Characteristics of Dissolved Organic Matter and Its Role in Lake Eutrophication at the Early Stage of Algal Blooms—A Case Study of Lake Taihu, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Treatment
2.3. Measurement of CDOM
2.4. Measurement of EEM Data
2.5. Data Preprocessing
2.5.1. PARAFAC Analysis
2.5.2. Calculation of Fluorescence Index
2.6. Statistical Analysis
3. Results
3.1. Basic Physical–Chemical Parameters of Overlying Water
3.2. Spatial Distributions of DOM and CDOM in Overlying Water
3.3. Three-Dimensional Fluorescence Spectrum Characteristics of CDOM in Overlying Water
4. Discussion
4.1. Reasons for the Spatial Distribution Characteristics of DOM in Overlying Water of Lake Taihu
4.2. Source Apportionment of DOM in Overlying Water of Lake Taihu
4.3. Characteristics of Algal-Derived DOM in the Overlying Water of Lake Taihu
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ye, L.; Shi, X.; Wu, X.; Zhang, M.; Yü, Y.; Li, D.; Kong, F. Dynamics of dissolved organic carbon after a cyanobacterial bloom in hypereutrophic Lake Taihu (China). Limnologica 2011, 41, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Bravo, A.G.; Skyllberg, U.; Björn, E.; Wang, D.; Yan, H.; Green, N.W. Influence of dissolved organic matter (DOM) characteristics on dissolved mercury (Hg) species composition in sediment porewater of lakes from southwest China. Water Res. 2018, 146, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.R.; Jin, X.C.; Zhao, H.C.; Zhou, X.N. Effect of DOM on phosphate sorption in lake sediments. Acta Pedol. Sin. 2005, 42, 805–811. [Google Scholar] [CrossRef]
- Wei, Z.-M.; Zhang, X.; Wei, Y.-Q.; Wen, X.; Shi, J.; Wu, J.; Zhao, Y.; Xi, B. Fractions and biodegradability of dissolved organic matter derived from different composts. Bioresour. Technol. 2014, 161, 179–185. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, R.; Wang, S.; Si, X.; Duan, X.; Zhou, J. Influence of humic substances on the toxic effects of cadmium and SDBS to the green alga Scenedesmus obliquus. Environ. Toxicol. Pharmacol. 2019, 68, 94–100. [Google Scholar] [CrossRef]
- Yuan, D.; Wang, H.; An, Y.; Guo, X.; He, L. Insight into the binding properties of carbamazepine onto dissolved organic matter using spectroscopic techniques during grassy swale treatment. Ecotoxicol. Environ. Saf. 2019, 173, 444–451. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, H.; He, P.; Shao, L.-M. Insight into the heavy metal binding potential of dissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis. Water Res. 2011, 45, 1711–1719. [Google Scholar] [CrossRef]
- Zepp, R.; Callaghan, T.; Erickson, D. Effects of enhanced solar ultraviolet radiation on biogeochemical cycles. J. Photochem. Photobiol. B Biol. 1998, 46, 69–82. [Google Scholar] [CrossRef]
- Moran, M.A.; Sheldon, W.M.; Zepp, R. Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol. Oceanogr. 2000, 45, 1254–1264. [Google Scholar] [CrossRef]
- Organelli, E.; Bricaud, A.; Antoine, D.; Matsuoka, A. Seasonal dynamics of light absorption by chromophoric dissolved organic matter (CDOM) in the NW Mediterranean Sea (BOUSSOLE site). Deep Sea Res. Part I Oceanogr. Res. Pap. 2014, 91, 72–85. [Google Scholar] [CrossRef]
- Kheireddine, M.; Ouhssain, M.; Calleja, M.L.; Morán, X.A.G.; Sarma, Y.; Tiwari, S.P.; Jones, B.H. Characterization of light absorption by chromophoric dissolved organic matter (CDOM) in the upper layer of the Red Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2018, 133, 72–84. [Google Scholar] [CrossRef] [Green Version]
