The Impact of Biophysical Processes on Sediment Transport in the Wax Lake Delta (Louisiana, USA)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Locations in Mike Island
2.3. Wind and Discharge Data
2.4. Field and Laboratory Methods
2.4.1. Time-Series Observation
2.4.2. Water Sampling and Analysis
2.4.3. Sediment Sampling and Analysis
2.5. Data Analysis
3. Results
3.1. Water Column Processes
3.2. Overlying and Porewater Inorganic Nutrient Concentrations
3.3. Sediment Trap
4. Discussion
4.1. Water Column Processes
4.2. Water–Sediment Interface
4.3. Vegetation
4.4. A Conceptual Model
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blum, M.D.; Roberts, H.H. The Mississippi Delta region: Past, present, and future. Annu. Rev. Earth Planet Sci. 2012, 40, 655–683. [Google Scholar] [CrossRef]
- Salinas, L.M.; Delaune, R.D.; Patrick, W.H. Changes occurring along a rapidly submerging coastal area—Louisiana, USA. J. Coast. Res. 1986, 2, 269–284. [Google Scholar]
- Paola, C.; Twilley, R.R.; Edmonds, D.A.; Kim, W.; Mohrig, D.; Parker, G.; Viparelli, E.; Voller, V.R. Natural Processes in Delta Restoration: Application to the Mississippi Delta. Annu. Rev. Mar. Sci. 2011, 3, 67–91. [Google Scholar] [CrossRef]
- Rosen, T.; Xu, Y.J. Recent decadal growth of the Atchafalaya River Delta complex: Effects of variable riverine sediment input and vegetation succession. Geomorphology 2013, 194, 108–120. [Google Scholar] [CrossRef]
- Rivera-Monroy, V.H.; Elliton, C.E.; Narra, S.; Meselhe, E.; Zhao, X.; White, E.; Sasser, C.E.; Visser, J.M.; Meng, X.; Wang, H.; et al. Wetland Biomass and Productivity in Coastal Louisiana: Base Line Data (1976–2015) and Knowledge Gaps for the Development of Spatially Explicit Models for Ecosystem Restoration and Rehabilitation Initiatives. Water 2019, 11, 2054. [Google Scholar] [CrossRef] [Green Version]
- Schleiss, A.J.; Franca, M.J.; Juez, C.; De Cesare, G. Reservoir Sedimentation. J. Hydraul. Res. 2016, 54, 595–614. [Google Scholar] [CrossRef]
- Couvillion, B.R.; Beck, H.; Schoolmaster, D.; Fischer, M. Land Area Change in coastal Louisiana 1932 to 2016; U.S. Geological Survey Reston: Reston, VA, USA, 2017; p. 16.
- Couvillion, B.R.; Fischer, M.R.; Beck, H.J.; Sleavin, W.J. Spatial configuration trends in coastal Louisiana from 1985 to 2010. Wetlands 2016, 36, 347–359. [Google Scholar] [CrossRef]
- Allison, M.A.; Meselhe, E.A. The use of large water and sediment diversions in the lower Mississippi River (Louisiana) for coastal restoration. J. Hydrol. 2010, 387, 346–360. [Google Scholar] [CrossRef]
- Nittrouer, J.A.; Best, J.L.; Brantley, C.; Cash, R.W.; Czapiga, M.; Kumar, P.; Parker, G. Mitigating land loss in coastal Louisiana by controlled diversion of Mississippi River sand. Nat. Geosci. 2012, 5, 534–537. [Google Scholar] [CrossRef]
- Xu, K.; Bentley, S.J., Sr.; Robichaux, P.; Sha, X.; Yang, H. Implications of texture and erodibility for sediment retention in receiving basins of coastal Louisiana diversions. Water 2016, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.H.; Bentley, S.J.; Day, J.W.; Freeman, A.M. A review of sediment diversion in the Mississippi River Deltaic Plain. Estuar. Coast. Shelf Sci. 2019, 225, 106241. [Google Scholar] [CrossRef]
- Juez, C.; Schärer, C.; Jenny, G.; Schleiss, A.J.; Franca, M.J. Floodplain land cover and flow hydrodynamic control of overbank sedimentation in compound channel flows. Water Resour. Res. 2019, 55, 9072–9091. [Google Scholar] [CrossRef]
- Reddy, K.R.; Kadlec, R.H.; Flaig, E.; Gale, P.M. Phosphorus Retention in Streams and Wetlands: A Review. Crit. Rev. Environ. Sci. Technol. 1999, 29, 83–146. [Google Scholar] [CrossRef]
- Reddy, K.R.; Patrick, W.H. Nitrogen transformations and loss in flooded soils and sediments. Crit. Rev. Environ. Control 1984, 13, 273–309. [Google Scholar] [CrossRef]
- Nichols, D.S. Capacity of natural wetlands to remove nutrients from wastewater. J. Water Pollut. Control Fed. 1983, 55, 495–505. Available online: https://www.jstor.org/stable/25041910 (accessed on 22 June 2016).
