Flooding Urban Landscapes: Analysis Using Combined Hydrodynamic and Hydrologic Modeling Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Hydrologic Model Overview–SWAT
2.3.1. Modeling Setup and Watershed Delineation
2.3.2. SWAT Simulation and Calibration/Validation Approach
2.4. Hydrodynamic Model Overview–HEC-RAS
3. Results and Discussion
3.1. Clibration and Validation of the Hydrolgic Model
3.2. Clibration and Validation of the Hydrodynamic Model
3.3. Flood Inundation Mapping
3.4. Vulnerability Assessment on Infrastructures
3.4.1. Impact of Inundation on Local Hospitals
3.4.2. Impact of Inundation on Transportation Routes
3.4.3. Impact of Inundation on Airport
3.4.4. Impact of Inundation on Railroad Facilities
4. Discussion and Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Bronstert, A. Floods and climate change: Interactions and impacts. Risk Anal. 2003, 23, 545–557. [Google Scholar] [CrossRef]
- Dang, N.M.; Babel, M.S.; Luong, H.T. Evaluation of food risk parameters in the Day River Flood Diversion Area, Red River Delta, Vietnam. Nat. Hazards 2011, 56, 169–194. [Google Scholar] [CrossRef]
- Khan, S.I.; Hong, Y.; Gourley, J.J.; Khattak, M.U.; De Groeve, T. Multi-Sensor Imaging and Space-Ground Cross-Validation for 2010 Flood along Indus River, Pakistan. Remote Sens. 2014, 6, 2393–2407. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Qaiser, K. Floodplain Modeling in the Kansas River Basin Using Hydrologic Engineering Center (HEC) Models: Impacts of Urbanization and Wetlands for Mitigation; US Environmental Protection Agency: Washington, DC, USA, 2011; pp. 1–32. [Google Scholar]
- Ramírez, J.A. Prediction and modeling of flood hydrology and hydraulics. In Inland Flood Hazards: Human, Riparian and Aquatic Communities; Ellen, W., Ed.; Cambridge University Press: London, UK, 2010; Chapter 11. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Jha, M.K. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis. Water 2011, 3, 604–617. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Gassman, P.W.; Jha, M.K.; Kling, C.L.; Campbell, T.; Srinivasan, R.; White, M.; Arnold, J.G. A refined regional modeling approach for the Corn Belt—Experiences and recommendations for large-scale integrated modeling. J. Hydrol. 2015, 524, 348–366. [Google Scholar] [CrossRef] [Green Version]
- Baffaut, C.; Dabney, S.M.; Smolen, M.D.; Youssef, M.A.; Bonta, J.V.; Chu, M.L.; Guzman, J.A.; Shedekar, V.S.; Jha, M.K.; Arnold, J.G. Hydrologic and Water Quality Modeling: Spatial and Temporal Considerations. Trans. ASABE 2015, 58, 1661–1680. [Google Scholar]
- Guzman, J.A.; Shirmohammadi, A.; Sadeghi, A.M.; Wang, X.; Chu, M.L.; Jha, M.K.; Parajuli, P.B.; Harmel, R.D.; Khare, Y.P.; Hernandez, J.E. Uncertainty Considerations in Calibration and Validation of Hydrologic and Water Quality Models. Trans. ASABE 2015, 58, 1745–1762. [Google Scholar]
- Shustikova, I.; Domeneghetti, A.; Neal, J.C.; Bates, P.; Castellarin, A. Comparing 2D capabilities of HEC-RAS and LISFLOOD-FP on complex topography. Hydrol. Sci. J. 2019, 64, 1769–1782. [Google Scholar] [CrossRef]
- Patel, D.; Ramirez, J.A.; Srivastava, P.K.; Bray, M.; Han, D. Assessment of flood inundation mapping of Surat city by coupled 1D/2D hydrodynamic modeling: A case application of the new HEC-RAS 5. Nat. Hazards 2017, 89, 93–130. [Google Scholar] [CrossRef]
- Pinos, J.; Timbe, L. Performance assessment of two-dimensional hydraulic models for generation of flood inundation maps in mountain river basins. Water Sci. Eng. 2019, 12, 11–18. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, H.; Liang, Q. A coupled hydrological and hydrodynamic model for flood simulation. Hydrol. Res. 2019, 50, 589–606. [Google Scholar] [CrossRef]