- Stedmon, C.A.; Markager, S.; Tranvik, L.J.; Kronberg, L.; Slätis, T.; Martinsen, W. Photochemical production of ammonium and transformation of dissolved organic matter in the Baltic Sea. Mar. Chem. 2007, 104, 227–240. [Google Scholar] [CrossRef]
- Sereda, J.M.; Hunter, K.; Vandergucht, D.; Hudson, J. Photochemical mineralization of dissolved organic nitrogen to ammonia in prairie lakes. Hydrobiologia 2012, 693, 71–80. [Google Scholar] [CrossRef]
- Hu, B.; Wang, P.; Qian, J.; Wang, C.; Zhang, N.; Cui, X. Characteristics, sources, and photobleaching of chromophoric dissolved organic matter (CDOM) in large and shallow Hongze Lake, China. J. Great Lakes Res. 2017, 43, 1165–1172. [Google Scholar] [CrossRef]
- Liu, W.-X.; He, W.; Wu, J.-Y.; Wu, W.-J.; Xu, F.-L. Effects of fluorescent dissolved organic matters (FDOMs) on perfluoroalkyl acids (PFAAs) in lake and river water. Sci. Total Environ. 2019, 666, 598–607. [Google Scholar] [CrossRef]
- Wong, K.H.; Obata, H.; Kim, T.; Wakuta, Y.; Takeda, S. Distribution and speciation of copper and its relationship with FDOM in the East China Sea. Mar. Chem. 2019, 212, 96–107. [Google Scholar] [CrossRef]
- Zahra, Z.; Maqbool, T.; Arshad, M.; Badshah, M.A.; Choi, H.-K.; Hur, J. Changes in fluorescent dissolved organic matter and their association with phytoavailable phosphorus in soil amended with TiO2 nanoparticles. Chemosphere 2019, 227, 17–25. [Google Scholar] [CrossRef]
- Rochelle-Newall, E.; Fisher, T. Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay. Mar. Chem. 2002, 77, 23–41. [Google Scholar] [CrossRef]
- Spencer, R.G.M.; Aiken, G.R.; Butler, K.D.; Dornblaser, M.M.; Striegl, R.G.; Hernes, P.J. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Liu, M.L.; Zhang, Y.L.; Qin, B.Q. Characterization of absorption and three-dimensional excitation-emission matrix spectra of chromophoric dissolved organic matter at the river inflow and the open area in Lake Taihu. J. Lake Sci. 2009, 21, 234–241. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Qin, B.Q. Feature of CDOM and its possible source in Meiliang bay and Da Taihu lake in Taihu lake in summer and winter. Adv. Water Sci. 2007, 18, 415–423. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, Y.; Zhu, G.-W.; Qin, B.; Feng, L.; Cai, L.; Gao, G. Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries. Chemosphere 2011, 82, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Yao, X.; Shao, K.; Zhang, B.; Gao, G. Unraveling the sources and fluorescence compositions of dissolved and particulate organic matter (DOM and POM) in Lake Taihu, China. Environ. Sci. Pollut. Res. 2018, 26, 4027–4040. [Google Scholar] [CrossRef]
- Sepp, M.; Kõiv, T.; Nõges, P.; Nõges, T. The role of catchment soils and land cover on dissolved organic matter (DOM) properties in temperate lakes. J. Hydrol. 2019, 570, 281–291. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, J.; Kong, F.; Li, Y.; Li, M.; Dong, Y.; Xi, M. Identification of source apportionment and its spatial variability of dissolved organic matter in Dagu River-Jiaozhou Bay estuary based on the isotope and fluorescence spectroscopy analysis. Ecol. Indic. 2019, 102, 528–537. [Google Scholar] [CrossRef]
- Gu, L.; Huang, B.; Han, F.; Xu, Z.; Ren, D.; He, H.; Pan, X.; Dionysiou, D.D. Intermittent light and microbial action of mixed endogenous source DOM affects degradation of 17β-estradiol day after day in a relatively deep natural anaerobic aqueous environment. J. Hazard. Mater. 2019, 369, 40–49. [Google Scholar] [CrossRef]
