Perspectives on Microalgal Biofilm Systems with Respect to Integration into Wastewater Treatment Technologies and Phosphorus Scarcity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory-Scale Microalgal Biofilm Cultivation on a Geotextile Surface
2.2. Calculation of the Area Required for the Biofilm
2.3. Estimated P Recovery Potential
3. Results
3.1. Laboratory-Scale Microalgal Biofilm Cultivation on the Geotextile Surface
3.2. Design of a Large-Scale Biofilm System for P Removal
3.2.1. Geotextile-Based Biofilm System for P Removal
3.2.2. Concrete-Based Biofilm System for P Removal
3.3. Evaluation of the Required Area
3.4. Comparison of the Vertical and Horizontal Module Geometry of the Biofilm Stage in WWT Systems
3.5. The Footprint Area Within the Context of the Proposed Integration Schemes
3.6. Estimated P Recovery Potential
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Geng, J.; Niu, X.; Jin, X.; Wang, X.; Gu, X.; Edwards, M.; Glindemann, D. Simultaneous Monitoring of Phosphine and of Phosphorus Species in Taihu Lake Sediments and Phosphine Emission from Lake Sediments. Biogeochemistry 2005, 76, 283–298. [Google Scholar] [CrossRef]
- Roels, J.; Verstraete, W. Biological formation of volatile phosphorus compounds. Bioresour. Technol. 2001, 79, 243–250. [Google Scholar] [CrossRef]
- Desmidt, E.; Ghyselbrecht, K.; Zhang, Y.; Pinoy, L.; Van der Bruggen, B.; Verstraete, W.; Rabaey, K.; Meesschaert, B. Global Phosphorus Scarcity and Full-Scale P-Recovery Techniques: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 336–384. [Google Scholar] [CrossRef]
- Jones, B. Recycled insular phosphates and coated grains: Case study from Little Cayman, British West Indies. Sedimentology 2020, 67/4, 1844–1878. [Google Scholar] [CrossRef]
- Liu, Y.; Villalba, G.; Ayres, R.U.; Schroder, H. Global Phosphorus Flows and Environmental Impacts from a Consumption Perspective. J. Ind. Ecol. 2008, 12, 229–247. [Google Scholar] [CrossRef]
- Schlesinger, W.H. Biogeochemistry: An Analysis of Global Change, 3rd ed.; Elsevier/Academic Press: New York, NY, USA, 2012. [Google Scholar]
- Van Dijk, K.C.; Lesschen, J.P.; Oenema, O. Phosphorus flows and balances of the European Union Member States. Sci. Total Environ. 2016, 542, 1078–1093. [Google Scholar] [CrossRef]
- Heffer, P.; Prud’homme, M. Fertilizer Outlook 2014–2018; International Fertilizer Industry Association (IFA): Paris, France, 2014; p. 9. [Google Scholar]
- Peng, L.; Dai, H.; Wu, Y.; Peng, Y.; Lu, X. A Comprehensive Review of the Available Media and Approaches for Phosphorus Recovery from Wastewater. Water Air Soil Pollut. 2018, 229, 1–28. [Google Scholar] [CrossRef]
- Mantzavinos, D.; Kalogerakis, N. Treatment of olive mill effluents: Part I. Organic matter degradation by chemical and biological processes—An overview. Environ. Int. 2005, 31, 289–295. [Google Scholar] [CrossRef]
- De-Bashan, L.E.; Bashan, Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer. Water Res. 2004, 38, 4222–4246. [Google Scholar] [CrossRef]
- Rawat, I.; Kumar, R.R.; Mutanda, T.; Bux, F. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl. Energy 2011, 88, 3411–3424. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, Z.; Zhu, L.; Ye, T.; Zuo, J.; Li, X.; Xiao, B.; Jin, S. Vertical-algal-biofilm enhanced raceway pond for cost effective wastewater treatment and value-added products production. Water Res. 2018, 139, 144–157. [Google Scholar]
- Liu, J.; Wu, Y.; Wu, C.; Muylaert, K.; Vyverman, W.; Yu, H.; Muňoz, R.; Rittmann, B. Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: A review. Bioresour. Technol. 2017, 241, 1127–1137. [Google Scholar] [CrossRef] [PubMed]
