Advances in Hydrologic Forecasts and Water Resources Management
Abstract
:1. Introduction
2. Summary of the Papers in the Special Issue
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, S.N.; Chang, L.C. Regional inundation forecasting using machine learning techniques with the internet of things. Water 2020, 12, 1578. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, S.; Xu, C.Y.; Chang, F.J.; Yin, J. Improving the reliability of probabilistic multi-step-ahead flood forecasting by fusing unscented Kalman filter with recurrent neural network. Water 2020, 12, 578. [Google Scholar] [CrossRef] [Green Version]
- Chi, K.; Pang, B.; Cui, L.; Peng, D.; Zhu, Z.; Zhao, G.; Shi, S. Modelling the vegetation response to climate changes in the Yarlung Zangbo River basin using random forest. Water 2020, 12, 1433. [Google Scholar] [CrossRef]
- Issermann, M.; Chang, F.J. Uncertainty analysis of spatiotemporal models with point estimate methods (PEMs)—The case of the ANUGA Hydrodynamic Model. Water 2020, 12, 229. [Google Scholar] [CrossRef] [Green Version]
- Pang, B.; Shi, S.; Zhao, G.; Shi, R.; Peng, D.; Zhu, Z. Uncertainty Assessment of urban hydrological modelling from a multiple objective perspective. Water 2020, 12, 1393. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, L.; Chen, J.; Xu, C.Y.; Xia, J.; Chen, H.; Liu, J. Parameter uncertainty of a snowmelt runoff model and its impact on future projections of snowmelt runoff in a data-scarce deglaciating river basin. Water 2019, 11, 2417. [Google Scholar] [CrossRef] [Green Version]
- Chu, T.Y.; Huang, W.C. Application of empirical mode decomposition method to synthesize flow data: A case study of Hushan Reservoir in Taiwan. Water 2020, 12, 927. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Xiong, L.; Liu, D.; Chen, J.; Kim, J.S. Improving parameter transferability of GR4J model under changing environments considering nonstationary. Water 2019, 11, 2029. [Google Scholar] [CrossRef] [Green Version]
- Bai, T.; Liu, X.; Ha, Y.P.; Chang, J.X.; Wu, L.Z.; Wei, J.; Liu, J. Study on the single-multi-objective optimal dispatch in the middle and lower reaches of Yellow River for river ecological health. Water 2020, 12, 915. [Google Scholar] [CrossRef] [Green Version]
- Ji, C.; Liang, X.; Peng, Y.; Zhang, Y.; Yan, X.; Wu, J. Multi-dimensional interval number decision model based on Mahalanobis-Taguchi System with grey entropy method and its application in reservoir operation scheme selection. Water 2020, 2, 685. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Guo, S.; Wang, J.; Qin, P.; He, S.; Sun, S.; Naeini, M.R. Evaluation of GloFAS-Seasonal Forecasts for cascade reservoir impoundment operation in the upper Yangtze River. Water 2019, 11, 2539. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.K.; Liu, S.; Niu, W.J.; Jiang, Z.Q.; Luo, B.; Miao, S.M. Multi-objective operation of cascade hydropower reservoirs using TOPSIS and gravitational search algorithm with opposition learning and mutation. Water 2019, 11, 2040. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Cai, Y.; Wang, S.; Lan, F.; Wu, X. Small and medium-scale river flood controls in highly urbanized areas: A whole region perspective. Water 2020, 12, 182. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Zhao, X.; Zhou, Y.; Guo, S.; Xu, C.Y.; Chang, F.J. Emergency disposal solution for control of a giant landslide and dammed lake in Yangtze River, China. Water 2019, 11, 1939. [Google Scholar] [CrossRef] [Green Version]
- Chang, F.J.; Hsu, K.; Chang, L.C. (Eds.) Flood Forecasting Using Machine Learning Methods; MDPI: Basel, Switzerland, 2019. [Google Scholar]
- Chang, L.C.; Chang, F.J.; Yang, S.N.; Tsai, F.H.; Chang, T.H.; Herricks, E.E. Self-organizing maps of typhoon tracks allow for flood forecasts up to two days in advance. Nat. Commun. 2020, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kao, I.F.; Zhou, Y.; Chang, L.C.; Chang, F.J. Exploring a long short-term memory-based encoder-decoder framework for multi-step-ahead flood forecasting. J. Hydrol. 2020, 583, 124631. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, S.; Chang, F.J. Explore an evolutionary recurrent ANFIS for modelling multi-step-ahead flood forecasts. J. Hydrol. 2019, 570, 343–355. [Google Scholar] [CrossRef]