- Wu, F.C.; Wang, L.Y.; Li, W.; Zhang, R.Y.; Fu, P.Q.; Liao, H.Q.; Bai, Y.C.; Guo, J.Y.; Wang, J. Natural organic matter and its significance in terrestrial surface environment. J. Lake Sci. 2008, 20, 1–12. [Google Scholar]
- Wang, Z.-G.; Liu, W.; Zhao, N.-J.; Li, H.-B.; Zhang, Y.-J.; Si-Ma, W.-C.; Liu, J. Composition analysis of colored dissolved organic matter in Taihu Lake based on three dimension excitation-emission fluorescence matrix and PARAFAC model, and the potential application in water quality monitoring. J. Environ. Sci. 2007, 19, 787–791. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Shi, K.; Niu, C.; Liu, X.; Duan, H. Lake Taihu, a large, shallow and eutrophic aquatic ecosystem in China serves as a sink for chromophoric dissolved organic matter. J. Great Lakes Res. 2015, 41, 597–606. [Google Scholar] [CrossRef]
- Zhang, F.; Harir, M.; Moritz, F.; Zhang, J.; Witting, M.; Wu, Y.; Schmitt-Kopplin, P.; Fekete, A.; Gáspár, A.; Hertkorn, N. Molecular and structural characterization of dissolved organic matter during and post cyanobacterial bloom in Taihu by combination of NMR spectroscopy and FTICR mass spectrometry. Water Res. 2014, 57, 280–294. [Google Scholar] [CrossRef]
- Qin, B.; Xu, P.; Wu, Q.; Luo, L.; Zhang, Y. Environmental issues of Lake Taihu, China. Hydrobiologia 2007, 581, 3–14. [Google Scholar] [CrossRef]
- Guo, L. Doing Battle With the Green Monster of Taihu Lake. Science 2007, 317, 1166. [Google Scholar] [CrossRef] [PubMed]
- MEP of PRC (Ministry of Environmental Protection of the People’s Republic of China). Water Quality—Determination of Chlorophyll—A Spectrophotometric Method; China Environmental Science Press: Beijing, China, 2017.
- MEP of PRC (Ministry of Environmental Protection of the People’s Republic of China). Water Quality—Determination of Permanganate Index; China Environmental Science Press: Beijing, China, 1989.
- MEP of PRC (Ministry of Environmental Protection of the People’s Republic of China). Water Quality—Determination of Total Nitrogen—Alkaline Potassium Persulfate Digestion UV Spectrophotometric Method (HJ 636-2012); China Environmental Science Press: Beijing, China, 2012.
- MEP of PRC (Ministry of Environmental Protection of the People’s Republic of China). Water Quality—Determination of Ammonia Nitrogen—Nessler’s Reagent Spectrophotometry (HJ 535-2009); China Environmental Science Press: Beijing, China, 2009.
- MEP of PRC (Ministry of Environmental Protection of the People’s Republic of China). Water Quality—Determination of Nitrate-Nitrogen—Ultraviolet Spectrophotometry (HJ/T 346-2007); China Environmental Science Press: Beijing, China, 2009.
- MEP of PRC (Ministry of Environmental Protection of the People’s Republic of China). Water Quality—Determination of Total Phosphorus—Ammonium Molybdate Spectrophotometric Method (GB 11893-89); China Environmental Science Press: Beijing, China, 1989.
- Hu, C.; Muller-Karger, F.E.; Zepp, R.G. Absorbance, absorption coefficient, and apparent quantum yield: A comment on common ambiguity in the use of these optical concepts. Limnol. Oceanogr. 2002, 47, 1261–1267. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Markager, S.; Bro, R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem. 2003, 82, 239–254. [Google Scholar] [CrossRef]
- Lawaetz, A.J.; Stedmon, C.A. Fluorescence Intensity Calibration Using the Raman Scatter Peak of Water. Appl. Spectrosc. 2009, 63, 936–940. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, S.; Jiang, X.; Zheng, B.; Zhao, L.; Zhang, B.; Chen, J. Differences in fluorescence characteristics and bioavailability of water-soluble organic matter (WSOM) in sediments and suspended solids in Lihu Lake, China. Environ. Sci. Pollut. Res. 2018, 25, 12648–12662. [Google Scholar] [CrossRef] [PubMed]
