Rapid and Accurate Validated Potentiometric Method for Bispyribac Herbicide Assessment in Rice and Agricultural Wastewater
Abstract
:1. Introduction
2. Material and Methods
2.1. Apparatus
2.2. Reagents and Chemicals
2.3. Sensor Construction and Potential Measurements
2.4. Bispyribac Determination in Commercial Formulation Samples
2.5. Determination of Bispyribac in Spiked Rice Samples
2.6. Bispyribac Determination in Agricultural Wastewater
3. Results and Discussion
3.1. Performance Characteristics of Sensors
3.2. Flow Injection Analysis (FIA) Measurements
3.3. Response Time and Stability
3.4. Validation of the Presented Method
3.4.1. Calibration Curve, Linearity and Detection Limit
3.4.2. Precision (Repeatability and Intermediate Precision) and Accuracy (Recovery)
3.4.3. Trueness and Bias
3.4.4. Data Repeatability and Reproducibility
3.5. Determination of Bispyribac Sodium (BIS−) in Commercial Formulation Sample
3.6. Determination of Bispyribac in Different Spiked Rice Samples
3.7. Bispyribac Determination in Agricultural Wastewater Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Herrera-Herrera, A.V.; Asensio-Ramos, M.; Hernandez-Borges, J.; Rodrıguez-Delgado, M.A. Pesticides and Herbicides: Types, Uses, and Determination of Herbicides. Encycl. Food Health 2006, 1, 326–332. [Google Scholar] [CrossRef]
- Kurz, M.H.; Gonçalves, F.F.; Martel, S.; Zanella, R.; Adaime, M.B.; Machado, S.L.D.O.; Primel, E.G. Rapid and accurate HPLC-DAD method for the determination of the herbicide bispyribac-sodium in surface water, and its validation. Quim. Nova 2009, 32, 1457–1460. [Google Scholar] [CrossRef] [Green Version]
- Fischer, A.J.; Ateh, C.M.; Bayer, D.E.; Hill, J.E. Herbicide-resistant Echinochloa oryzoides and E. phyllopogon in California Oryza sativa fields. Weed Sci. 2000, 48, 225. [Google Scholar] [CrossRef]
- Fischer, A.J.; Bayer, D.E.; Carriere, M.D. Mechanisms of resistance to bispyribac-sodium in an Echinochloa phyllopogon accession. Pestic. Biochem. Physiol. 2000, 68, 156–165. [Google Scholar] [CrossRef]
- Ferrero, A.; Tesio, F.; Tabacchi, M.; Vidotto, F. The effects of water management, timing and the rate of several herbicides on the growth of Murdannia keisak (Hassk.) Handel-Mazz. Crop Prot. 2012, 38, 53–56. [Google Scholar] [CrossRef]
- Robinson, D.W. Re-Evaluating the Role of Herbicides in Contemporary Urban Horticulture. In Proceedings of the International Symposium on Urban Tree Health, Paris, France, 1 September 1999; ISHS Acta Horticulturae: Paris, France, 1999. [Google Scholar]
- Vencill, W.K. Herbicide Handbook, 8th ed.; Weed Science Society of America: Lawrence, KS, USA, 2002. [Google Scholar]
- Tomlin, C. The e-Pesticide Manual, 13th ed.; Version 3.0.; BCPC, Crop Protection Publication: Cambridge, UK, 2003. [Google Scholar]
- Environmental Protection Agency (EPA). Bispyribac-Sodium: Pesticide Tolerance Related Material. Fed. Regist. 2001, 66, 5711–5716. [Google Scholar]
- Tamilselvan, C.; Joseph, S.J.; Angayarkanni, V. Determination of Bispyribac Sodium 10% SC (Herbicide) Residue Level in Straw, Grain and Soil Using HPLC Method. Int. Lett. Nat. Sci. 2014, 12, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Roy, S.; Das, T.K.; Bhattacharyya, A. Dissipation kinetics of a new mixture formulation of bispyribac-sodium and metamifop in rice. J. Crop Weed 2016, 12, 129–134. [Google Scholar]
