Design Aspects, Energy Consumption Evaluation, and Offset for Drinking Water Treatment Operation
Abstract
:1. Introduction
Literature Review
- (a)
- Design and determine the energy consumption and energy intensity of each unit operation (validated using plant’s data) of an existing DWTP,
- (b)
- Conduct a modeling study and size the DWTP for solar PV, to offset the energy consumption of the plant, based on available landholdings and economic assessment,
- (c)
- Determine the net reduction in carbon emissions due to solar PV installation compared to non-PV based design.
2. Study Area
3. Data Sources
3.1. Process Flow Diagram
3.2. Water Quality Report
3.3. Treatment Plant Design Criteria
3.4. Carbon Emissions
3.5. PV System
3.6. Federal and State Incentives
4. Methodology
4.1. Design and Energy Consumption for the DWTP
4.1.1. Pre-Sedimentation
4.1.2. Coagulation
4.1.3. Flocculation
4.1.4. Sedimentation
4.1.5. Filtration
4.1.6. Chlorination
4.1.7. Residual Management
4.2. System Advisor Model
4.2.1. Technical Analysis
4.2.2. Financial Analysis
4.3. Land Area Requirements
4.4. Carbon Emissions
5. Results
5.1. DWTP Design and Energy Consumption
5.1.1. Pre-Sedimentation
5.1.2. Coagulation
5.1.3. Flocculation
5.1.4. Sedimentation
5.1.5. Filtration
5.1.6. Chlorination
5.1.7. Residual Management
5.1.8. Energy Consumption of the DWTP
5.2. System Advisor Model
5.2.1. Effect of Battery Storage
5.2.2. Effect of Governmental Incentives
5.2.3. Effect of Location Change
5.2.4. Sensitivity Analysis
5.3. Land Area Requirements
5.4. Carbon Emissions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dow, C.; Ahmad, S.; Stave, K.; Gerrity, D. Evaluating the Sustainability of IPR and DPR: A Southern Nevada Case Study. AWWA Water Sci. 2019, 1, e1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Environmental Protection Agency (USEPA). 2019. Available online: https://www.epa.gov/sustainable-water-infrastructure/energy-efficiency-water-utilities (accessed on 25 December 2019).
- Shrestha, E.; Ahmad, S.; Johnson, W.; Batista, J.R. The carbon footprint of water management policy options. Energy Policy 2012, 42, 201–212. [Google Scholar] [CrossRef]
- Shrestha, E.; Ahmad, S.; Johnson, W.; Shrestha, P.; Batista, J.R. Carbon footprint of water conveyance versus desalination as alternatives to expand water supply. Desalination 2011, 280, 33–43. [Google Scholar] [CrossRef]
- Goldstein, R.; Smith, W. Water & Sustainability (Volume 4): US Electricity Consumption for Water Supply & Treatment-the Next Half Century; Electric Power Research Institute: Palo Alto, CA, USA, 2002. [Google Scholar]
- Bukhary, S.; Batista, J.; Ahmad, S. An Analysis of Energy Consumption and the Use of Renewables for a Small Drinking Water Treatment Plant. Water 2020, 12, 28. [Google Scholar] [CrossRef] [Green Version]
- Bukhary, S.; Batista, J.; Ahmad, S. Water-Energy-Carbon Nexus Approach for Sustainable Large-Scale Drinking Water Treatment Operation. J. Hydrol. 2020, 587, 124953. [Google Scholar] [CrossRef]
- Bukhary, S.; Weidhaas, J.; Ansari, K.; Mahar, R.B.; Pomeroy, C.; Van Derslice, J.A.; Burian, S.; Ahmad, S. Using Distributed Solar for Treatment of Drinking Water in Developing Countries. In Proceedings of the World Environmental and Water Resources Congress 2017, Sacramento, CA, USA, 21–25 May 2017; Volume 2017, pp. 264–276. [Google Scholar] [CrossRef]
- Plappally, A.K.; Lienhard, V.J.H. Energy requirements for water production, treatment, end use, reclamation, and disposal. Renew. Sustain. Energy Rev. 2012, 16, 4818–4848. [Google Scholar] [CrossRef]
- Sala-Garrido, R.; Molinos-Senante, M. Benchmarking energy efficiency of water treatment plants: Effects of data variability. Sci. Total Environ. 2020, 701, 134960. [Google Scholar] [CrossRef]
- Vadasarukkai, Y.S.; Gagnon, G.A. Influence of the Mixing Energy Consumption Affecting Coagulation and Floc Aggregation. Environ. Sci. Technol. 2017, 51, 3480–3489. [Google Scholar] [CrossRef] [Green Version]
- Wakeel, M.; Chen, B.; Hayat, T.; Alsaedi, A.; Ahmad, B. Energy consumption for water use cycles in different countries: A review. Appl. Energy 2016, 178, 868–885. [Google Scholar] [CrossRef]