- Stedmon, C.A.; Bro, R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial. Limnol. Oceanogr. Methods 2008, 6, 572–579. [Google Scholar] [CrossRef]
- McKnight, D.M.; Boyer, E.W.; Westerhoff, P.K.; Doran, P.T.; Kulbe, T.; Andersen, D.T. Spectro fluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 2001, 46, 38–48. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Wang, M.; Qin, B. Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes. Org. Geochem. 2013, 55, 26–37. [Google Scholar] [CrossRef]
- Song, K.; Wen, Z.; Jacinthe, P.-A.; Zhao, Y.; Du, J. Dissolved carbon and CDOM in lake ice and underlying waters along a salinity gradient in shallow lakes of Northeast China. J. Hydrol. 2019, 571, 545–558. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Aubry, C.; Bélanger, S.; Song, G. The dynamics of absorption coefficients of CDOM and particles in the St. Lawrence estuarine system: Biogeochemical and physical implications. Mar. Chem. 2012, 128, 44–56. [Google Scholar] [CrossRef]
- Zhou, F.; Gao, X.; Song, J.; Chen, C.-T.A.; Yuan, H.; Xing, Q. Absorption properties of chromophoric dissolved organic matter (CDOM) in the East China Sea and the waters off eastern Taiwan. Cont. Shelf Res. 2018, 159, 12–23. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, Y.; Feng, L.; Zhu, G.; Shi, Z.; Liu, X.; Zhang, Y. Characterizing chromophoric dissolved organic matter in Lake Tianmuhu and its catchment basin using excitation-emission matrix fluorescence and parallel factor analysis. Water Res. 2011, 45, 5110–5122. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-Q.; Zhang, Y.; Niu, C.; Wang, M.-Z. Characterizing chromophoric dissolved organic matter (CDOM) in Lake Honghu, Lake Donghu and Lake Liangzihu using excitation-emission matrices (EEMs) fluorescence and parallel factor analysis (PARAFAC). Spectrosc. Spectr. Anal. 2013, 33, 3286–3292. [Google Scholar] [CrossRef]
- Coble, P.G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 1996, 51, 325–346. [Google Scholar] [CrossRef]
- Wu, T.; Qin, B.; Brookes, J.D.; Yan, W.; Ji, X.; Feng, J. Spatial distribution of sediment nitrogen and phosphorus in Lake Taihu from a hydrodynamics-induced transport perspective. Sci. Total. Environ. 2019, 650, 1554–1565. [Google Scholar] [CrossRef]
- Yao, S.C.; Xue, B. Nutrients and heavy metals in multi-cores from Zhushan Bay at Taihu Lake, the largest shallow lake in the Yangtze Delta, China. Quat. Int. 2010, 226, 23–28. [Google Scholar] [CrossRef]
- Liu, J.J.; Lu, J.; Zhu, G.W.; Gao, M.Y.; Wen, L.; Yao, M.; Nie, Q. Occurrence characteristics of black patch events and their influencing factors in Lake Taihu during 2009 and 2017. J. Lake Sci. 2018, 30, 1196–1205. [Google Scholar] [CrossRef] [Green Version]
- Miao, S.; Lyu, H.; Wang, Q.; Li, Y.; Wu, Z.; Du, C.; Xu, J.; Bi, S.; Mu, M.; Lei, S. Estimation of terrestrial humic-like substances in inland lakes based on the optical and fluorescence characteristics of chromophoric dissolved organic matter (CDOM) using OLCI images. Ecol. Indic. 2019, 101, 399–409. [Google Scholar] [CrossRef]
- Huguet, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Froidefond, J.; Parlanti, E. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org. Geochem. 2009, 40, 706–719. [Google Scholar] [CrossRef]