- Day, J.W.; Ko, J.Y.; Rybczyk, J.; Sabins, D.; Bean, R.; Berthelot, G.; Brantley, C.; Cardoch, L.; Conner, W.; Day, J.N.; et al. The use of wetlands in the Mississippi Delta for wastewater assimilation: A review. Ocean Coast. Manag. 2004, 47, 671–691. [Google Scholar] [CrossRef]
- Fisher, J.; Acreman, M.C. Wetland nutrient removal: A review of the evidence. Hydrol. Earth Syst. Sci. 2004, 8, 673–685. [Google Scholar] [CrossRef] [Green Version]
- Hunter, R.; Lane, R.; Day, J.; Lindsey, J.; Day, J.; Hunter, M. Nutrient removal and loading rate analysis of Louisiana forested wetlands assimilating treated municipal effluent. Environ. Manag. 2009, 44, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Twilley, R.R.; Rivera-Monroy, V.H. Sediment and nutrient trade-offs in restoring Mississippi River Delta: Restoration versus eutrophication. J. Contemp. Water Res. Educ. 2009, 141, 39–44. [Google Scholar] [CrossRef]
- Henry, K.M.; Twilley, R.R. Nutrient biogeochemistry during the early stages of delta development in the Mississippi River Deltaic Plain. Ecosystems 2014, 17, 327–343. [Google Scholar] [CrossRef]
- Rabalais, N.; Turner, R.E.; Wiseman, W.J. Gulf of Mexico hypoxia, A.K.A. “The Dead Zone.”. Annu. Rev. Ecol. Syst. 2002, 33, 235–263. [Google Scholar] [CrossRef]
- O’Connor, M.T.; Moffett, K.B. Groundwater dynamics and surface water- groundwater interactions in a prograding delta island, Louisiana, USA. J. Hydrol. 2015, 524, 15–29. [Google Scholar] [CrossRef]
- Twilley, R.R.; Casteñeda-Moya, E.; Bentley, S.J., Sr.; Chen, Q.; Edmonds, D.A.; Hagan, S.C.; Lam, N.S.; Willson, C.S.; Xu, K.; Braud, D.; et al. Seasonal and spatial variation of surface water nitrate concentrations and water flow in delta islands of Wax Lake Delta, Louisiana. In Proceedings of the State of the Coast Meeting 2016, New Orleans, LA, USA, 2 June 2016. [Google Scholar]
- Peyronnin, N.S.; Caffey, R.H.; Cowan, J.H.; Justic, D.; Kolker, A.S.; Laska, S.B.; McCorquodale, A.; Melancon, E.; Nyman, J.A.; Twilley, R.R.; et al. Optimizing sediment diversion operations: Working group recommendations for integrating complex ecological and social landscape interactions. Water 2017, 9, 368. [Google Scholar] [CrossRef] [Green Version]
- Leonard, L.A.; Luther, M.E. Flow hydrodynamics in tidal marsh canopies. Limnol. Oceanog. 1995, 40, 1474–1484. [Google Scholar] [CrossRef]
- Nepf, H.M.; Sullivan, J.A.; Zavitoski, R.A. A model for diffusion within emergent vegetation. Limnol. Oceanog. 1997, 42, 1735–1745. [Google Scholar] [CrossRef] [Green Version]
- Nepf, H.M. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 1999, 35, 479–489. [Google Scholar] [CrossRef]
- Nepf, H.M.; Vivoni, E.R. Flow structure in depth-limited, vegetated flow. J. Geophys.Res. 2000, 105, 28547–28557. [Google Scholar] [CrossRef]
- Madsen, J.D.; Chambers, P.A.; James, W.F.; Koch, E.W.; Westlake, D.F. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 2001, 444, 71–84. [Google Scholar] [CrossRef]
- Cotton, J.A.; Wharton, G.; Bass, J.A.B.; Heppell, C.M.; Wotton, R.S. The effects of seasonal changes to in-stream vegetation cover on patterns of flow and accumulation of sediment. Geomorphology 2006, 77, 320–334. [Google Scholar] [CrossRef]