- Awad, H.; Alalm, M.G.; El-Etriby, H.K. Environmental and cost life cycle assessment of different alternatives for improvement of wastewater treatment plants in developing countries. Sci. Total Environ. 2019, 660, 57–68. [Google Scholar] [CrossRef]
- Chang, J.; Lee, W.; Yoon, S. Energy consumptions and associated greenhouse gas emissions in operation phases of urban water reuse systems in Korea. J. Clean. Prod. 2017, 141, 728–736. [Google Scholar] [CrossRef]
- Gude, V.G. Energy and water autarky of wastewater treatment and power generation systems. Renew. Sustain. Energy Rev. 2015, 45, 52–68. [Google Scholar] [CrossRef]
- He, Y.; Zhu, Y.; Chen, J.; Huang, M.; Wang, P.; Wang, G.; Zou, W.; Zhou, G. Assessment of energy consumption of municipal wastewater treatment plants in China. J. Clean. Prod. 2019, 228, 399–404. [Google Scholar] [CrossRef]
- Mannina, G.; Rebouças, T.F.; Cosenza, A.; Chandran, K. A plant-wide wastewater treatment plant model for carbon and energy footprint: Model application and scenario analysis. J. Clean. Prod. 2019, 217, 244–256. [Google Scholar] [CrossRef]
- Dawadi, S.; Ahmad, S. Changing climatic conditions in the Colorado River Basin: Implications for water resources management. J. Hydrol. 2012, 430, 127–141. [Google Scholar] [CrossRef]
- Dawadi, S.; Ahmad, S. Evaluating the impact of demand-side management on water resources under changing climatic conditions and increasing population. J. Environ. Manag. 2013, 114, 261–275. [Google Scholar] [CrossRef]
- Ahmad, S.; Prashar, D. Evaluating Municipal Water Conservation Policies Using a Dynamic Simulation Model. Water Resour. Manag. 2010, 24, 3371–3395. [Google Scholar] [CrossRef]
- Qaiser, K.; Ahmad, S.; Johnson, W.; Batista, J. Evaluating the impact of water conservation on fate of outdoor water use: A study in an arid region. J. Environ. Manag. 2011, 92, 2061–2068. [Google Scholar] [CrossRef]
- Qaiser, K.; Ahmad, S.; Johnson, W.; Batista, J.R. Evaluating water conservation and reuse policies using a dynamic water balance model. Environ. Manag. 2013, 51, 449–458. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). 2016. Available online: https://www3.epa.gov/region9/waterinfrastructure/ (accessed on 15 September 2016).
- Xue, X.; Hawkins, T.R.; Schoen, M.E.; Garland, J.; Ashbolt, N.J. Comparing the life cycle energy consumption, global warming and eutrophication potentials of several water and waste service options. Water 2016, 8, 154. [Google Scholar] [CrossRef] [Green Version]
- Bukhary, S.; Chen, C.; Kalra, A.; Ahmad, S. Improving Streamflow Reconstructions Using Oceanic-Atmospheric Climate Variability. In Proceedings of the World Environmental and Water Resources Congress 2014, Portland, Oregon, 1–5 June 2014; pp. 846–855. [Google Scholar] [CrossRef]
- Bukhary, S.; Kalra, A.; Ahmad, S. Insights into reconstructing sacramento river flow using tree rings and Pacific Ocean climate variability. In Proceedings of the World Environmental and Water Resources Congress, Austin, TX, USA, 17–21 May 2015; pp. 1040–1049. [Google Scholar] [CrossRef]
- Choubin, B.; Khalighi-Sigaroodi, S.; Malekian, A.; Ahmad, S.; Attarod, P. Drought forecasting in a semi-arid watershed using climate signals: A neuro-fuzzy modeling approach. J. Mt. Sci. 2014, 11, 1593–1605. [Google Scholar] [CrossRef]
- Nussbaum, E.M.; Owens, M.C.; Sinatra, G.M.; Rehmat, A.P.; Cordova, J.R.; Ahmad, S.; Dascalu, S.M. Losing the Lake: Simulations to Promote Gains in Student Knowledge and Interest about Climate Change. Int. J. Environ. Sci. Educ. 2015, 10, 789–811. [Google Scholar]
- Chen, C.; Kalra, A.; Ahmad, S. Hydrologic responses to climate change using downscaled GCM data on a watershed scale. J. Water Clim. Chang. 2019, 10, 63–77. [Google Scholar] [CrossRef]
- Tamaddun, K.A.; Kalra, A.; Ahmad, S. Spatiotemporal Variation in the Continental US Streamflow in Association with Large-Scale Climate Signals Across Multiple Spectral Bands. Water Resour. Manag. 2019, 33, 1947–1968. [Google Scholar] [CrossRef]
