta, L.; Roychowdhury, K. Geochemical processes regulating groundwater chemistry with special reference to nitrate and fluoride enrichment in Chhatarpur area, Madhya Pradesh, India. Environ. Earth Sci. 2013, 70, 1699–1708. [Google Scholar] [CrossRef]
- Algina, J.; Keselman, H. Comparing squared multiple correlation coefficients: Examination of a confidence interval and a test significance. Psychol. Methods 1999, 4, 76. [Google Scholar] [CrossRef]
- Govindarajulu, Z. Rank correlation methods. Technometrics 1992, 34, 108. [Google Scholar] [CrossRef]
- Shrestha, S.; Kazama, F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environ. Model. Softw. 2007, 22, 464–475. [Google Scholar] [CrossRef]
- Molekoa, M.D.; Avtar, R.; Kumar, P.; Minh, H.V.T.; Kurniawan, T.A. Hydrogeochemical assessment of groundwater quality of Mokopane area, Limpopo, South Africa using statistical approach. Water 2019, 11, 1891. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.; He, B.; Nover, D.; Yang, G.; Chen, W.; Meng, H.; Zou, S.; Liu, C. Water quality assessment and pollution source identification of the Eastern Poyang Lake Basin using multivariate statistical methods. Sustainability 2016, 8. [Google Scholar] [CrossRef] [Green Version]
- Wunderlin, D.A.; del Pilar Díaz, M.; Amé, M.V.; Pesce, S.F.; Hued, A.C.; de Los Ángeles Bistoni, M. Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquía River Basin (Córdoba–Argentina). Water Res. 2001, 35, 2881–2894. [Google Scholar] [CrossRef]
- Poulsen, J.; French, A. Discriminant Function Analysis 2008. Available online: http://userwww.sfsu.edu/~efc/classes/biol710/discrim/discrim (accessed on 10 May 2020).
- Horton, R.K. An index number system for rating water quality. J. Water Pollu. Cont. Fed. 1965, 37, 300–305. [Google Scholar]
- Kachroud, M.; Trolard, F.; Kefi, M.; Jebari, S.; Bourrié, G. Water quality indices: Challenges and application limits in the literature. Water 2019, 11, 361. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2017; p. 631. [Google Scholar]
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; O’Connor, M.F. A water quality index—Crashing the psychological barrier. In Proceedings of the Indicators of Environmental Quality; Thomas, W.A., Ed.; Plenum Press: New York, NY, USA, 1972; pp. 173–182. [Google Scholar]
- Thuy, P.T.; Van Geluwe, S.; Nguyen, V.-A.; Van der Bruggen, B. Current pesticide practices and environmental issues in Vietnam: Management challenges for sustainable use of pesticides for tropical crops in (South-East) Asia to avoid environmental pollution. J. Mater. Cycles Waste Manag. 2012, 14, 379–387. [Google Scholar] [CrossRef]
- McCutcheon, S.; Martin, J.; Barnwell, T., Jr. Water Quality, Handbook of Hydrology; Maidment, D.R., Ed.; McGraw-Hill Inc.: New York, NY, USA, 1993. [Google Scholar]
- Edzwald, J.K. Water Quality and Treatment A Handbook on Drinking Water, 6th ed.; McGrawHill Education: New York, NY, USA; American Water Works Association: Denver, CO, USA, 2010. [Google Scholar]
- Spellman, F.R. The Drinking Water Handbook; CRC Press: Boca Raton, FL, USA, 2017; p. 388. [Google Scholar]
- Omer, N.H. Water quality parameters. In Water Quality-Science, Assessments and Policy; IntechOpen: London, UK, 2019; p. 18. [Google Scholar]
- APHA; AWWA; WEF. Standard methods for the examination of water and wastewater 21st Edition Method 5310 B. High temperature combustion method. In Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005; pp. 5–21. [Google Scholar]