- Whitton, R.; Ometto, F.; Pidou, M.; Jarvis, P.; Villa, R.; Jefferson, B. Microalgae for municipal wastewater nutrient remediation: Mechanisms, reactors and outlook for tertiary treatment. Environ. Technol. Rev. 2015, 4, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Molinuevo-Salces, B.; Riano, B.; Hernández, D.; Garcia-Gonzáles, M.C. Microalgae and Wastewater Treatment: Advantages and Disadvantages. In Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment; Alam, M.A., Wang, Z., Eds.; Springer: Singapore, 2019; pp. 505–533. [Google Scholar]
- Liu, J.; Vyverman, W. Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. under varying N/P conditions. Bioresour. Technol. 2015, 179, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Kesaano, M.; Sims, R.C. Algal biofilm based technology for wastewater treatment. Algal Res. 2014, 5, 231–240. [Google Scholar] [CrossRef]
- Gross, M.; Jarboe, D.; Wen, Z. Biofilm-based algal cultivation systems. Appl. Microbiol. Biotechnol. 2015, 99, 5781–5789. [Google Scholar] [CrossRef]
- Mulbry, W.; Westhead, E.K.; Pizarro, C.; Sikora, L. Recycling of manure nutrients: Use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresour. Technol. 2005, 96, 451–458. [Google Scholar] [CrossRef]
- Mulbry, W.; Kondrad, S.; Pizarro, C. Biofertilizers from Algal Treatment of Dairy and Swine Manure Effluents: Characterization of Algal Biomass as a Slow Release Fertilizer. J. Veg. Sci. 2007, 12, 107–125. [Google Scholar] [CrossRef]
- Callow, M.E.; Algal, B. Biofilms: Recent Advances in Their Study and Control; Evans, L.V., Ed.; Harwood Academic Publishers: Amsterdam, The Netherlands, 2000; pp. 196–218. [Google Scholar]
- Sabater, S.; Guasch, H.; Romaní, A.; Muñoz, I. The effect of biological factors on the efficiency of river biofilms in improving water quality. Hydrobiologia 2002, 469, 149–156. [Google Scholar] [CrossRef]
- Posadas, E.; García-Encina, P.A.; Soltau, A.; Domínguez, A.; Díaz, I. Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors. Bioresour. Technol. 2013, 139, 50–58. [Google Scholar] [CrossRef]
- Boelee, N.C.; Temmink, H.; Janssen, M.; Buisman, C.J.N.; Wijffels, R.H. Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Res. 2011, 45, 5925–5933. [Google Scholar] [PubMed]
- Liu, T.; Wang, J.; Hu, Q.; Cheng, P.; Ji, B.; Liu, J.; Chen, Y.; Zhang, W.; Chen, X.; Chen, L.; et al. Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresour. Technol. 2013, 127, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Sukačová, K.; Kočí, R.; Žídková, M.; Vítěz, T.; Trtílek, M. Novel insight into the process of nutrients removal using an algal biofilm: The evaluation of mechanism and efficiency. Int. J. Phytoremediation 2017, 19, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Podola, B.; Melkonian, M. Application of a prototype-scale Twin-Layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae. Bioresour. Technol. 2014, 154, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Zippel, B.; Rijstenbil, J.; Neu, T.R. A flow-lane incubator for studying freshwater and marine phototrophic biofilms. J. Microbiol. Methods 2007, 70, 336–345. [Google Scholar] [CrossRef]
- Mantzorou, A.; Ververidis, F. Microalgal biofilms: A further step over current microalgal cultivation techniques. Sci. Total Environ. 2019, 651, 3187–3201. [Google Scholar] [CrossRef]
- Guzzon, A.; Bohn, A.; Diociaiuti, M.; Albertano, P. Cultured phototrophic biofilms for phosphorus removal in wastewater treatment. Water Res. 2008, 42, 4357–4367. [Google Scholar] [CrossRef]
- Boelee, N.C.; Janssen, M.; Temmink, H.; Shrestha, R.; Buisman, C.J.N.; Wijffels, R.H. Nutrient removal and biomass production in an outdoor pilot-scale phototrophic biofilm reactor for effluent polishing. Appl. Biochem. Biotechnol. 2014, 172, 405–422. [Google Scholar] [CrossRef]
- Sukačová, K.; Trtílek, M.; Rataj, T. Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment. Water Res. 2015, 71, 55–63. [Google Scholar]