- Shimin, W.; Jun, M. Analysis of the herbicide bispyribac-sodium in rice by slid phase extraction and high performance liquid chromatography. Bull. Environ. Contam. Toxicol. 2011, 86, 314–318. [Google Scholar]
- Parejaa, L.; Cesiob, V.; Heinzen, H.; Fernandez-Alba, A.R. Evaluation of various QuEChERS based methods for the analysis of herbicides and other commonly used pesticides in polished rice by LC–MS/MS. Talanta 2011, 83, 1613–1622. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhao, Y.; Fan, S.; Bai, A.; Pan, C. Dissipation and residues of bispyribac-sodium in rice and environment. Environ. Monit. Assess. 2013, 185, 9743–9749. [Google Scholar] [CrossRef] [PubMed]
- Ramprakash, T.; Madhavi, M.; Yakadri, M.; Srinivas, A. Bispyribac Sodium Persistence in Soil, Plant and Grain in Direct Seeded Rice and its Effect on Soil Properties. Nat. Environ. Pollut. Technol. 2015, 14, 605–609. [Google Scholar]
- Kamel, A.H.; Galal, H.R.; Awwad, N.S. Cost-effective and handmade paper-based potentiometric sensing platform for piperidine determination. Anal. Methods 2018, 10, 5406–5415. [Google Scholar] [CrossRef]
- Crespo, G.A. Recent advances in ion-selective membrane electrodes for in situ environmental water analysis. Electrochim. Acta 2017, 245, 1023–1034. [Google Scholar] [CrossRef]
- Cuartero, M.; Crespo, G.A. All-solid-state potentiometric sensors: A new wave for in situ aquatic research. Curr. Opin. Electrochem. 2018, 10, 98–106. [Google Scholar] [CrossRef]
- Kamel, A.H.; El-Naggar, A.M.; Argig, A.A. Response characteristics of lead-selective membrane sensors based on a newly synthesized quinoxaline derivatives as neutral carrier ionophores. Ionics 2017, 23, 3497–3506. [Google Scholar] [CrossRef]
- Kamel, A.H. New potentiometric transducer based on a Mn (II) [2-formylquinoline thiosemicarbazone] complex for static and hydrodynamic assessment of azides. Talanta 2015, 144, 1085–1090. [Google Scholar] [CrossRef]
- Hassan, S.S.; Badr, I.H.; Kamel, A.H.; Mohamed, M.S. A Novel Poly (Vinyl Chloride) Matrix Membrane Sensor for Batch and Flow-injection Determination of Thiocyanate, Cyanide and Some Metal Ions. Anal. Sci. 2009, 25, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.S.; Mahmoud, W.H.; Mohamed, A.H.; Kelany, A.E. Mercury (II) Ion-Selective Polymeric Membrane Sensors for Analysis of Mercury in Hazardous Wastes. Anal. Sci. 2006, 22, 877–881. [Google Scholar] [CrossRef] [Green Version]
- Kamel, A.H.; Mahmoud, W.H.; Mostafa, M.S. Response Characteristics of Copper-Selective Polymer Membrane Electrodes Based on a Newly Synthesized Macrocyclic Calix [4] arene Derivative as a Neutral Carrier Ionophore. Electroanalysis 2010, 22, 2453–2459. [Google Scholar] [CrossRef]
- Kamel, A.H.; Kalifa, M.E.; Abd El-Maksoud, S.A.; Elgendy, F.A. Fabrication of novel sensors based on a synthesized acyclic pyridine derivative ionophore for potentiometric monitoring of copper. Anal. Methods 2014, 6, 7814–7822. [Google Scholar] [CrossRef]