- Tamaddun, K.; Kalra, A.; Kumar, S.; Ahmad, S. CMIP5 Models’ Ability to Capture Observed Trends under the Influence of Shifts and Persistence: An In-depth Study on the Colorado River Basin. J. Appl. Meteorol. Climatol. 2019, 58, 1677–1688. [Google Scholar] [CrossRef]
- Nazari-Sharabian, M.; Ahmad, S.; Karakouzian, M. Climate Change and Eutrophication: A Short Review. Eng. Technol. Appl. Sci. Res. 2018, 8, 3668–3672. [Google Scholar]
- Nazari-Sharabian, M.; Taheriyoun, M.; Ahmad, S.; Karakouzian, M.; Ahmadi, A. Water Quality Modeling of Mahabad Dam Watershed–Reservoir System under Climate Change Conditions, Using SWAT and System Dynamics. Water 2019, 11, 394. [Google Scholar] [CrossRef] [Green Version]
- Thakur, B.; Kalra, A.; Ahmad, S.; Lamb, K.; Lakshmi, V. Bringing Statistical Learning Machines together for Hydro-climatological Predictions—Case Study for Sacramento San Joaquin River Basin, California. J. Hydrol. Reg. Stud. 2020, 27, 100651. [Google Scholar] [CrossRef]
- Nyaupane, N.; Thakur, B.; Kalra, A.; Ahmad, S. Evaluating Future Flood Scenarios Using CMIP5 Climate Projections. Water 2018, 10, 1866. [Google Scholar] [CrossRef] [Green Version]
- Saifullah, M.; Liu, S.; Tahir, A.A.; Zaman, M.; Ahmad, S.; Adnan, M.; Chen, D.; Ashraf, M.; Mehmood, A. Development of Threshold Levels and a Climate-Sensitivity Model of the Hydrological Regime of the High-Altitude Catchment of the Western Himalayas, Pakistan. Water 2019, 11, 1454. [Google Scholar] [CrossRef] [Green Version]
- Rahaman, M.M.; Thakur, B.; Kalra, A.; Ahmad, S. Modeling of GRACE-Derived Groundwater Information in the Colorado River Basin. Hydrology 2019, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Li, Q.; Ahmad, S.; Zhou, H.; Li, L. Changes in Snow Phenology from 1979 to 2016 over the Tianshan Mountains, Central Asia. Remote Sens. 2019, 11, 499. [Google Scholar] [CrossRef] [Green Version]
- Tamaddun, K.A.; Kalra, A.; Bernardez, M.; Ahmad, S. Effects of ENSO on Temperature, Precipitation, and Potential Evapotranspiration of North India’s Monsoon: An Analysis of Trend and Entropy. Water 2019, 11, 189. [Google Scholar] [CrossRef] [Green Version]
- Amoueyan, E.; Ahmad, S.; Eisenberg, J.; Gerrity, D. A Dynamic Quantitative Microbial Risk Assessment for Norovirus in Potable Reuse Systems. Microb. Risk Anal. 2020, 14, 100088. [Google Scholar] [CrossRef]
- Amoueyan, E.; Ahmad, S.; Eisenberg, J.N.S.; Gerrity, D. Equivalency of Indirect and Direct Potable Reuse Paradigms based on a Quantitative Microbial Risk Assessment Framework. Microb. Risk Anal. 2019, 12, 60–75. [Google Scholar] [CrossRef]
- Amoueyan, E.; Ahmad, S.; Eisenberg, J.N.S.; Pecson, B.; Gerrity, D. Quantifying pathogen risks associated with potable reuse: A risk assessment case study for Cryptosporidium. Water Res. 2017, 119, 255–266. [Google Scholar] [CrossRef]
- Crittenden, J.C.; Trussell, R.R.; Hand, D.W.; Howe, K.J.; Tchobanoglous, G. MWH’s Water Treatment: Principles and Design; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Bukhary, S.; Batista, J.; Ahmad, S. Evaluating the Feasibility of Photovoltaic-Based Plant for Potable Water Treatment. In Proceedings of the World Environmental and Water Resources Congress, Sacramento, CA, USA, 21–25 May 2017; pp. 256–263. [Google Scholar] [CrossRef]
- Bukhary, S.; Ahmad, S.; Batista, J. Analyzing land and water requirements for solar deployment in the Southwestern United States. Renew. Sustain. Energy Rev. 2018, 82, 3288–3305. [Google Scholar] [CrossRef]
- Okoye, C.O.; Oranekwu-Okoye, B.C. Economic feasibility of solar PV system for rural electrification in Sub-Sahara Africa. Renew. Sustain. Energy Rev. 2018, 82, 2537–2547. [Google Scholar] [CrossRef]
- Ferreira, A.; Kunh, S.S.; Fagnani, K.C.; De Souza, T.A.; Tonezer, C.; Dos Santos, G.R.; Coimbra-Araújo, C.H. Economic overview of the use and production of photovoltaic solar energy in brazil. Renew. Sustain. Energy Rev. 2018, 81, 181–191. [Google Scholar] [CrossRef]
- Linssen, J.; Stenzel, P.; Fleer, J. Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles. Appl. Energy 2017, 185, 2019–2025. [Google Scholar] [CrossRef]
- DSIRE. Database of State Incentives for Renewables & Efficiency (DSIRE). 2017. Available online: http://www.dsireusa.org/ (accessed on 16 August 2017).