- Augustin, L.N.; Irish, J.L.; Lynett, P. Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation. Coast. Eng. J. 2009, 56, 332–340. [Google Scholar] [CrossRef]
- Corenblit, D.; Steiger, J.; Gurnell, A.M.; Tabacchi, E.; Roques, L. Control of sediment dynamics by vegetation as a key function driving biogeomorphic succession within fluvial corridors. Earth Surf. Proc. Land. 2009, 34, 1790–1810. [Google Scholar] [CrossRef]
- Smith, B.C. The Effects of Vegetation on Island Geomorphology in the Wax Lake Delta, Louisiana. Master’s Thesis, The University of Texas at Austin, Austin, TX, USA, May 2014. [Google Scholar]
- Mossa, J.; Roberts, H.H. Synergism of riverine and winter storm-related sediment transport processes in Louisiana’s coastal wetlands. Trans. Gulf Coast Assoc. Geol. Soc. 1990, 40, 635–642. [Google Scholar]
- Roberts, H.H.; DeLaune, R.D.; White, J.R.; Li, C.; Sasser, C.E.; Braud, D.; Weeks, E.; Khalil, S. Floods and cold front passages: Impacts on coastal marshes in a river diversion setting (Wax Lake Delta Area, Louisiana). J. Coast. Res. 2015, 31, 1057–1068. [Google Scholar] [CrossRef]
- Cahoon, D.R. A review of major storm impacts on coastal wetland elevations. Estuar. Coasts 2006, 29, 889–898. [Google Scholar] [CrossRef]
- Turner, R.E.; Baustian, J.J.; Swenson, E.M.; Spicer, J.S. Wetland sedimentation from hurricanes Katrina and Rita. Science 2006, 314, 449–452. [Google Scholar] [CrossRef]
- Hiatt, M.; Passalacqua, P. Hydrological connectivity in river deltas: The first-order importance of channel-island exchange. Water Resour. Res. 2015, 51, 2264–2282. [Google Scholar] [CrossRef] [Green Version]
- Bevington, A.E.; Twilley, R.R.; Sasser, C.R.; Holm, G.O., Jr. Contribution of river floods, hurricanes, and cold fronts to elevation change in a prograding deltaic floodplain in the northern Gulf of Mexico, USA. Estuar. Coast. Shelf Sci. 2016, 191, 188–200. [Google Scholar] [CrossRef] [Green Version]
- Hiatt, M.; Snedden, G.; Day, J.W.; Robli, R.V.; Nyman, J.A.; Lane, R.; Sharp, L.A. Drivers and impacts of water level fluctuations in the Mississippi River delta: Implications for delta restoration. Estuar. Coast. Shelf Sci. 2019, 224, 117–137. [Google Scholar] [CrossRef]
- Roberts, H.H.; Coleman, J.M.; Bentley, S.J., Sr.; Walker, N.D. An embryonic major delta lobe: A new generation of delta studies in the Atchafalaya-Wax Lake Delta system. Trans. Gulf Coast Assoc. Geol. Soc. 2003, 53, 690–703. [Google Scholar]
- Day, J.W., Jr.; Boesch, D.F.; Clairain, E.J.; Kemp, G.P.; Laska, S.B.; Mitsch, W.J.; Orth, K.; Mashriqui, H.; Reed, D.J.; Shabman, L.; et al. Restoration of the Mississippi Delta: Lessons from Hurricanes Katrina and Rita. Science 2007, 315, 1679–1684. [Google Scholar] [CrossRef] [Green Version]
- Wellner, R.; Beaubouef, R.; Van Wagoner, J.; Harry, R.; Sun, T. Jet-plume depositional bodies—The primary building blocks of Wax Lake Delta. Trans. Gulf Coast Assoc. Geol. Soc. 2005, 55, 867–909. [Google Scholar]
- Jones, C.E. Radar remote sensing of the Louisiana wetlands to study delta formation and marsh status. Natl. Wetl. Newsl. 2016, 38, 12–16. Available online: https://www.eli.org/sites/default/files/nwn/issue/38.1_Jones.pdf (accessed on 5 January 2020).