- Hunter, N.M.; Bates, P.D.; Horritt, M.S.; Wilson, M. Simple spatially-distributed models for predicting flood inundation: A review. Geomorphology 2007, 90, 208–225. [Google Scholar] [CrossRef]
- De Paiva, R.C.; Collischonn, W.; Tucci, C.E. Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach. J. Hydrol. 2011, 406, 170–181. [Google Scholar] [CrossRef]
- Kim, J.; Warnock, A.; Ivanov, V.Y.; Katopodes, N.D. Coupled modeling of hydrologic and hydrodynamic processes including overland and channel flow. Adv. Water Resour. 2012, 37, 104–126. [Google Scholar] [CrossRef]
- Lerat, J.; Perrin, C.; Andréassian, V.; Loumagne, C.; Ribstein, P. Towards robust methods to couple lumped rainfall—Runoff models and hydraulic models: A sensitivity analysis on the Illinois River. J. Hydrol. 2012, 418, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.R. Simulation of Wetland Water-Level Manipulation Using Coupled Hydrological/Hydraulic Modeling. Phys. Geogr. 2004, 25, 39–67. [Google Scholar] [CrossRef]
- Bellos, V.; Tsakiris, G. A hybrid method for flood simulation in small catchments combining hydrodynamic and hydrological techniques. J. Hydrol. 2016, 540, 331–339. [Google Scholar] [CrossRef]
- Bout, B.; Jetten, V. The validity of flow approximations when simulating catchment-integrated flash floods. J. Hydrol. 2018, 556, 674–688. [Google Scholar] [CrossRef]
- Costabile, P.; Costanzo, C.; De Bartolo, S.; Gangi, F.; Macchione, F.; Tomasicchio, G.R. Hydraulic Characterization of River Networks Based on Flow Patterns Simulated by 2-D Shallow Water Modeling: Scaling Properties, Multifractal Interpretation, and Perspectives for Channel Heads Detection. Water Resour. Res. 2019, 55, 7717–7752. [Google Scholar] [CrossRef]
- Pato, J.F.; Caviedes-Voullième, D.; García-Navarro, P. Rainfall/runoff simulation with 2D full shallow water equations: Sensitivity analysis and calibration of infiltration parameters. J. Hydrol. 2016, 536, 496–513. [Google Scholar] [CrossRef]
- Caviedes-Voullième, D.; García-Navarro, P.; Murillo, J. Influence of mesh structure on 2D full shallow water equations and SCS Curve Number simulation of rainfall/runoff events. J. Hydrol. 2012, 448, 39–59. [Google Scholar] [CrossRef]
- Cea, L.; Bladé, E. A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland flow applications. Water Resour. Res. 2015, 51, 5464–5486. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- HEC. HEC-RAS River Analysis System User’s Manual Version 5.0; Hydrologic Engineering Center: Davis, CA, USA, 2016. [Google Scholar]
- Wilkison, D.H.; Armstrong, D.J.; Norman, R.D.; Poulton, B.C.; Furlong, E.T.; Zaugg, S.D. Water Quality in the Blue River Basin, Kansas City Metropolitan Area, Missouri and Kansas, July 1998 to October 2004; Scientific Investigations Report; US Geological Survey: Reston, VA, USA, 2006; Volume 5147, 170p. [Google Scholar]
- Heimann, D.C.; Kelly, B.P.; Studley, S.E. Flood-Inundation Maps and Wetland Restoration Suitability Index for the Blue River and Selected Tributaries, Kansas City, Missouri, and Vicinity, 2012; Scientific Investigations Report; US Geological Survey: Reston, VA, USA, 2015; Volume 5180, 23p. [Google Scholar]
- Missouri Department of Natural Resources. Water Protection Program: Total Maximum Daily Loads (TMDLs) for Blue River Jackson County, Missouri. Available online: https://dnr.mo.gov/env/wpp/tmdl/docs/0417-0418-0419-0421-blue-river-tmdl.pdf (accessed on 15 May 2020).