- Brown, K.E.; Henze, D.K.; Milford, J.B. How accounting for climate and health impacts of emissions could change the US energy system. Energy Policy 2017, 102, 396–405. [Google Scholar] [CrossRef]
- Prehoda, E.W.; Pearce, J.M. Potential lives saved by replacing coal with solar photovoltaic electricity production in the US. Renew. Sustain. Energy Rev. 2017, 80, 710–715. [Google Scholar] [CrossRef] [Green Version]
- Nonhebel, S. Renewable energy and food supply: Will there be enough land? Renew. Sustain. Energy Rev. 2005, 9, 191–201. [Google Scholar] [CrossRef]
- Bukhary, S.; Batista, J.; Ahmad, S. Using Solar and Wind Energy for Water Treatment in the Southwest. In Proceedings of the World Environmental and Water Resources Congress, Pittsburgh, PA, USA, 19–23 May 2019; Volume 2019, pp. 410–416. [Google Scholar] [CrossRef]
- Bukhary, S.; Batista, J.; Ahmad, S. Sustainable Desalination of Brackish Groundwater for the Las Vegas Valley. In Proceedings of the World Environmental and Water Resources Congress 2018, Minneapolis, MN, USA, 3–7 June 2018. [Google Scholar] [CrossRef]
- Gilman, P.; Blair, N.; Mehos, M.; Christensen, C.; Janzou, S.; Cameron, C. Solar Advisor Model User Guide for Version 2.0; National Renewable Energy Laboratory: Golden, CO, USA, 2008.
- Good, J.; Johnson, J.X. Impact of inverter loading ratio on solar photovoltaic system performance. Appl. Energy 2016, 177, 475–486. [Google Scholar] [CrossRef]
- Phillips, C.; Elmore, R.; Melius, J.; Gagnon, P.; Margolis, R. A data mining approach to estimating rooftop photovoltaic potential in the US. J. Appl. Stat. 2019, 46, 385–394. [Google Scholar] [CrossRef]
- Sweeney, J.F.; Pate, M.B.; Choi, W. Life cycle production and costs of a residential solar hot water and grid-connected photovoltaic system in humid subtropical Texas. J. Renew. Sustain. Energy 2016, 8, 053702. [Google Scholar] [CrossRef]
- Song, J.; Choi, Y. Design of photovoltaic systems to power aerators for natural purification of acid mine drainage. Renew. Energy 2015, 83, 759–766. [Google Scholar] [CrossRef]
- Bukhary, S. Water-Energy Nexus Approaches for Solar Development and Water Treatment in the Southwestern United States. Ph.D. Thesis, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA, 2018. [Google Scholar]
- García-Vaquero, N.; Lee, E.; Castañeda, R.J.; Cho, J.; López-Ramírez, J.A. Comparison of drinking water pollutant removal using a nanofiltration pilot plant powered by renewable energy and a conventional treatment facility. Desalination 2014, 347, 94–102. [Google Scholar] [CrossRef]
- Soshinskaya, M.; Crijns-Graus, W.H.; van der Meer, J.; Guerrero, J.M. Application of a microgrid with renewables for a water treatment plant. Appl. Energy 2014, 134, 20–34. [Google Scholar] [CrossRef] [Green Version]
- Astolfi, M.; Mazzola, S.; Silva, P.; Macchi, E. A synergic integration of desalination and solar energy systems in stand-alone microgrids. Desalination 2017, 419, 169–180. [Google Scholar] [CrossRef]
- Gikas, P.; Tsoutsos, T. Near zero energy wastewater treatment plants for the Greek islands. Desalin. Water Treat. 2015, 53, 3328–3334. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Brito, L.R.; de Araújo Costa, E.C.; dos Santos, E.V.; Martínez-Huitle, C.A. Solar photovoltaic-battery system as a green energy for driven electrochemical wastewater treatment technologies: Application to elimination of Brilliant Blue FCF dye solution. J. Environ. Chem. Eng. 2019, 7, 102924. [Google Scholar] [CrossRef]
- Nawarkar, C.J.; Salkar, V.D. Solar powered electrocoagulation system for municipal wastewater treatment. Fuel 2019, 237, 222–226. [Google Scholar] [CrossRef]
- Li, S.; Cai, Y.H.; Schäfer, A.I.; Richards, B.S. Renewable energy powered membrane technology: A review of the reliability of photovoltaic-powered membrane system components for brackish water desalination. Appl. Energy 2019, 253, 113524. [Google Scholar] [CrossRef]
- Mostafaeipour, A.; Qolipour, M.; Rezaei, M.; Babaee-Tirkolaee, E. Investigation of off-grid photovoltaic systems for a reverse osmosis desalination system: A case study. Desalination 2019, 454, 91–103. [Google Scholar] [CrossRef]
- Shalaby, S.M. Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: A review. Renew. Sustain. Energy Rev. 2017, 73, 789–797. [Google Scholar] [CrossRef]
- Shawky, H.A.; Abdel Fatah, A.A.; Abo ElFadl, M.M.; El-Aassar, A.H.M. Design of a small mobile PV-driven RO water desalination plant to be deployed at the northwest coast of Egypt. Desalin. Water Treat. 2015, 55, 3755–3766. [Google Scholar] [CrossRef]
- Zhang, Y.; Sivakumar, M.; Yang, S.; Enever, K.; Ramezanianpour, M. Application of solar energy in water treatment processes: A review. Desalination 2018, 428, 116–145. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency (USEPA). 2016. Available online: https://www.epa.gov/dwstandardsregulations (accessed on 12 October 2016).