- Sharma, S.; Bhattacharya, A. Drinking water contamination and treatment techniques. Appl. Water Sci. 2017, 7, 1043–1067. [Google Scholar] [CrossRef] [Green Version]
- Brandt, M.J.; Johnson, K.M.; Elphinston, A.J.; Ratnayaka, D.D. Chemistry, microbiology and biology of water. In Twort’s Water Supply, 7th ed.; Brandt, M.J., Johnson, K.M., Elphinston, A.J., Ratnayaka, D.D., Eds.; Butterworth-Heinemann: Boston, MA, USA, 2017; pp. 235–321. [Google Scholar]
WAWQI Range | Water Quality Classification |
---|---|
<25 | Excellent |
26–50 | Good |
51–75 | Bad |
76–100 | Very bad |
>100 | Unsuitable for drinking |
Variables | PH | EC | Cl− | NO2− | NO3− | NH4+ | COD | PO43− | Na+ | Ca2+ | Mg2+ | K+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PH | 1 | |||||||||||
EC | 0.050 | 1 | ||||||||||
Cl− | 0.022 | 0.109 | 1 | |||||||||
NO2− | 0.413 | −0.079 | −0.040 | 1 | ||||||||
NO3− | 0.250 | −0.163 | −0.241 | 0.775 | 1 | |||||||
NH4+ | 0.022 | 0.570 | 0.319 | 0.075 | −0.006 | 1 | ||||||
COD | −0.161 | 0.605 | 0.306 | −0.114 | −0.278 | 0.461 | 1 | |||||
PO43− | 0.200 | 0.475 | 0.387 | −0.228 | −0.296 | 0.478 | 0.488 | 1 | ||||
Na+ | 0.120 | 0.229 | 0.032 | 0.213 | −0.009 | 0.275 | 0.303 | 0.014 | 1 | |||
Ca2+ | 0.131 | 0.086 | −0.290 | 0.171 | 0.029 | 0.046 | −0.049 | −0.119 | 0.336 | 1 | ||
Mg2+ | −0.279 | 0.380 | 0.119 | −0.146 | −0.133 | 0.317 | 0.607 | 0.250 | 0.394 | 0.155 | 1 | |
K+ | −0.042 | 0.194 | −0.012 | −0.080 | −0.075 | 0.275 | 0.311 | 0.111 | 0.477 | −0.049 | 0.562 | 1 |
Variables | PH | EC | Cl− | NO2− | NO3− | NH4+ | COD | PO43− | Na+ | Ca2+ | Mg2+ | K+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PH | 1 | |||||||||||
EC | −0.509 | 1 | ||||||||||
Cl− | 0.176 | −0.115 | 1 | |||||||||
NO2− | 0.127 | −0.042 | 0.005 | 1 | ||||||||
NO3− | 0.143 | −0.162 | 0.216 | 0.627 | 1 | |||||||
NH4+ | −0.424 | 0.710 | 0.077 | 0.116 | 0.003 | 1 | ||||||
COD | −0.444 | 0.490 | −0.107 | 0.005 | −0.248 | 0.427 | 1 | |||||
PO43− | 0.125 | 0.404 | 0.134 | 0.351 | 0.223 | 0.314 | 0.067 | 1 | ||||
Na+ | −0.150 | 0.179 | −0.146 | −0.106 | 0.014 | 0.038 | 0.110 | 0.078 | 1 | |||
Ca2+ | −0.307 | 0.085 | 0.133 | −0.037 | 0.094 | 0.204 | 0.012 | −0.109 | 0.094 | 1 | ||
Mg2+ | −0.313 | 0.308 | −0.263 | −0.119 | −0.130 | 0.095 | 0.178 | −0.013 | 0.338 | 0.434 | 1 | |
K+ | −0.157 | 0.178 | −0.028 | 0.180 | 0.107 | 0.224 | 0.111 | 0.111 | 0.410 | 0.301 | 0.381 | 1 |
Variable | Backward Model | Forward Model | ||||
---|---|---|---|---|---|---|
Lambda | F | p-Value | Lambda | F | p-Value | |
NO2− | 0.600 *** | 8.002 | 0.000 | 0.600 *** | 8.002 | 0.000 |
NO3− | 0.817 ** | 2.688 | 0.006 | 0.817 ** | 2.688 | 0.006 |
NH4+ | 0.748 | 4.037 | 0.014 | |||
COD | ||||||
Cl− | ||||||
PO43− | ||||||
PH | 0.609 *** | 7.720 | 0.000 | 0.609 *** | 7.720 | 0.000 |
EC | ||||||
Na+ | 0.805 | 2.913 | 0.048 | |||
Ca2+ | ||||||
Mg2+ | ||||||
K+ |
Variable | Backward Model | Forward Model | ||||
---|---|---|---|---|---|---|
Lambda | F | p-Value | Lambda | F | p-Value | |
NO2− | 0.729 ** | 4.468 | 0.009 | |||
NO3− | 0.712 ** | 4.858 | 0.006 | |||
NH4+ | ||||||
COD | ||||||
Cl− | 0.699 ** | 5.159 | 0.005 | 0.699 ** | 5.159 | 0.005 |
PO43− | ||||||
PH | ||||||
EC | ||||||
Na+ | ||||||
Ca2+ | ||||||
Mg2+ | 0.768 ** | 3.626 | 0.002 | 0.768 ** | 3.626 | 0.002 |