- Amatya, D.M.; Jha, M.K.; Edwards, A.E.; Williams, T.M.; Hitchcock, D.R. SWAT-based phosphorus modeling of a karst watershed with an embayment, South Carolina. J. Environ. Prot. 2012, 4, 75–90. [Google Scholar] [CrossRef] [Green Version]
- Schilling, K.E.; Gassman, P.W.; Kling, C.L.; Campbell, T.; Jha, M.K.; Wolter, C.F.; Arnold, J.G. The potential for agricultural land use change to reduce flood risk in a large watershed. Hydrol. Process. 2013, 28, 3314–3325. [Google Scholar] [CrossRef]
- Burkart, C.S.; Jha, M.K. Site-specific simulation of nutrient control policies: Integrating economic and water quality effects. J. Agric. Resour. Econ. 2012, 37, 20–23. [Google Scholar]
- Feng, H.; Jha, M.; Gassman, P. The Allocation of Nutrient Load Reduction across a Watershed: Assessing Delivery Coefficients as an Implementation Tool. Rev. Agric. Econ. 2009, 31, 183–204. [Google Scholar] [CrossRef]
- Jha, M.K.; Gassman, P.W.; Arnold, J.G. Water Quality Modeling for the Raccoon River Watershed Using SWAT. Trans. ASABE 2007, 50, 479–493. [Google Scholar] [CrossRef]
- Kling, C.L.; Panagopoulos, Y.; Rabotyagov, S.S.; Valcu, A.M.; Gassman, P.W.; Campbell, T.; White, M.J.; Arnold, J.; Srinivasan, R.; Jha, M.K.; et al. LUMINATE: Linking agricultural land use, local water quality and Gulf of Mexico hypoxia. Eur. Rev. Agric. Econ. 2014, 41, 431–459. [Google Scholar] [CrossRef]
- Jha, M.K.; Pan, Z.; Takle, E.S.; Gu, R. Impact of climate change on stream flow in the upper Mississippi River Basin: A regional climate model perspective. J. Geophys. Res. 2004, 109, 1–12. [Google Scholar] [CrossRef]
- Jha, M.; Arnold, J.G.; Gassman, P.W.; Giorgi, F.; Gu, R.R. Climate chhange sensitivity assessment on upper mississippi river basin streamflows using swat. JAWRA J. Am. Water Resour. Assoc. 2006, 42, 997–1015. [Google Scholar] [CrossRef]
- Jha, M.K.; Gassman, P.W.; Panagopoulos, Y. Regional changes in nitrate loadings in the Upper Mississippi River Basin under predicted mid-century climate. Reg. Environ. Chang. 2013, 15, 449–460. [Google Scholar] [CrossRef]
- Takle, E.S.; Jha, M.; Lu, E.; Arritt, R.W.; Gutowski, W.J. Streamflow in the upper Mississippi river basin as simulated by SWAT driven by 20th Century contemporary results of global climate models and NARCCAP regional climate models. Meteorol. Z. 2010, 19, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Lu, E.; Takle, E.S.; Manoj, J. The Relationships between Climatic and Hydrological Changes in the Upper Mississippi River Basin: A SWAT and Multi-GCM Study. J. Hydrometeorol. 2010, 11, 437–451. [Google Scholar] [CrossRef] [Green Version]
- Jha, M.K.; Gassman, P.W. Changes in hydrology and streamflow as predicted by a modelling experiment forced with climate models. Hydrol. Process. 2014, 28, 2772–2781. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Jha, M.K. Hydrologic response due to projected climatic variability in Haw River Watershed, North Carolina, USA. Hydrol. Sci. J. 2016, 61, 495–506. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Teng, J.; Jakeman, A.; Vaze, J.; Croke, B.F.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Merwade, V.; Olivera, F.; Arabi, M.; Edleman, S. Uncertainty in Flood Inundation Mapping: Current Issues and Future Directions. J. Hydrol. Eng. 2008, 13, 608–620. [Google Scholar] [CrossRef] [Green Version]