- WEF (Water Environment Federation). Energy Conservation in Water and Wastewater Facilities; Manual of practice No. 32; WEF Press: Cologny, Switzerland, 2009. [Google Scholar]
- Reynolds, T.D.; Richards, P.A. Unit Operations and Processes in Environmental Engineering; PWS Publishing Company: Boston, MA, USA, 1996. [Google Scholar]
- Hendricks, D.W. Water Treatment Unit Processes: Physical and Chemical; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Moomaw, W.; Burgherr, P.; Heath, G.; Lenzen, M.; Nyboer, J.; Verbruggen, A. Annex II: Methodology. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlomer, S., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2011. [Google Scholar]
- U.S. Energy Information Administration (USEIA). 2016. Available online: http://www.eia.gov/state/seds/ (accessed on 29 July 2016).
- Freecleansolar. 2017. Available online: https://www.freecleansolar.com/Solar-Panel-305-Watt-Helios-7T2-305-p/7t2-305.htm (accessed on 28 August 2017).
- Wholesalesolar. 2017. Available online: https://www.wholesalesolar.com/2935110/fronius/inverters/fronius-symo-lite-10.0-3-10kw-3-phase-480-inverter (accessed on 28 August 2017).
- Wholesalesolar. 2017. Available online: https://www.wholesalesolar.com/9901382/surrette-rolls/batteries/surrette-rolls-s-1660-flooded-battery (accessed on 28 August 2017).
- Fu, R.; Chung, D.; Lowder, T.; Feldman, D.; Ardani, K.; Margolis, R. US Solar Photovoltaic System Cost Benchmark: Q1 2016; National Renewable Energy Laboratory, US Department of Energy: Golden, CO, USA, 2016; NREL/TP-6A20-66532.
- Fu, R.; Feldman, D.J.; Margolis, R.M.; Woodhouse, M.A.; Ardani, K.B. US Solar Photovoltaic System Cost Benchmark: Q1 2017; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2017; No. NREL/TP-6A20-68925.
- Kang, M.H.; Rohatgi, A. Quantitative analysis of the levelized cost of electricity of commercial scale photovoltaics systems in the US. Sol. Energy Mater. Sol. Cells 2016, 154, 71–77. [Google Scholar] [CrossRef]
- Krupa, J.; Harvey, D. Renewable electricity finance in the United States: A state-of-the-art review. Energy 2017, 135, 913–929. [Google Scholar] [CrossRef]
- Lai, C.S.; McCulloch, M.D. Levelized cost of electricity for solar photovoltaic and electrical energy storage. Appl. Energy 2017, 190, 191–203. [Google Scholar] [CrossRef]
- Mundada, A.S.; Shah, K.K.; Pearce, J.M. Levelized cost of electricity for solar photovoltaic, battery and cogen hybrid systems. Renew. Sustain. Energy Rev. 2016, 57, 692–703. [Google Scholar] [CrossRef] [Green Version]
- Musi, R.; Grange, B.; Sgouridis, S.; Guedez, R.; Armstrong, P.; Slocum, A.; Calvet, N. Techno-economic analysis of concentrated solar power plants in terms of levelized cost of electricity. In AIP Conference Proceedings; AIP Publishing: Abu Dhabi, UAE, 2017; Volume 1850, p. 160018. [Google Scholar]
- Reiter, E.; Lowder, T.; Mathur, S.; Mercer, M. Virginia Solar Pathways Project. Economic Study of Utility-Administered Solar Programs: Soft Costs, Community Solar, and Tax Normalization Considerations; NREL (National Renewable Energy Laboratory): Golden, CO, USA, 2016; No. NREL/TP-6A42-65758.
- Racharla, S.; Rajan, K. Solar tracking system—A review. Int. J. Sustain. Eng. 2017, 10, 72–81. [Google Scholar]
- NDT Nevada Department of Taxation (NDT). 2017. Available online: https://tax.nv.gov/ (accessed on 20 December 2017).
- McCabe, J. Salvage Value of Photovoltaic Systems. In Proceedings of the World Renewable Energy Forum, Littleton, CO, USA, 2011; Available online: https://ases.conference-services.net/resources/252/2859/pdf/SOLAR2012_0783_full%20paper.pdf (accessed on 8 June 2017).