- Chang, L.C.; Chang, F.J.; Yang, S.N.; Kao, I.; Ku, Y.Y.; Kuo, C.L.; Amin, I.M.Z.M. Building an intelligent hydro-informatics integration platform for regional flood inundation warning systems. Water 2019, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Jeong, D.I.; Kim, Y.O. Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction. Hydrol. Process. 2005, 19, 3819–3835. [Google Scholar] [CrossRef]
- Sun, A.Y.; Wang, D.; Xu, X. Monthly streamflow forecasting using Gaussian process regression. J. Hydrol. 2014, 511, 72–81. [Google Scholar] [CrossRef]
- Kalra, A.; Ahmad, S.; Nayak, A. Increasing streamflow forecast lead time for snowmelt-driven catchment based on large-scale climate patterns. Adv. Water Resour. 2013, 53, 150–162. [Google Scholar] [CrossRef]
- Kalra, A.; Miller, W.P.; Lamb, K.W.; Ahmad, S.; Piechota, T. Using large-scale climatic patterns for improving long lead time streamflow forecasts for Gunnison and San Juan River basins. Hydrol. Process. 2013, 27, 1543–1559. [Google Scholar] [CrossRef]
- Turan, M.E.; Yurdusev, M.A. River flow estimation from upstream flow records by artificial intelligence methods. J. Hydrol. 2009, 369, 71–77. [Google Scholar] [CrossRef]
- Chang, L.C.; Chang, F.J. Intelligent control for modelling of real-time reservoir operation. Hydrol. Process. 2001, 15, 1621–1634. [Google Scholar] [CrossRef]
- Hossain, M.S.; El-Shafie, A. Intelligent systems in optimizing reservoir operation policy: A review. Water Resour. Manag. 2013, 27, 3387–3407. [Google Scholar] [CrossRef]
- Ahmad, A.; El-Shafie, A.; Razali, S.F.M.; Mohamad, Z.S. Reservoir optimization in water resources: A review. Water Resour. Manag. 2014, 28, 3391–3405. [Google Scholar] [CrossRef]
- Tsai, W.P.; Chang, F.J.; Chang, L.C.; Herricks, E.E. AI techniques for optimizing multi-objective reservoir operation upon human and riverine ecosystem demands. J. Hydrol. 2015, 530, 634–644. [Google Scholar] [CrossRef]
- Chang, F.J.; Wang, Y.C.; Tsai, W.P. Modelling intelligent water resources allocation for multi-users. Water Resour. Manag. 2016, 30, 1395–1413. [Google Scholar] [CrossRef]
- Uen, T.S.; Chang, F.J.; Zhou, Y.; Tsai, W.P. Exploring synergistic benefits of water-food-energy nexus through multi-objective reservoir optimization schemes. Sci. Total Environ. 2018, 633, 341–351. [Google Scholar] [CrossRef]
- Li, X.; Guo, S.; Liu, P.; Chen, G. Dynamic control of flood limited water level for reservoir operation by considering inflow uncertainty. J. Hydrol. 2010, 391, 124–132. [Google Scholar] [CrossRef]
- Zhao, T.; Cai, X.; Yang, D. Effect of streamflow forecast uncertainty on real-time reservoir operation. Adv. Water Resour. 2011, 34, 495–504. [Google Scholar] [CrossRef]
- Yan, B.; Guo, S.; Chen, L. Estimation of reservoir flood control operation risks with considering inflow forecasting errors. Stoch. Environ. Res. Risk Assess. 2014, 28, 359–368. [Google Scholar] [CrossRef]
- Zhao, T.; Zhao, J.; Lund, J.R.; Yang, D. Optimal hedging rules for reservoir flood operation from forecast uncertainties. J. Water Resour. Plan. Manag. 2014, 140, 04014041. [Google Scholar] [CrossRef]
- Chen, L.; Singh, V.P.; Lu, W.; Zhang, J.; Zhou, J.; Guo, S. Streamflow forecast uncertainty evolution and its effect on real-time reservoir operation. J. Hydrol. 2016, 540, 712–726. [Google Scholar] [CrossRef]
- Huang, K.; Ye, L.; Chen, L.; Wang, Q.; Dai, L.; Zhou, J.; Singh, V.P.; Huang, M.; Zhang, J. Risk analysis of flood control reservoir operation considering multiple uncertainties. J. Hydrol. 2018, 565, 672–684. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, F.-J.; Guo, S. Advances in Hydrologic Forecasts and Water Resources Management. Water 2020, 12, 1819. https://doi.org/10.3390/w12061819
Chang F-J, Guo S. Advances in Hydrologic Forecasts and Water Resources Management. Water. 2020; 12(6):1819. https://doi.org/10.3390/w12061819
Chicago/Turabian StyleChang, Fi-John, and Shenglian Guo. 2020. "Advances in Hydrologic Forecasts and Water Resources Management" Water 12, no. 6: 1819. https://doi.org/10.3390/w12061819
APA StyleChang, F. -J., & Guo, S. (2020). Advances in Hydrologic Forecasts and Water Resources Management. Water, 12(6), 1819. https://doi.org/10.3390/w12061819