- De Moel, H.; Van Alphen, J.; Aerts, J.C.J.H. Flood maps in Europe—Methods, availability and use. Nat. Hazards Earth Syst. Sci. 2009, 9, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Bermúdez, M.; Zischg, A.P. Sensitivity of flood loss estimates to building representation and flow depth attribution methods in micro-scale flood modelling. Nat. Hazards 2018, 92, 1633–1648. [Google Scholar] [CrossRef] [Green Version]
- Milanesi, L.; Pilotti, M.; Ranzi, R. A conceptual model of people’s vulnerability to floods. Water Resour. Res. 2015, 51, 182–197. [Google Scholar] [CrossRef]
- Arrighi, C.; Pregnolato, M.; Dawson, R.; Castelli, F. Preparedness against mobility disruption by floods. Sci. Total. Environ. 2018, 654, 1010–1022. [Google Scholar] [CrossRef]
- Arrighi, C.; Oumeraci, H.; Castelli, F. Hydrodynamics of pedestrians’ instability in floodwaters. Hydrol. Earth Syst. Sci. 2017, 21, 515–531. [Google Scholar] [CrossRef] [Green Version]
- Costabile, P.; Costanzo, C.; De Lorenzo, G.; Macchione, F. Is local flood hazard assessment in urban areas significantly influenced by the physical complexity of the hydrodynamic inundation model? J. Hydrol. 2020, 580, 124231. [Google Scholar] [CrossRef]
- Fu, J.-C.; Hsu, M.H.; Duann, Y. Development of roughness updating based on artificial neural network in a river hydraulic model for flash flood forecasting. J. Earth Syst. Sci. 2016, 125, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Pourali, S.H.; Arrowsmith, C.; Chrisman, N.; Matkan, A.A.; Mitchell, D. Topography Wetness Index Application in Flood-Risk-Based Land Use Planning. Appl. Spat. Anal. Policy 2014, 9, 39–54. [Google Scholar] [CrossRef]
- Saksena, S.; Merwade, V. Incorporating the effect of DEM resolution and accuracy for improved flood inundation mapping. J. Hydrol. 2015, 530, 180–194. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Merwade, V.; Jafarzadegan, K. Investigating the role of model structure and surface roughness in generating flood inundation extents using one- and two-dimensional hydraulic models. J. Flood Risk Manag. 2019, 12, e12347. [Google Scholar] [CrossRef] [Green Version]
Dataset | Source |
---|---|
Digital Elevation Model (DEM) | United States Geological Survey (USGS)–The National Map |
Streamflow | United States Geological Survey (USGS) |
Gage Height | United States Geological Survey (USGS) |
Land Use | National Land Cover Database (NLCD) |
Climate Data | National Oceanic & Atmospheric Administration (NOAA) |
Soil Classification | State Soil Geography Database (STATGO) |
Parameter | Description | Range | Fitted Value |
---|---|---|---|
CN2 | Curve Number | −15%–15% | −5.34% |
EPCO | Plant Uptake Compensation Factor | 0.01–1 | 0.73 |
SOL_AWC | Water Holding Capacity of Soil | −0.04–0.04 | −0.025 |
GW_REVAP | Groundwater Revap Coefficient | 0.02–0.2 | 0.05 |
ALPHA_BF | Base Flow Alpha Factor | 0.05–0.8 | 0.1 |
REVAPMN | Threshold Depth, Percolation to deep aq. | 0–500 | 455 |
ESCO | Soil Evaporation Compensation Factor | 0.75–0.95 | 0.81 |