- McKinney, R.E. Environmental Pollution Control Microbiology: A Fifty-Year Perspective; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Lee, C.C.; Lin, S.D. Handbook of Environmental Engineering Calculations; McGraw Hill: New York, NY, USA, 2007. [Google Scholar]
- Mays, L.W. Water Resources Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Kawamura, S. Integrated Design of Water Treatment Facilities; John Willey & Sons: New York, NY, USA, 1991. [Google Scholar]
- Qasim, S.R. Wastewater Treatment Plants: Planning, Design, and Operation; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Lauer, W.; Barsotti, M.G.; Hardy, D.K. Chemical Feed Field Guide for Treatment Plant Operators; American Water Works Association: Denver, CO, USA, 2009. [Google Scholar]
- Lawler, D.F.; Singer, P.C. Analyzing disinfection kinetics and reactor design: A conceptual approach versus the SWTR. J. Am. Water Work. Assoc. 1993, 85, 67–76. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). 1977. Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=9100V2XH.txt (accessed on 12 October 2016).
- Verrelli, D.I.; Dixon, D.R.; Scales, P.J. Assessing dewatering performance of drinking water treatment sludges. Water Res. 2010, 44, 1542–1552. [Google Scholar] [CrossRef] [PubMed]
- Short, W.; Packey, D.J.; Holt, T. A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies; National Renewable Energy Lab.: Golden, CO, USA, 1995; No. NREL/TP--462-5173.
- Doubleday, K.; Choi, B.; Maksimovic, D.; Deline, C.; Olalla, C. Recovery of inter-row shading losses using differential power-processing submodule DC–DC converters. Sol. Energy 2016, 135, 512–517. [Google Scholar] [CrossRef] [Green Version]
- Brownson, J.R. Solar Energy Conversion Systems; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Nugent, D.; Sovacool, B.K. Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey. Energy Policy 2014, 65, 229–244. [Google Scholar] [CrossRef]
- Pirnie, M.; Yonkin, M. Statewide Assessment of Energy Use by the Municipal Water and Wastewater Sector; New York State Energy Research and Development, Authority (NYSERDA): Albany, NY, USA, 2008; Report, 08-17.
- Bailey, J.R.; Ahmad, S.; Batista, J.R. The Impact of Advanced Treatment Technologies on the Energy Use in Satellite Water Reuse Plants. Water 2020, 12, 366. [Google Scholar] [CrossRef] [Green Version]
- Longo, S.; d’Antoni, B.M.; Bongards, M.; Chaparro, A.; Cronrath, A.; Fatone, F.; Lema, J.M.; Mauricio-Iglesias, M.; Soares, A.; Hospido, A. Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement. Appl. Energy 2016, 179, 1251–1268. [Google Scholar] [CrossRef]
- Lewis, N.S. Toward cost-effective solar energy use. Science 2007, 315, 798–801. [Google Scholar] [CrossRef] [Green Version]
- Halder, P.K. Potential and economic feasibility of solar home systems implementation in Bangladesh. Renew. Sustain. Energy Rev. 2016, 65, 568–576. [Google Scholar] [CrossRef]
- Al-Sharafi, A.; Sahin, A.Z.; Ayar, T.; Yilbas, B.S. Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia. Renew. Sustain. Energy Rev. 2017, 69, 33–49. [Google Scholar] [CrossRef]
- Noorollahi, E.; Fadai, D.; Akbarpour Shirazi, M.; Ghodsipour, S.H. Land Suitability Analysis for Solar Farms Exploitation Using GIS and Fuzzy Analytic Hierarchy Process (FAHP)—A Case Study of Iran. Energies 2016, 9, 643. [Google Scholar] [CrossRef]
- Anwarzai, M.A.; Nagasaka, K. Utility-scale implementable potential of wind and solar energies for Afghanistan using GIS multi-criteria decision analysis. Renew. Sustain. Energy Rev. 2017, 71, 150–160. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). 2017. Available online: https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator (accessed on 1 September 2017).
