Hydrometeorological and Socio-Economic Impact Assessment of Stream Flooding in Southeast Mediterranean: The Case of Rafina Catchment (Attica, Greece)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Flood Episodes Selection
2.3. Assessment Process
3. Results
3.1. Hydrometeorological and Socio-Economic Impact Analysis
3.2. Case Studies Analysis
3.2.1. 11 December 2009
3.2.2. 22 February 2013
4. Discussion–Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Hoeppe, P. Trends in weather related disasters—Consequences for insurers and society. Weather Clim. Extrem. 2016, 11, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Diakakis, M.; Boufidis, N.; Salanova Grau, J.M.; Andreadakis, E.; Stamos, I. A systematic assessment of the effects of extreme flash floods on transportation infrastructure and circulation: The example of the 2017 Mandra flood. Int. J. Disaster Risk Reduct. 2020, 47, 101542. [Google Scholar] [CrossRef]
- Diakakis, M.; Andreadakis, E.; Nikolopoulos, E.I.; Spyrou, N.I.; Gogou, M.E.; Deligiannakis, G.; Katsetsiadou, N.K.; Antoniadis, Z.; Melaki, M.; Georgakopoulos, A.; et al. An integrated approach of ground and aerial observations in flash flood disaster investigations. The case of the 2017 Mandra flash flood in Greece. Int. J. Disaster Risk Reduct. 2019, 33, 290–309. [Google Scholar] [CrossRef]
- Varlas, G.; Anagnostou, M.N.; Spyrou, C.; Papadopoulos, A.; Kalogiros, J.; Mentzafou, A.; Michaelides, S.; Baltas, E.; Karymbalis, E.; Katsafados, P. A multi-platform hydrometeorological analysis of the flash flood event of 15 November 2017 in Attica, Greece. Remote Sens. 2019, 11, 45. [Google Scholar] [CrossRef] [Green Version]
- Bissolli, P.; Friedrich, K.; Rapp, J.; Ziese, M. Flooding in eastern central Europe in May 2010 - Reasons, evolution and climatological assessment. Weather 2011, 66, 147–153. [Google Scholar] [CrossRef]
- Cojoc, G.M.; Romanescu, G.; Tirnovan, A. Exceptional floods on a developed river: Case study for the Bistrita River from the Eastern Carpathians (Romania). Nat. Hazards 2015, 77, 1421–1451. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Ulbrich, U.; Brücher, T.; Graczyk, D.; Krüger, A.; Leckebusch, G.C.; Menzel, L.; Pińskwar, I.; Radziejewski, M.; Szwed, M. Summer Floods in Central Europe—Climate Change Track? Nat. Hazards 2005, 36, 165–189. [Google Scholar] [CrossRef]
- Lorenzo-Lacruz, J.; Amengual, A.; Garcia, C.; Morán-Tejeda, E.; Homar, V.; Maimó-Far, A.; Hermoso, A.; Ramis, C.; Romero, R. Hydro-meteorological reconstruction and geomorphological impact assessment of the October 2018 catastrophic flash flood at Sant Llorenç, Mallorca (Spain). Nat. Hazards Earth Syst. Sci. 2019, 19, 2597–2617. [Google Scholar] [CrossRef] [Green Version]
- Papagiannaki, K.; Lagouvardos, K.; Kotroni, V. A database of high-impact weather events in Greece: A descriptive impact analysis for the period 2001–2011. Nat. Hazards Earth Syst. Sci. 2013, 13, 727–736. [Google Scholar] [CrossRef]
- Papaioannou, G.; Varlas, G.; Terti, G.; Papadopoulos, A.; Loukas, A.; Panagopoulos, Y.; Dimitriou, E. Flood inundation mapping at ungauged basins using coupled hydrometeorological-hydraulic modelling: The catastrophic case of the 2006 Flash Flood in Volos City, Greece. Water 2019, 11, 2328. [Google Scholar] [CrossRef] [Green Version]