K+ |
Parameters | Unit | Dry Season | Wet Season | Si | Vdi | (1/Si) | K | Wi | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Range | Mean | SD | Range | Mean | SD | |||||||
PH | 6–9.3 | 7.37 | 0.63 | 3.1–9.3 | 6.92 | 1.06 | 8.5 * | 7 | 0.118 | 0.0292 | 0.0034 | |
EC | S.cm−1 | 150–990 | 359 | 186.68 | 90–1160 | 340 | 221 | 300 * | 0 | 0.003 | 0.0292 | 0.0001 |
Cl− | mg/L | 0–200 | 90 | 60 | 0–100 | 20 | 30 | 200 * | 0 | 0.005 | 0.0292 | 0.0001 |
NO2− | mg/L | 0–0.9 | 0.06 | 0.15 | 0–0.25 | 0.04 | 0.05 | 0.05 ** | 0 | 20 | 0.0292 | 0.5848 |
NO3− | mg/L | 0–0.5 | 0.34 | 0.48 | 0–2 | 0.50 | 0.52 | 2 ** | 0 | 0.5 | 0.0292 | 0.0146 |
NH4+ | mg/L | 0.1–10 | 1.53 | 2.91 | 0.05–12 | 1.10 | 2.27 | 0.3 ** | 0 | 3.33 | 0.0292 | 0.0975 |
COD | mg/L | 4–100 | 23.75 | 18.89 | 7–100 | 25.53 | 19.34 | 10 ** | 0 | 0.1 | 0.0292 | 0.0029 |
PO43− | mg/L | 0.05–5 | 0.64 | 1.09 | 0.08–4 | 0.59 | 0.87 | 0.1 ** | 0 | 10 | 0.0292 | 0.2924 |
Na+ | mg/L | 6.1–1610 | 71.80 | 251.6 | 0.56–55.5 | 17.48 | 13.56 | 200 * | 0 | 0.005 | 0.0292 | 0.0001 |
Ca2+ | mg/L | 5.6–65.4 | 32.21 | 13.13 | 5.6–467.4 | 22.37 | 10.43 | 75 * | 0 | 0.013 | 0.0292 | 0.0004 |
Mg2+ | mg/L | 1.5–34.7 | 13.11 | 5.35 | 2.2–47.7 | 10.55 | 7.08 | 50 * | 0 | 0.02 | 0.0292 | 0.0006 |
K+ | mg/L | 1.4–43.6 | 15.84 | 11.4 | 2.5–129 | 13.39 | 22 | 10 * | 0 | 0.1 | 0.0292 | 0.0029 |
Parameters | Unit | Vi | Si | Vdi | Qi | (1/Si) | K | Wi | Qi × Wi |
---|---|---|---|---|---|---|---|---|---|
PH | 8.3 | 8.5 | 7 | 86.7 | 0.12 | 0.0292 | 0.0034 | 0.30 | |
EC | S.cm−1 | 240 | 300 | 0 | 80 | 0.00 | 0.0292 | 0.0001 | 0.01 |
Cl− | mg/L | 0.1 | 200 | 0 | 0.05 | 0.01 | 0.0292 | 0.0001 | 0.00 |
NO2− | mg/L | 0.04 | 0.05 | 0 | 80 | 20 | 0.0292 | 0.5848 | 46.79 |
NO3− | mg/L | 0.4 | 2 | 0 | 20 | 0.50 | 0.0292 | 0.0146 | 0.29 |
NH4+ | mg/L | 0.1 | 0.3 | 0 | 33.3 | 3.33 | 0.0292 | 0.0975 | 3.25 |
COD | mg/L | 4 | 10 | 0 | 40 | 0.10 | 0.0292 | 0.0029 | 0.12 |
PO43− | mg/L | 0.05 | 0.1 | 0 | 50 | 10 | 0.0292 | 0.2924 | 14.62 |
Na+ | mg/L | 12 | 200 | 0 | 5.8 | 0.01 | 0.0292 | 0.0001 | 0.00 |
Ca2+ | mg/L | 29 | 75 | 0 | 38.2 | 0.01 | 0.0292 | 0.0004 | 0.01 |
Mg2+ | mg/L | 10 | 50 | 0 | 20.8 | 0.02 | 0.0292 | 0.0006 | 0.01 |
K+ | mg/L | 6 | 10 | 0 | 59.4 | 0.10 | 0.0292 | 0.0029 | 0.17 |
Sum | 34.20 | 1 | 66 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thu Minh, H.V.; Avtar, R.; Kumar, P.; Le, K.N.; Kurasaki, M.; Ty, T.V. Impact of Rice Intensification and Urbanization on Surface Water Quality in An Giang Using a Statistical Approach. Water 2020, 12, 1710. https://doi.org/10.3390/w12061710
Thu Minh HV, Avtar R, Kumar P, Le KN, Kurasaki M, Ty TV. Impact of Rice Intensification and Urbanization on Surface Water Quality in An Giang Using a Statistical Approach. Water. 2020; 12(6):1710. https://doi.org/10.3390/w12061710
Chicago/Turabian StyleThu Minh, Huynh Vuong, Ram Avtar, Pankaj Kumar, Kieu Ngoc Le, Masaaki Kurasaki, and Tran Van Ty. 2020. "Impact of Rice Intensification and Urbanization on Surface Water Quality in An Giang Using a Statistical Approach" Water 12, no. 6: 1710. https://doi.org/10.3390/w12061710
APA StyleThu Minh, H. V., Avtar, R., Kumar, P., Le, K. N., Kurasaki, M., & Ty, T. V. (2020). Impact of Rice Intensification and Urbanization on Surface Water Quality in An Giang Using a Statistical Approach. Water, 12(6), 1710. https://doi.org/10.3390/w12061710