- Burtt, D.; Dargusch, P. The cost-effectiveness of household photovoltaic systems in reducing greenhouse gas emissions in Australia: Linking subsidies with emission reductions. Appl. Energy 2015, 148, 439–448. [Google Scholar] [CrossRef]
- Oliveira, C.T.; Antonio, F.; Burani, G.F.; Udaeta, M.E.M. GHG reduction and energy efficiency analyses in a zero-energy solar house archetype. Int. J. Low Carbon Technol. 2017, 12, 225–232. [Google Scholar] [CrossRef]
- MacDonald, A.E.; Clack, C.T.; Alexander, A.; Dunbar, A.; Wilczak, J.; Xie, Y. Future cost-competitive electricity systems and their impact on US CO2 emissions. Nat. Clim. Chang. 2016, 6, 526–531. [Google Scholar] [CrossRef]
- Shindell, D.T.; Lee, Y.; Faluvegi, G. Climate and health impacts of US emissions reductions consistent with 2 °C. Nat. Clim. Chang. 2016, 6, 503–507. [Google Scholar] [CrossRef]
Parameter | Units | Average Value | USEPA* MCL **/SMCL *** Guidelines |
---|---|---|---|
pH | N/A | 8.2 | 6.5–8.5 |
Water temperature (winter) | °C | 5 | Not regulated |
Water temperature (summer) | °C | 19 | Not regulated |
Turbidity | NTU | 4 | 0.3 |
Sources for Electricity Generation | Carbon Emissions (gCO2eq kWh−1) | State Electricity Source Mix |
---|---|---|
Coal | 1001 | 23.51 |
Natural Gas | 469 | 56.41 |
Petroleum | 840 | 0.07 |
Nuclear | 16 | 0 |
Hydropower | 4 | 7.42 |
Bio-power | 18 | 0.1 |
Geothermal | 45 | 8.5 |
Wind | 12 | 0.95 |
Solar | 46 | 3.04 |
Parameter | Unit | Value | |
---|---|---|---|
Module | Module Name | - | Helio USA 7T2 305 |
Module Area | m2 | 1.952 | |
Module Material | - | Mono C-Si | |
Nominal Efficiency | % | 15.6 | |
Maximum Power Pmp | Watt | 305 | |
Maximum Power Voltage Vmp | Volt | 36.7 | |
Maximum Power Current Imp | Ampere | 8.3 | |
Open Circuit Voltage Voc | Volt | 45.1 | |
Short Circuit Voltage Isc | Ampere | 8.9 | |
Inverter | Inverter Name | - | Fronius-Symo 10.0-3 240V |
Weighted Efficiency | % | 96.5 | |
Maximum AC Power | Watt | 9995 | |
Maximum DC Power | Watt | 10,359 | |
Nominal AC Voltage | Volt | 240 | |
Maximum DC Voltage | Volt | 600 | |
Maximum DC Current | Ampere | 41.5 | |
Minimum MPPT DC Voltage | Volt | 300 | |
Nominal DC Voltage | Volt | 371.6 | |
Maximum MPPT DC Voltage | Volt | 500 | |
Battery | Name | - | Lead Acid Flooded |
Cell Nominal Voltage | Volt | 2 | |
Internal Resistance | Ohm | 0.1 | |
C-rate of discharge Curve | 0.05 | ||
Fully Charged Cell Voltage | Volt | 2.2 | |
Exponential Zone Cell Voltage | Volt | 2.06 | |
Nominal Zone Cell Voltage | Volt | 2.03 | |
Charged Removed at Exponential Point | % | 0.25 | |
Charge Removed at Nominal Point | % | 90 | |
Cell Capacity | Ah | 1284 | |
Max C-rate of Charge | h−1 | 0.12 | |
Max C-rate of Discharge | h−1 | 0.12 | |
Minimum State of Charge | % | 10 | |
Maximum State of Charge | % | 95 | |
Minimum Time at Charge State | min | 10 |
Parameter | Unit | Nevada Values | New York Values | References | |
---|---|---|---|---|---|
Direct Cost | Module | $ Watt−1 | 1.6 | 1.6 | [78] |
Inverter | $ Watt−1 | 5.0 | 5.0 | [79] | |
Battery bank | $ kWh−1 | 157.7 | 157.7 | [80] | |
Battery bank replacement cost | $ kWh−1 | 112 | 112 | [62] | |
Electrical Balance of equipment cost | $ Watt−1 | 0.12 | 0.18 | [82] | |
2-axis-tracking equipment | $ Watt−1 | 0.2 | 0.2 | [89] | |
Installation labor | $ Watt−1 | 0.15 | 0.18 | [82] | |
Contingency | % | 4.0 | 4.0 | [82] | |
Indirect Cost | Permitting, environmental studies, grid interconnection | $ Watt−1 | 0.1 | 0.12 | [82] |
Engineering and developer overhead | $ Watt−1 | 0.53 | 0.55 | [82] | |
Installer margin and overhead | $ Watt−1 | 0.19 | 0.19 | [82] | |
O&M Cost | Fixed annual cost | $ kW−1 year−1 | 18 | 18 | [82] |
Financial Rates | Inflation rate | % | 2.5 | 2.5 | SAM default value |
Real discount rate | % | 8.0 | 8.0 | [85] | |
Federal income tax rate | % year−1 | 28 | 28 | [83] | |
State income tax rate | % year−1 | 0.0 | 8.82 | [90] | |
Sales tax | % | 8.1 | 4.375 | [49,90] | |