- Boelee, N.C.; Temmink, H.; Janssen, M.; Buisman, C.J.N.; Wijffels, R.H. Scenario analysis of nutrient removal from municipal wastewater by microalgal biofilms. Water 2012, 4, 460–473. [Google Scholar] [CrossRef]
- Craggs, R.; Sutherland, D.; Campbell, H. Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J. Appl. Phycol. 2012, 24, 329–337. [Google Scholar] [CrossRef]
- Komárek, J.; Anagnostidis, K. Cyanoprokaryota, 2. Teil: Oscillatoriales. In Süsswasserflora von Mitteleuropa; Büdel, B., Gärtner, G., Krienitz, L., Schagerl, M., Eds.; Elsevier: München, Germany, 2005; Volume 18/2, pp. 1–759. [Google Scholar]
- Ettl, H.; Gärtner, G. Syllabus der Boden-, Luft- und Flechtenalgen; Gustav Fischer Verlag: Stuttgart, Germany, 1995; pp. 1–721. [Google Scholar]
- Lewis, M.L.; Wurtsbaugh, W.A.; Paerl, H.W. Rationale for Control of Anthropogenic Nitrogen and Phosphorus to reduce Euthrophication of Inland Waters. Environ. Sci. Technol. 2011, 45, 10300–10305. [Google Scholar] [CrossRef] [PubMed]
- Water Environment Federation. Nutrient Removal. In WEF Manual of Practise No.34; WEF Press: Alexandria, VA, USA, 2010; p. 450. [Google Scholar]
- De Assis, L.R.; Calijuri, M.L.; Assemany, P.P.; Berg, E.C.; Febroni, L.V.; Bartolomeu, T.A. Evaluation of the performance of different materials to support the attached growth of algal biomass. Algal Res. 2019, 39, 1–8. [Google Scholar] [CrossRef]
- Johnson, M.; Wen, Z. Development of an attached microalgal growth system for biofuel production. Appl. Microbiol. Biotechnol. 2010, 85, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, P.; Proulx, D.; Lessard, P.; Vincent, W.F.; Noüe, J. Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J. Appl. Phycol. 2000, 12, 105–112. [Google Scholar] [CrossRef]
- Doria, E.; Longoni, P.; Scibilia, L.; Iazzi, N.; Cella, R.; Nielsen, E. Isolation and characterization of a Scenedesmus acutus strain to be used for bioremediation of urban wastewater. J. Appl. Phycol. 2012, 24, 375–383. [Google Scholar] [CrossRef]
- Renuka, N.; Sood, A.; Ratha, S.K.; Prasanna, R.; Ahluwalia, A.S. Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production. J. Appl. Phycol. 2013, 25, 1529–1537. [Google Scholar] [CrossRef]
- Pittman, J.K.; Dean, A.P.; Osundeko, O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 2011, 102, 17–25. [Google Scholar] [CrossRef]
- Kangas, P.; Mulbry, W. Nutrient removal from agricultural drainage water using algal turf scrubbers and solar power. Bioresour. Technol. 2014, 152, 484–489. [Google Scholar] [CrossRef]
- Zamalloa, C.; Boon, N.; Verstraete, W. Decentralized two-stage sewage treatment by chemical-biological flocculation combined with microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor. Bioresour. Technol. 2013, 130, 152–160. [Google Scholar] [CrossRef]
- Silviera, O.E.; Moura, D.; Rieger, A.; Machado, L.E.; Lutterbeck, A.C. Performance of an integrated system combining microalgae and vertical flow constructed wetlands for urban wastewater treatment. Environ. Sci. Pollut. Res. 2017, 24, 20469–20478. [Google Scholar] [CrossRef]
- Gross, M.; Wesley, H.; Clayton, M.; Wen, Z. Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest. Bioresour. Technol. 2013, 150, 195–201. [Google Scholar] [CrossRef]
- Tredici, M.R.; Bassi, N.; Prussi, M.; Biondi, N.; Rodolfi, L.; Zittelli, C.G.; Sampietro, G. Energy balance of algal biomass in a closed reactor achieving a high Net Energy Ratio. Appl. Energy 2015, 154, 1103–1111. [Google Scholar] [CrossRef] [Green Version]
- Gou, Y.; Yang, J.; Fang, F.; Guo, J.; Ma, H. Feasibility of using a novel algal-bacterial biofilm reactor for efficient domestic wastewater treatment. Environ. Technol. 2020, 41, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Shilton, A.N.; Powell, N.; Guieysse, B. Plant based phosphorus recovery from wastewater via algae and macrophytes. Curr. Opin. Biotechnol. 2012, 23, 884–889. [Google Scholar] [CrossRef]