- Sun, W.; Gong, X.L.; Chen, Y.; Zheng, W.J.; Li, Q.; Du, Y.X. Photochemical degradation of the algae-derived dissolved organic matter in Lake Taihu. J. Lake Sci. 2018, 30, 91–101. [Google Scholar] [CrossRef]
- Shi, Q.; Feng, W.; Song, F.; Li, T.; Guo, W.; Wang, B.; Wang, H.; Wu, F. Photodegradation of algae and macrophyte-derived dissolved organic matter: A multi-method assessment of DOM transformation. Limnologica 2019, 77, 125683. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Chen, F.; Chang, Y.; Liu, Z. Photochemical reactivities of dissolved organic matter (DOM) in a sub-alpine lake revealed by EEM-PARAFAC: An insight into the fate of allochthonous DOM in alpine lakes affected by climate change. Sci. Total Environ. 2016, 568, 216–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, F.; Wu, F.-C.; Feng, W.; Liu, S.; He, J.; Li, T.; Zhang, J.; Wu, A.; Amarasiriwardena, D.; Xing, B.; et al. Depth-dependent variations of dissolved organic matter composition and humification in a plateau lake using fluorescence spectroscopy. Chemosphere 2019, 225, 507–516. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, X.; Wang, D.; Liang, J.; Bai, W.; Zhang, C.; Wang, Q.; Wei, S. Dynamics of dissolved organic matter (DOM) in a typical inland lake of the Three Gorges Reservoir area: Fluorescent properties and their implications for dissolved mercury species. J. Environ. Manag. 2018, 206, 418–429. [Google Scholar] [CrossRef]
- Devilbiss, S.E.; Zhou, Z.; Klump, J.V.; Guo, L. Spatiotemporal variations in the abundance and composition of bulk and chromophoric dissolved organic matter in seasonally hypoxia-influenced Green Bay, Lake Michigan, USA. Sci. Total Environ. 2016, 565, 742–757. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Wu, Z.X.; Liu, M.L.; He, J.B.; Gao, Y.R.; Yu, Z.M. Temporal and spatial distribution of CDOM in the Xinanjiang Reservoir. J. Hydrol. 2013, 34, 14–17. [Google Scholar] [CrossRef]
- Hao, Z.; Gao, Y.; Yang, T. Seasonal variation of DOM and associated stoichiometry for freshwater ecosystem in the subtropical watershed: Indicating the optimal C:N:P ratio. Ecol. Indic. 2017, 78, 37–47. [Google Scholar] [CrossRef]
- Li, C.; Wu, S.; Dong, R. Dynamics of organic matter, nitrogen and phosphorus removal and their interactions in a tidal operated constructed wetland. J. Environ. Manag. 2015, 151, 310–316. [Google Scholar] [CrossRef]
- Li, H.; Song, C.; Cao, X.-Y.; Zhou, Y.-Y. The phosphorus release pathways and their mechanisms driven by organic carbon and nitrogen in sediments of eutrophic shallow lakes. Sci. Total Environ. 2016, 572, 280–288. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Q.; Liu, Z.; He, H.; Lürling, M.; Chen, M.; Zhang, Y. Composition of dissolved organic matter controls interactions with La and Al ions: Implications for phosphorus immobilization in eutrophic lakes. Environ. Pollut. 2019, 248, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Mbabazi, J.; Inoue, T.; Yokota, K.; Saga, M. Variability of particulate bioavailable phosphorus, particulate organic carbon and nitrogen in agricultural and urban rivers. J. Environ. Chem. Eng. 2019, 7, 103086. [Google Scholar] [CrossRef]
- Coble, A.A.; Marcarelli, A.M.; Kane, E.S. Ammonium and glucose amendments stimulate dissolved organic matter mineralization in a Lake Superior tributary. J. Great Lakes Res. 2015, 41, 801–807. [Google Scholar] [CrossRef]
- Feng, W.; Yang, F.; Zhang, C.; Liu, J.; Song, F.; Chen, H.; Zhu, Y.; Liu, S.; Giesy, J.P. Composition characterization and biotransformation of dissolved, particulate and algae organic phosphorus in eutrophic lakes. Environ. Pollut. 2020, 265, 114838. [Google Scholar] [CrossRef] [PubMed]