Insurance rate | % of installed costs | 0.25 | 0.25 | [88] | |
Salvage value | 20 | 20 | [91] | ||
Property tax rate | % year−1 | 0.0 | 2.0 | [49] |
s.No. | Unit Process | Sub-Processes | Energy Driving Unit | Plant Motor Size (Data Obtained from Plant’s Managers) (hp) | Estimated Motor Size (This Study) (hp) | Motor Size (This study) (kWh day−1) | Efficiency (%) |
---|---|---|---|---|---|---|---|
1. | Automatic Screens | Screen Cleaning | Backwashing Jet Pump | 3 | 3.4 | 1.3 | 49 |
2. | Coagulation | Coagulant Addition | Metering Pump | N/A | 5 | 85.8 | 76 |
Polymer addition | Jet Diffuser Pump | 7.5 | 7.25 | 202.8 | 64 | ||
Flash Mixing | Static Mixer | 15 | 16.8 | 375.2 | 80 | ||
3. | Flocculation | Slow Mixing | Paddle Wheels | 5 | 4.9 | 658.8 | 80 |
4. | Sedimentation | Sludge Transfer Pumps | 7.7 | 7.5 | 411 | 72 | |
5. | Filtration | Air Scour | 250 | 247.6 | 169.2 | 80 | |
Backwash Water Transfer Pumps | 200 | 199.6 | 272.9 | 77 | |||
6. | Water Recovery Basins | Water Transfer Pumps | 50 | 49 | 292.4 | 76 | |
7. | Decant Basin | Water Transfer Pumps | 30 | 29.2 | 65.4 | 76 | |
Sludge Transfer Pumps | 7.5 | 7.7 | 17.2 | 72 | |||
8. | Chlorination | Chlorine Addition | Metering Pumps | N/A | 3 | 52 | 76 |
9. | Soda Ash System | Soda Ash Mixer | 0.75 | 0.75 | 16.7 | 80 | |
Slurry Feed Pump | N/A | 1.7 | 40.7 | 72 | |||
Total | 2661.4 |
Energy Driving Units | Plant Motor Size (Data Obtained from Plant’s Managers) (hp) | Estimated Motor Size (This Study) (hp) | Motor Size (This Study) (MWh day−1) | Wire-to-Water Efficiency (%) | |
---|---|---|---|---|---|
Finished Water Pumping | Zone-1 Pump | 500 | 496.5 | 8.9 | 80 |
Zone-2 Pump | 400 | 404.7 | 7.2 | 70 | |
400 | 404.7 | 7.2 | 70 | ||
Zone-3 Pump | 250 | 248.1 | 4.4 | 80 | |
460 | 421.1 | 7.8 | 80 | ||
500 | 509.6 | 9.1 | 80 | ||
500 | 509.6 | 9.1 | 80 | ||
Total 53.9 |
Parameter | Unit | Nevada Location | New York Location | |
---|---|---|---|---|
Module | Nameplate Capacity | kW | 500 | 850 |
Number of Modules | - | 1630 | 2780 | |
Modules per String | - | 10 | 10 | |
Strings in Parallel | - | 163 | 278 | |
Total Module Area | ×103 m2 | 3.18 | 5.43 | |
String Voc | Volt | 451 | 451 | |
String Vmp | Volt | 366.5 | 366.5 | |
Inverter | Total Capacity | kWac | 410 | 709.6 |
Number of Inverters | - | 41 | 71 | |
Maximum DC Voltage | Volt | 600 | 600 | |
Minimum MPPT Voltage | Volt | 300 | 300 | |
Maximum MPPT Voltage | Volt | 500 | 500 | |
DC to AC Ratio | - | 1.2 | 1.2 | |
Total Land Area | ×103 m2 | 10.5 | 18.2 | |
Battery | Nominal Bank Capacity | MWh | 75.1 | 82.2 |
Nominal Bank Voltage | Volt | 350 | 350 | |
Cell in Series | - | 175 | 175 | |
Strings in Parallel | - | 167 | 183 | |
Battery Efficiency | % | 92.7 | 92.7 | |
Financial | Net Present Value | $ million | 0.24 | −0.68 |
Metrics | Levelized cost of Electricity (nominal) | Cents kWh−1 | 2.65 | 9.68 |
Levelized cost of Electricity (real) | Cents kWh−1 | 2.15 | 7.84 | |
Net Capital Cost | $ million | 14.5 | 16.5 | |
Electricity Bill without System (year 1) | $ million | 0.08 | 0.07 | |
Electricity Bill with System (year 1) | $ | 6444 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukhary, S.; Batista, J.; Ahmad, S. Design Aspects, Energy Consumption Evaluation, and Offset for Drinking Water Treatment Operation. Water 2020, 12, 1772. https://doi.org/10.3390/w12061772
Bukhary S, Batista J, Ahmad S. Design Aspects, Energy Consumption Evaluation, and Offset for Drinking Water Treatment Operation. Water. 2020; 12(6):1772. https://doi.org/10.3390/w12061772
Chicago/Turabian StyleBukhary, Saria, Jacimaria Batista, and Sajjad Ahmad. 2020. "Design Aspects, Energy Consumption Evaluation, and Offset for Drinking Water Treatment Operation" Water 12, no. 6: 1772. https://doi.org/10.3390/w12061772
APA StyleBukhary, S., Batista, J., & Ahmad, S. (2020). Design Aspects, Energy Consumption Evaluation, and Offset for Drinking Water Treatment Operation. Water, 12(6), 1772. https://doi.org/10.3390/w12061772