- Guerreiro, J.R.L.; Kamel, A.H.; Sales, M.G.F. FIA potentiometric system based on periodate polymeric membrane sensors for the assessment of ascorbic acid in commercial drinks. Food Chem. 2010, 120, 934–939. [Google Scholar] [CrossRef] [Green Version]
- Kamel, A.H.; Hassan, A.M. Solid contact potentiometric sensors based on host-tailored molecularly imprinted polymers for creatine assessment. Int. J. Electrochem. Sci. 2016, 11, 8938–8949. [Google Scholar] [CrossRef]
- Kamel, A.H.; Mahmoud, W.H.; Mostafa, M.S. Biomimetic ciprofloxacin sensors made of molecularly imprinted network receptors for potential measurements. Anal. Methods 2011, 3, 957–964. [Google Scholar] [CrossRef]
- Kamel, A.H.; Galal, H.R. MIP-Based Biomimetic Sensors for Static and Hydrodynamic Potentiometric Transduction of Sitagliptin in Biological fluids. Int. J. Electrochem. Sci. 2014, 9, 4361–4373. [Google Scholar]
- El-Naby, E.H.; Kamel, A.H. Potential transducers based man-tailored biomimetic sensors for selective recognition of dextromethorphan as an antitussive drug. Mater. Sci. Eng. C 2015, 54, 217–224. [Google Scholar] [CrossRef]
- Kamel, A.H.; Sayour, H.E.M. Flow-Through Assay of Quinine Using Solid Contact Potentiometric Sensors Based on Molecularly Imprinted Polymers. Electroanalysis 2009, 21, 2701–2708. [Google Scholar] [CrossRef]
- Abdalla, N.S.; Youssef, M.A.; Algarni, H.; Awwad, N.S.; Kamel, A.H. All Solid-State Poly (Vinyl Chloride) Membrane Potentiometric Sensor Integrated with Nano-Beads Imprinted Polymers for Sensitive and Rapid Detection of Bispyribac Herbicide as Organic Pollutant. Molecules 2019, 24, 712. [Google Scholar] [CrossRef] [Green Version]
- Van Ooyen, J. Quaternary Ammonium Nitrates as Extracting Agents for Trivalent Actinoids; Pushkov, A.A., Ed.; Khimia Extrakcii, Atomizdat: Moscow, Russia, 1971; pp. 285–292. [Google Scholar]
- Scibona, G.; Birum, J.; Kimura, K.; Irvine, J.W. Some Thermodynamic Characteristics of Anions’ Distribution between Alkylammonium Salts’ Benzene Solutions and Electrolytes’ Water Solutions; Pushkov, A.A., Ed.; Khimia Extrakcii, Atomizdat: Moscow, Russia, 1971; pp. 232–242. [Google Scholar]
- Ozawa, S.; Miyagi, H.; Shibata, Y.; Oki, N.; Kunitake, T.; Keller, W.E. Anion-Selective Electrodes Based on Long-Chain Methyltrialkylammonium Salts. Anal. Chem. 1996, 68, 4149–4152. [Google Scholar] [CrossRef]
- Schwake, A.; Cammann, K.; Smirnova, A.L.; Levitchev, S.S.; Khitrova, V.L.; Grekovich, A.L.; Vlasov, Y.G. Potentiometric properties and impedance spectroscopic data of poly (vinyl chloride) membranes containing quaternary ammonium salts of different chemical structure. Anal. Chim. Acta 1999, 393, 19–28. [Google Scholar] [CrossRef]
- Hassan, S.S.; Elnemma, E.M.; Mohamed, A.H. Novel biomedical sensors for flow injection potentiometric determination of creatinine in human serum. Electroanalysis 2005, 17, 2246–2253. [Google Scholar] [CrossRef]
- Kamel, A.H.; Galal, H.R.; Hana, A.A. Novel planar chip biosensors for potentiometric immunoassay of acid phosphatase activity based on the use of ion association complexes as novel electroactive materials. Int. J. Electrochem. Sci. 2014, 9, 5776–5787. [Google Scholar]