Lake Region | Items | T | DO | pH | Chl. a | CODMn | DTN | DON | DTP | DOP |
---|---|---|---|---|---|---|---|---|---|---|
North | Mean | 24.4 | 10.8 | 9.02 | 105 | 9.87 | 1.91 | 0.72 | 0.07 | 0.06 |
Min | 23.1 | 3.9 | 7.93 | 10.3 | 2.00 | 0.56 | 0.01 | 0.02 | 0.01 | |
Max | 25.3 | 15.3 | 9.82 | 332 | 29.21 | 4.03 | 1.71 | 0.13 | 0.13 | |
Northwest | Mean | 23.4 | 8.8 | 8.53 | 327 | 31.65 | 3.61 | 2.06 | 0.12 | 0.12 |
Min | 21.8 | 6.4 | 8.02 | 150 | 5.63 | 1.94 | 0.84 | 0.02 | 0.02 | |
Max | 24.3 | 12.6 | 9.20 | 648 | 76.75 | 5.86 | 3.04 | 0.28 | 0.26 | |
Southwest | Mean | 23.5 | 9.2 | 8.70 | 28.4 | 4.35 | 1.43 | 0.38 | 0.03 | 0.03 |
Min | 22.6 | 8.0 | 8.14 | 12.5 | 2.08 | 0.99 | 0.09 | 0.02 | 0.02 | |
Max | 24.1 | 10.4 | 9.06 | 60.9 | 7.71 | 1.81 | 0.92 | 0.04 | 0.04 | |
Northeast | Mean | 22.5 | 8.9 | 8.37 | 13.3 | 7.34 | 1.04 | 0.21 | 0.02 | 0.02 |
Min | 22.1 | 8.2 | 8.18 | 7.8 | 2.05 | 0.97 | 0.06 | 0.02 | 0.02 | |
Max | 23.0 | 9.6 | 8.49 | 23.6 | 12.92 | 1.17 | 0.42 | 0.02 | 0.02 | |
South | Mean | 23.5 | 8.3 | 8.24 | 12.9 | 2.26 | 1.59 | 0.25 | 0.03 | 0.03 |
Min | 22.8 | 8.1 | 8.07 | 6.8 | 2.00 | 1.35 | 0.06 | 0.02 | 0.02 | |
Max | 24.1 | 8.5 | 8.60 | 18.7 | 2.83 | 1.99 | 0.45 | 0.04 | 0.04 | |
Whole lake | Mean | 23.8 | 9.6 | 8.70 | 106 | 11.24 | 1.97 | 0.77 | 0.06 | 0.05 |
Min | 21.8 | 3.9 | 7.93 | 6.8 | 2.00 | 0.56 | 0.01 | 0.02 | 0.01 | |
Max | 25.3 | 15.3 | 9.82 | 648 | 76.75 | 5.86 | 3.04 | 0.28 | 0.27 | |
SD | 0.89 | 2.7 | 0.55 | 152 | 15.91 | 1.27 | 0.80 | 0.05 | 0.05 |
Lake Region | Items (R.U.) | FC1 | FC2 | FC3 | Ft |
---|---|---|---|---|---|
North | Mean | 1.69 | 1.37 | 0.44 | 3.50 |
Min | 0.34 | 0.47 | 0.24 | 1.11 | |
Max | 2.34 | 2.09 | 0.80 | 5.11 | |
Northwest | Mean | 2.60 | 2.19 | 0.77 | 5.56 |
Min | 1.88 | 1.54 | 0.42 | 3.84 | |
Max | 3.41 | 3.02 | 1.07 | 7.50 | |
Southwest | Mean | 1.53 | 1.15 | 0.28 | 2.96 |
Min | 1.33 | 0.98 | 0.13 | 2.58 | |
Max | 1.85 | 1.42 | 0.35 | 3.56 | |
Northeast | Mean | 0.95 | 0.63 | 0.25 | 1.84 |
Min | 0.88 | 0.57 | 0.23 | 1.68 | |
Max | 1.08 | 0.73 | 0.29 | 2.11 | |
South | Mean | 1.11 | 0.76 | 0.26 | 2.13 |
Min | 0.94 | 0.64 | 0.25 | 1.84 | |
Max | 1.32 | 0.91 | 0.29 | 2.48 | |
Whole lake | Mean | 1.65 | 1.30 | 0.42 | 3.38 |
Min | 0.34 | 0.47 | 0.13 | 1.11 | |
Max | 3.41 | 3.02 | 1.07 | 7.50 | |
SD | 0.64 | 0.62 | 0.23 | 1.45 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, W.; Chen, J.; Zhang, B.; Zhao, L.; Jiang, X. Characteristics of Dissolved Organic Matter and Its Role in Lake Eutrophication at the Early Stage of Algal Blooms—A Case Study of Lake Taihu, China. Water 2020, 12, 2278. https://doi.org/10.3390/w12082278
Wang S, Wang W, Chen J, Zhang B, Zhao L, Jiang X. Characteristics of Dissolved Organic Matter and Its Role in Lake Eutrophication at the Early Stage of Algal Blooms—A Case Study of Lake Taihu, China. Water. 2020; 12(8):2278. https://doi.org/10.3390/w12082278
Chicago/Turabian StyleWang, Shuhang, Wenwen Wang, Junyi Chen, Bo Zhang, Li Zhao, and Xia Jiang. 2020. "Characteristics of Dissolved Organic Matter and Its Role in Lake Eutrophication at the Early Stage of Algal Blooms—A Case Study of Lake Taihu, China" Water 12, no. 8: 2278. https://doi.org/10.3390/w12082278
APA StyleWang, S., Wang, W., Chen, J., Zhang, B., Zhao, L., & Jiang, X. (2020). Characteristics of Dissolved Organic Matter and Its Role in Lake Eutrophication at the Early Stage of Algal Blooms—A Case Study of Lake Taihu, China. Water, 12(8), 2278. https://doi.org/10.3390/w12082278