- Vinet, F.; Bigot, V.; Petrucci, O.; Papagiannaki, K.; Llasat, M.C.; Kotroni, V.; Boissier, L.; Aceto, L.; Grimalt, M.; Llasat-Botija, M.; et al. Mapping flood-related mortality in the mediterranean basin. Results from the MEFF v2.0 DB. Water 2019, 11, 2196. [Google Scholar] [CrossRef] [Green Version]
- Gaume, E.; Borga, M.; Llassat, M.C.; Maouche, S.; Gaume, E.; Borga, M.; Llassat, M.C.; Maouche, S.; Lang, M. Mediterranean extreme floods and flash floods. In The Mediterranean Region under Climate Change. A Scientific Update; IRD Editions: Marseille, France, 2017; pp. 133–144. [Google Scholar]
- Kotroni, V.; Lagouvardos, K. Lightning in the Mediterranean and its relation with sea-surface temperature. Environ. Res. Lett. 2016, 11, 34006. [Google Scholar] [CrossRef]
- Michaelides, S.; Karacostas, T.; Sánchez, J.L.; Retalis, A.; Pytharoulis, I.; Homar, V.; Romero, R.; Zanis, P.; Giannakopoulos, C.; Bühl, J.; et al. Reviews and perspectives of high impact atmospheric processes in the Mediterranean. Atmos. Res. 2018, 208, 4–44. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; et al. Changes in climate extremes and their impacts on the natural physical environments. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Goups I and II of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, NY, USA, 2012; pp. 109–230. [Google Scholar]
- Alfieri, L.; Burek, P.; Feyen, L.; Forzieri, G. Global warming increases the frequency of river floods in Europe. Hydrol. Earth Syst. Sci. 2015, 19, 2247–2260. [Google Scholar] [CrossRef] [Green Version]
- Dottori, F.; Szewczyk, W.; Ciscar, J.-C.; Zhao, F.; Alfieri, L.; Hirabayashi, Y.; Bianchi, A.; Mongelli, I.; Frieler, K.; Betts, R.A.; et al. Increased human and economic losses from river flooding with anthropogenic warming. Nat. Clim. Chang. 2018, 8, 781–786. [Google Scholar] [CrossRef]
- Koks, E.E.; Thissen, M.; Alfieri, L.; De Moel, H.; Feyen, L.; Jongman, B.; Aerts, J.C.J.H. The macroeconomic impacts of future river flooding in Europe. Environ. Res. Lett. 2019, 14, 084042. [Google Scholar] [CrossRef]
- Winsemius, H.C.; Aerts, J.C.J.H.; van Beek, L.P.H.; Bierkens, M.F.P.; Bouwman, A.; Jongman, B.; Kwadijk, J.C.J.; Ligtvoet, W.; Lucas, P.L.; van Vuuren, D.P.; et al. Global drivers of future river flood risk. Nat. Clim. Chang. 2016, 6, 381–385. [Google Scholar] [CrossRef]
- Gochis, D.J.; Barlage, M.; Dugger, A.; FitzGerald, K.; Karsten, L.; McAllister, M.; McCreight, J.; Mills, J.; RafieeiNasab, A.; Read, L.; et al. The WRF-Hydro Modeling System Technical Description, (Version 5.0); NCAR Technical Note: Boulder, CO, USA, 2018. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4; NCAR Technical Note: Boulder, CO, USA, 2019. [Google Scholar]
- Avolio, E.; Federico, S.; Miglietta, M.M.; Lo Feudo, T.; Calidonna, C.R.; Sempreviva, A.M. Sensitivity analysis of WRF model PBL schemes in simulating boundary-layer variables in southern Italy: An experimental campaign. Atmos. Res. 2017, 192, 58–71. [Google Scholar] [CrossRef]
- Galanaki, E.; Lagouvardos, K.; Kotroni, V.; Giannaros, T.; Giannaros, C. Implementation of WRF-Hydro at two drainage basins in the region of Attica, Greece. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 2020, 1–28. [Google Scholar]
- Givati, A.; Gochis, D.; Rummler, T.; Kunstmann, H. Comparing One-Way and Two-Way Coupled Hydrometeorological Forecasting Systems for Flood Forecasting in the Mediterranean Region. Hydrology 2016, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Gochis, D.J.; Dugger, A.; McCreight, J.; Karsten, L.R.; Logan, Y.W.; Pan, L.; Yates, D.; Zhang, Y.; Sampson, K.; Cosgrove, B.; et al. Technical Description of the National Water Model Implementation of WRF-Hydro; Technical Report; Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI): Cambridge, MA, USA, 2016. [Google Scholar]