- Allison, M.A.; Demas, C.R.; Ebersole, B.A.; Kleiss, B.A.; Little, C.D.; Meselhe, E.A.; Powell, N.J.; Pratt, T.C.; Vosburg, B.M. A water and sediment budget for the lower Mississippi Atchafalaya River in flood years 2008–2010: Implications for sediment discharge to the oceans and coastal restoration in Louisiana. J. Hydrol. 2012, 432, 84–97. [Google Scholar] [CrossRef]
- Kolker, A.S.; Li, C.; Walker, N.D.; Pilley, C.; Ameen, A.D.; Boxer, G.; Ramatchandirane, C.; Ullah, M.; Williams, K.A. The impacts of the great Mississippi/Atchafalaya River flood on the oceanography of the Atchafalaya Shelf. Cont. Shelf Res. 2014, 86, 17–33. [Google Scholar] [CrossRef]
- Bevington, A.E.; Twilley, R.R. Island edge morphodynamics along a chronosequence in a prograding deltaic floodplain wetland. J. Coast. Res. 2018, 34, 806–817. [Google Scholar] [CrossRef]
- Twilley, R.R.; Day, J.W.; Bevington, A.E.; Castañeda-Moya, E.; Christensen, A.; Holm, G.; Heffner, L.R.; Lane, R.; McCall, A.; Aarons, A.; et al. Ecogeomorphology of coastal deltaic floodplains and estuaries in an active delta: Insights from the Atchafalaya Coastal Basin. Estuar. Coast. Shelf Sci. 2019, 227, 106341. [Google Scholar] [CrossRef]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Aspila, K.I.; Agemian, H.; Chau, A.S.Y. Semiautomated method for determination of inorganic, organic, and total phosphate in sediments. Analyst 1976, 101, 187–197. [Google Scholar] [CrossRef]
- Karimpour, A.; Chen, Q. Wind wave analysis in depth limited water using OCEANLYZ, a MATLAB toolbox. Comput. Geosci. 2017, 106, 181–189. [Google Scholar] [CrossRef]
- Tolotti, M.; Thies, H.; Nickus, U.; Psenner, R. Temperature modulated effects of nutrients on phytoplankton changes in a mountain lake. Hydrobiologia 2012, 221, 61–75. [Google Scholar] [CrossRef]
- Visser, J.M.; Sasser, C.E.; Chabreck, R.H.; Linscombe, R.G. Marsh vegetation types of the Mississippi River Deltaic Plain. Estuaries 1998, 21, 818–828. [Google Scholar] [CrossRef]
- Carle, M.V.; Sasser, C.E. Productivity and Resilience: Long-Term Trends and Storm-Driven Fluctuations in the Plant Community of the Accreting Wax Lake Delta. Estuar. Coasts 2016, 39, 406–422. [Google Scholar] [CrossRef]
- Landsat Missions, United States Geological Survey (USGS). Available online: https://www.usgs.gov/land-resources/nli/landsat/landsat-data-access?qt-science_support_page_related_con=0#qt-science_support_page_related_con (accessed on 5 January 2020).
- Zordan, J.; Juez, C.; Schleiss, A.J.; Franca, M.J. Entrainment, transport and deposition of sediment by saline gravity currents. Adv. Water Resour. 2018, 115, 17–31. [Google Scholar] [CrossRef]
- Upreti, K.; Maiti, K.; Rivera-Monroy, V.H. Microbial mediated sedimentary phosphorus mobilization in emerging and eroding wetlands of coastal Louisiana. Sci. Total Environ. 2019, 651, 122–133. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Christensen, A.; Twilley, R.R. Benthic fluxes of dissolved oxygen and nutrients across hydrogeomorphic zones in a coastal deltaic floodplain within the Mississippi River delta plain. Biogeochemistry 2020, 149, 115–140. [Google Scholar] [CrossRef]
- Rivery-Monroy, V.H.; Lenaker, P.; Twilley, R.R.; Delaune, R.D.; Lindau, C.W.; Nuttle, W.; Habib, E.; Fulweiler, R.W.; Casteñeda-Moya, E. Denitrification in coastal Louisiana: A spatial assessment and research needs. J. Sea Res. 2010, 63, 157–172. [Google Scholar] [CrossRef]
- Carle, M.V.; Sasser, C.E.; Roberts, H.H. Accretion and vegetation community change in the Wax Lake Delta following the historic 2011 Mississippi River flood. J. Coast. Res. 2015, 31, 569–587. [Google Scholar] [CrossRef]
- Froelich, P.N. Kinetic control of dissolved phosphate in natural rivers and estuaries—A primer on the phosphate buffer mechanism. Limnol. Oceanog. 1988, 33, 649–668. [Google Scholar] [CrossRef]
- Anderson, M.E.; Smith, J.M.; McKay, S.K. Wave dissipation by vegetation. In Coastal and Hydraulics Engineering Technical Note ERDC/CHL CHETN-I-82; U.S. Army Engineer Research and Development Center: Vicksburg, MS, USA, 2011; pp. 1–22. Available online: http://chl.erdc.usace.army.mil.chetn (accessed on 5 January 2020).