GW_DELAY | Groundwater Delay | 0–500 | 476 |
GWQMN | Threshold Depth, Return flow to occur | 0–1000 | 868 |
SURLAG | Surface Runoff Lag Coefficient | 1–8 | 6.7 |
Statistical Test | Calibration Period 2012–2015 | Validation Period 2016–2017 | Acceptable Range [45] |
---|---|---|---|
NSE | 0.83 | 0.92 | NSE > 0.50 |
PBIAS (%) | 9.40 | 3.00 | PBIAS < ±25% |
RSR | 0.41 | 0.28 | RSR < 0.70 |
R2 | 0.84 | 0.93 | R2 > 0.5 |
USGS Station | Flow (m3/s) | Simulated Stage (m) | Observed Stage (m) | Difference (m) |
---|---|---|---|---|
06893500 | 298 | 7.8 | 7.7 | −0.06 |
06893530 | 268 | 7.0 | 7.0 | 0.05 |
06893553 | 251 | 6.2 | 6.2 | −0.01 |
06893578 | 229 | 6.0 | 6.0 | −0.14 |
06893590 | 178 | 5.8 | 5.8 | 0.03 |
USGS Station | Event 4/27/2016 | Event 9/22/2017 | ||||||
---|---|---|---|---|---|---|---|---|
Flow (m3/s) | Simulated Stage (m) | Observed Stage (m) | Difference (m) | Flow (m3/s) | Simulated Stage (m) | Observed Stage (m) | Difference (m) | |
06893500 | 239 | 7.3 | 7.0 | −0.34 | 1203 | 15.4 | 14.1 | −1.31 |
06893530 | 1171 | 16.1 | 14.9 | −1.19 | 237 | 6.6 | 7.2 | 0.59 |
06893553 | 1162 | 13.8 | 14.4 | 0.63 | 236 | 6.5 | 7.1 | 0.61 |
06893578 | 1154 | 12.6 | 10.7 | −1.88 | 235 | 6.5 | 6.3 | −0.23 |
06893590 | 1138 | 11.2 | 9.5 | −1.63 | 233 | 6.3 | 5.5 | −0.82 |
Hospital Location (Figure 10) and Names | Distance from Inundation Area (km) | Vulnerability Rank |
---|---|---|
1H. Seton Center Safety Net Clinics | 3.3 | 7 |
2H. Samuel U. Rodgers South Therapeutic Intervention Center-Substance Abuse | 2.9 | 5 |
3H. Samuel U. Rodgers McCoy Elementary School Dental Clinic | 0.8 | 3 |
4H. Kansas City Free Health Clinic-Eastside | 1.0 | 4 |
5H. Veterans Affairs Medical Center | 0.7 | 2 |
6H. Swope Health Services-Central | 0.1 | 1 |
7H. Two Rivers Psychiatric Hospital | 3.0 | 6 |
Airport Location (Figure 12) and Names | Distance from Inundation Map (m) | Vulnerability Rank |
---|---|---|
1. VA Medical Center Heliport | 670 | 2 |
2. Police Department Helipad Main Facility | 126 | 1 |
3. Independence RGNL Health Center Heliport | 3041 | 3 |
4. Truman Medical Center West Heliport | 5316 | 4 |
5. Children’s Mercy Hospital Heliport | 5465 | 6 |
6. Bert Walter Berkowitz Heliport | 5341 | 5 |
Name of Railroad | Length Under Inundation (m) |
---|---|
BNSF RR | 3014 |
KCS RR | 3844 |
KCT RR | 2390 |
Missouri Central RR | 362 |
Private RR | 333 |
UP RR | 5750 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jha, M.K.; Afreen, S. Flooding Urban Landscapes: Analysis Using Combined Hydrodynamic and Hydrologic Modeling Approaches. Water 2020, 12, 1986. https://doi.org/10.3390/w12071986
Jha MK, Afreen S. Flooding Urban Landscapes: Analysis Using Combined Hydrodynamic and Hydrologic Modeling Approaches. Water. 2020; 12(7):1986. https://doi.org/10.3390/w12071986
Chicago/Turabian StyleJha, Manoj K., and Sayma Afreen. 2020. "Flooding Urban Landscapes: Analysis Using Combined Hydrodynamic and Hydrologic Modeling Approaches" Water 12, no. 7: 1986. https://doi.org/10.3390/w12071986
APA StyleJha, M. K., & Afreen, S. (2020). Flooding Urban Landscapes: Analysis Using Combined Hydrodynamic and Hydrologic Modeling Approaches. Water, 12(7), 1986. https://doi.org/10.3390/w12071986