- Adey, W.H.; Laughinghouse, H.D.; Miller, J.B. Algal Turf Scrubbers (ATS) Floways on the Gret Wicomico River, Chesapeake Bay: Productivity, Algal community structure, substrate and chemistry. J. Phycol. 2013, 49, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Adey, W.H.; Kangas, P.C.; Mulbry, W. Algal Turf Scrubbing: Cleaning surface waters with solar energy while producing a biofuel. Bioscience 2011, 61, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Bunce, T.J.; Ndam, E.; Ofiteru, D.I.; Moore, A.; Graham, D.W. A Review of Phosphorus Removal Technologies and Their Applicability to Small-Scale Domestic Wastewater Treatment Systems. Front. Environ. Sci. 2018, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Pizarro, C.; Mulbry, W.; Blersch, D.; Kangas, P. An economic assessment of algal turf scrubber technology for treatment of dairy manure effluent. Ecol. Eng. 2006, 26, 321–327. [Google Scholar] [CrossRef]
Scenario of Microalgal Biofilm Integration into Wastewater Treatment Plant | Inflow TP (mg L−1) | Outflow TP (mg L−1) | DWW Volume (m3 per Day) | Average TP Uptake by the Biofilm (g m−2 per Day) |
---|---|---|---|---|
Post-treatment stage for WWTP 3 500 PE (Scheme A) | 1 | <0.10 | 0.165 | 0.05 |
Tertiary treatment stage for WWTP 3 500 PE (Scheme B) | 3 | <0.10 | 0.165 | 0.15 |
Tertiary treatment stage for domestic WWTP 50 PE (Scheme C) | 3 | <0.10 | 0.150 | 0.15 |
Design | Cultivation Area (m) | Module Length (m) | Distance Between Modules (m) |
---|---|---|---|
Concrete-based biofilm system | 2 * | 10 | 0.2 |
Geotextile-based biofilm system | 1 ** | 10 | 0.8 |
Integration Scheme Design | TP Uptake Rate 0.05 g m−2 D−1 for Scheme A 0.15 g m−2 D−1 for Schemes B and C | |
---|---|---|
FP Area per PE (m2) | Footprint Area (m2) | |
Post-treatment (scheme A) | 2.4 | 8400 |
Tertiary treatment (scheme B) | 2.6 | 9100 |
Tertiary treatment (scheme C) | 2.3 | 115 |
Integration Scheme Design | TP Uptake Rate 0.05 g m−2 D−1 for Scheme A 0.15 g m−2 D−1 for Schemes B and C | |
---|---|---|
FP Area per PE (m2) | Footprint/Required Area (m2) | |
Post-treatment (scheme A) | 3 | 10, 500 |
Tertiary treatment (scheme B) | 3.2 | 11, 200 |
Tertiary treatment (scheme C) | 2.90 | 145 |
Integration Scheme Design | Daily DW (kg DW per Day) | Daily P Recovery (kg P per Day) | Estimated Annual DW (kg DW per Year) | Estimated Annual P Recovery (kg P per Year) |
---|---|---|---|---|
Post-treatment (scheme A) | 242 | 2.9 | 88,330 | 1059 |
Tertiary treatment (scheme B) | 258 | 3.1 | 94,170 | 1132 |
Tertiary treatment (scheme C) | 3.3 | 0.04 | 1205 | 14.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukačová, K.; Vícha, D.; Dušek, J. Perspectives on Microalgal Biofilm Systems with Respect to Integration into Wastewater Treatment Technologies and Phosphorus Scarcity. Water 2020, 12, 2245. https://doi.org/10.3390/w12082245
Sukačová K, Vícha D, Dušek J. Perspectives on Microalgal Biofilm Systems with Respect to Integration into Wastewater Treatment Technologies and Phosphorus Scarcity. Water. 2020; 12(8):2245. https://doi.org/10.3390/w12082245
Chicago/Turabian StyleSukačová, Kateřina, Daniel Vícha, and Jiří Dušek. 2020. "Perspectives on Microalgal Biofilm Systems with Respect to Integration into Wastewater Treatment Technologies and Phosphorus Scarcity" Water 12, no. 8: 2245. https://doi.org/10.3390/w12082245
APA StyleSukačová, K., Vícha, D., & Dušek, J. (2020). Perspectives on Microalgal Biofilm Systems with Respect to Integration into Wastewater Treatment Technologies and Phosphorus Scarcity. Water, 12(8), 2245. https://doi.org/10.3390/w12082245