- Temmerman, S.; Bouma, T.J.; Govers, G.; Wang, Z.B.; De Vries, M.B.; Herman, P.M.J. Impact of vegetation on flow routing and sedimentation patterns: Three- dimensional modeling for a tidal marsh. J. Geophys. Res. Earth Surf. 2005, 110. [Google Scholar] [CrossRef]
- Li, C.; Roberts, H.; Stone, G.W.; Weeks, E.; Luo, Y. Wind surge and saltwater intrusion in Atchafalaya Bay during onshore winds prior to cold front passage. Hydrobiologia 2011, 658, 27–39. [Google Scholar] [CrossRef]
- Huang, W.; Li, C. Cold front driven flows through multiple inlets of Lake Pontchartrain Estuary. J. Geophys. Res. 2017, 122, 8627–8645. [Google Scholar] [CrossRef] [Green Version]
- Coastal Protection and Restoration Authority. Available online: http://coastal.la.gov/our-plan/2017-coastal-master-plan/ (accessed on 5 January 2020).
Station | Instrument | Sensor Orientation | Distance Above Sediment–Water Interface (cm) | Sampling Rate (Hz) | Burst Duration (s) | Sampling Interval (s) |
---|---|---|---|---|---|---|
Mike1 | ADV Argonaut | downward looking | 15 | 0.2 | 60 | 3600 |
OBS 5+ | downward looking, optic window facing upstream | 15 | 1 | 60 | 3600 | |
Wave Gauge | downward looking | 15 | 10 | 1200 | 3600 | |
Mike3 | ADV Ocean | downward looking | 15 | 1 | 1024 | 3600 |
OBS 3A | downward looking, optic window facing upstream | 15 | 1 | 60 | 3600 | |
Wave Gauge | downward looking | 15 | 10 | 1200 | 3600 |
Day | Month | Location | Surface TSS (mg/L) | Middle TSS (mg/L) |
---|---|---|---|---|
30 | March | Mike1 | 187.57 | 235.43 |
Mike3 | 75.71 | 103.48 | ||
2 | May | Mike1 | 99.57 | 122.67 |
Mike3 | 80.24 | 53.93 | ||
28 | August | Mike1 | 41.38 | 101.24 |
Mike3 | 17.76 | 22.29 | ||
22 | October | Mike1 | 377.55 | 28.38 |
Mike3 | 53.07 | 110.43 |
SPRING | SUMMER/FALL | ||||||
---|---|---|---|---|---|---|---|
TP (mg/cm3) | TN (mg/cm3) | TC (mg/cm3) | TP (mg/cm3) | TN (mg/cm3) | TC (mg/cm3) | ||
Mike1 | Water Column | 0.5804 | 6.34 | 84.02 | 0.5658 | 10.91 | 123.4 |
Sediment Surface | 0.5758 | 6.68 | 92.98 | 0.5796 | 11.51 | 120.2 | |
Mike3 | Water Column | 0.4282 | 10.91 | 10.95 | 0.0919 | 3.35 | 32.2 |
Sediment Surface | 0.4494 | 11.51 | 13.25 | 0.1988 | 7.57 | 78.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elliton, C.; Xu, K.; Rivera-Monroy, V.H. The Impact of Biophysical Processes on Sediment Transport in the Wax Lake Delta (Louisiana, USA). Water 2020, 12, 2072. https://doi.org/10.3390/w12072072
Elliton C, Xu K, Rivera-Monroy VH. The Impact of Biophysical Processes on Sediment Transport in the Wax Lake Delta (Louisiana, USA). Water. 2020; 12(7):2072. https://doi.org/10.3390/w12072072
Chicago/Turabian StyleElliton, Courtney, Kehui Xu, and Victor H. Rivera-Monroy. 2020. "The Impact of Biophysical Processes on Sediment Transport in the Wax Lake Delta (Louisiana, USA)" Water 12, no. 7: 2072. https://doi.org/10.3390/w12072072
APA StyleElliton, C., Xu, K., & Rivera-Monroy, V. H. (2020). The Impact of Biophysical Processes on Sediment Transport in the Wax Lake Delta (Louisiana, USA). Water, 12(7), 2072. https://doi.org/10.3390/w12072072