- Bakker, E. Determination of improved selectivity coefficients of polymer membrane ion-selective electrodes by conditioning with a discriminated ion. J. Electrochem. Soc. 1996, 143, L83–L85. [Google Scholar] [CrossRef]
Parameter | Value | |
---|---|---|
Batch | Flow-Through Analysis | |
Slope, mV/decade | −63.6 ± 0.7 | −53.8 ± 1.3 |
Correlation coefficient, (r2) | 0.9971 | 0.9983 |
Linear range, M | 9.1 × 10−6–1.0 × 10−2 | 2 × 10−4–1.0 × 10−2 |
Detection limit, M | 6.0 × 10−6 | 5.6 × 10−5 |
Response time for 10−5 M, s | 5 | 10 |
Recovery time for 10−5 M, s | 10 | 50 |
Working acidity range, pH | 6–8 | 6–8 |
Accuracy, % | 99.3 | 98.6 |
Trueness, % | 99.1 | 98.2 |
Bias, % | 0.9 | 1.3 |
Within-day Repeatability, CVw% | 0.6 | 1.1 |
Between days-variation, CVb% | 1.1 | 1.3 |
Relative Standard deviation, % | 0.7 | 0.9 |
Precision, % | 1.1 | 1.5 |
Interfering Ion, J | Log KPot bispyribac, J of the Proposed Sensor |
---|---|
SCN− | −2.50 |
SO32− | −5.10 |
SO42− | −4.29 |
I− | −3.17 |
CH3COO− | −5.72 |
Phenol | −2.13 |
3-aminophenol | −1.21 |
Sulphadimidine | −1.13 |
Cyromazine | −1.24 |
Diquate dibromide | −5.77 |
Methomyl | −4.78 |
Dimethoate | −4.47 |
Oxamyl | −5.39 |
Commercial Product | Label (w/v%) | * Found | ||
---|---|---|---|---|
Potentiometry, (Bispyribac Sensor) | HPLC method [12] | |||
Batch | Flow Analysis | |||
Nomenee-kz, Kafr El-Zayat Pesticides and Chemicals Company (Gharbia, Egypt) | 3 | 2.83 ± 0.6 | 2.74 ± 0.8 | 2.93 ± 0.3 |
Sample | Amount Added, µg/mL | * Amount Found, µg/mL | |||||
---|---|---|---|---|---|---|---|
Static Mode | Hydrodynamic Mode | HPLC [33] | |||||
Found | Recovery,% | Found | Recovery,% | Found | Recovery,% | ||
Sample 1 | 10 | 9.3 ± 0.5 | 93 | 9.5 ± 0.3 | 95 | 9.7 ± 0.2 | 97 |
Sample 2 | 15 | 13.7 ± 1.1 | 91.3 | 14.1 ± 0.9 | 94 | 14.6 ± 0.3 | 97.3 |
Sample 3 | 20 | 21.4 ± 1.5 | 107 | 20.8 ± 1.2 | 104 | 20.2 ± 0.1 | 101 |
Sample | * Amount Found, µg/mL | ||
---|---|---|---|
Static Mode | Hydrodynamic Mode | HPLC [33] | |
Sample 1 | 3.2 ± 0.2 | 2.8 ± 0.6 | 2.9 ± 0.1 |
Sample 2 | 3.7 ± 0.1 | 4.1 ± 0.2 | 3.5 ± 0.1 |
Sample 3 | 1.1 ± 0.5 | 1.4 ± 0.3 | 1.2 ± 0.4 |
Sample 4 | 2.5 ± 0.7 | 2.9 ± 0.6 | 2.2 ± 0.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
H. Kamel, A.; Almehizia, A.A.; Galal, H.R.; Amr, A.E.-G.E.; Elsayed, E.A. Rapid and Accurate Validated Potentiometric Method for Bispyribac Herbicide Assessment in Rice and Agricultural Wastewater. Water 2020, 12, 2216. https://doi.org/10.3390/w12082216
H. Kamel A, Almehizia AA, Galal HR, Amr AE-GE, Elsayed EA. Rapid and Accurate Validated Potentiometric Method for Bispyribac Herbicide Assessment in Rice and Agricultural Wastewater. Water. 2020; 12(8):2216. https://doi.org/10.3390/w12082216
Chicago/Turabian StyleH. Kamel, Ayman, Abdulrahman A. Almehizia, Hoda R. Galal, Abd El-Galil E. Amr, and Elsayed A. Elsayed. 2020. "Rapid and Accurate Validated Potentiometric Method for Bispyribac Herbicide Assessment in Rice and Agricultural Wastewater" Water 12, no. 8: 2216. https://doi.org/10.3390/w12082216
APA StyleH. Kamel, A., Almehizia, A. A., Galal, H. R., Amr, A. E.-G. E., & Elsayed, E. A. (2020). Rapid and Accurate Validated Potentiometric Method for Bispyribac Herbicide Assessment in Rice and Agricultural Wastewater. Water, 12(8), 2216. https://doi.org/10.3390/w12082216