- Ryu, Y.; Lim, Y.-J.; Ji, H.-S.; Park, H.-H.; Chang, E.-C.; Kim, B.-J. Applying a coupled hydrometeorological simulation system to flash flood forecasting over the Korean Peninsula. Asia Pac. J. Atmos. Sci. 2017, 53, 421–430. [Google Scholar] [CrossRef]
- Hunt, K.M.R.; Menon, A. The 2018 Kerala floods: A climate change perspective. Clim. Dyn. 2020, 54, 2433–2446. [Google Scholar] [CrossRef] [Green Version]
- Xue, Z.G.; Gochis, D.J.; Yu, W.; Keim, B.D.; Rohli, R.V.; Zang, Z.; Sampson, K.; Dugger, A.; Sathiaraj, D.; Ge, Q. Modeling Hydroclimatic Change in Southwest Louisiana Rivers. Water 2018, 10, 596. [Google Scholar] [CrossRef] [Green Version]
- Borga, M.; Boscolo, P.; Zanon, F.; Sangati, M. Hydrometeorological Analysis of the 29 August 2003 Flash Flood in the Eastern Italian Alps. J. Hydrometeorol. 2007, 8, 1049–1067. [Google Scholar] [CrossRef]
- Delrieu, G.; Nicol, J.; Yates, E.; Kirstetter, P.-E.; Creutin, J.-D.; Anquetin, S.; Obled, C.; Saulnier, G.-M.; Ducrocq, V.; Gaume, E.; et al. The Catastrophic Flash-Flood Event of 8–9 September 2002 in the Gard Region, France: A First Case Study for the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory. J. Hydrometeorol. 2005, 6, 34–52. [Google Scholar] [CrossRef] [Green Version]
- Ruin, I.; Creutin, J.-D.; Anquetin, S.; Lutoff, C. Human exposure to flash floods – Relation between flood parameters and human vulnerability during a storm of September 2002 in Southern France. J. Hydrol. 2008, 361, 199–213. [Google Scholar] [CrossRef]
- Pino, D.; Ruiz-Bellet, J.L.; Balasch, J.C.; Romero-León, L.; Tuset, J.; Barriendos, M.; Mazon, J.; Castelltort, X. Meteorological and hydrological analysis of major floods in NE Iberian Peninsula. J. Hydrol. 2016, 541, 63–89. [Google Scholar] [CrossRef] [Green Version]
- Greco, A.; De Luca, D.L.; Avolio, E. Heavy Precipitation Systems in Calabria Region (Southern Italy): High-Resolution Observed Rainfall and Large-Scale Atmospheric Pattern Analysis. Water 2020, 12, 1468. [Google Scholar] [CrossRef]
- Pelosi, A.; Furcolo, P.; Rossi, F.; Villani, P. The characterization of extraordinary extreme events (EEEs) for the assessment of design rainfall depths with high return periods. Hydrol. Process. 2020, 34, 2543–2559. [Google Scholar] [CrossRef]
- Romang, H.; Zappa, M.; Hilker, N.; Gerber, M.; Dufour, F.; Frede, V.; Bérod, D.; Oplatka, M.; Hegg, C.; Rhyner, J. IFKIS-Hydro: An early warning and information system for floods and debris flows. Nat. Hazards 2011, 56, 509–527. [Google Scholar] [CrossRef]
- Cole, S.J.; Moore, R.J.; Wells, S.C.; Mattingley, P.S. Real-time forecasts of flood hazard and impact: Some UK experiences. E3S Web Conf. 2016, 7, 18015. [Google Scholar] [CrossRef] [Green Version]
- Silvestro, F.; Rossi, L.; Campo, L.; Parodi, A.; Fiori, E.; Rudari, R.; Ferraris, L. Impact-based flash-flood forecasting system: Sensitivity to high resolution numerical weather prediction systems and soil moisture. J. Hydrol. 2019, 572, 388–402. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Special Secretariat of Water, Ministry of Environment and Energy, Greece. Flood risk management plan for the Attica Hydrological Region River Basins, Stage I, 1st Phase—Deliverable 1, Analysis of the Areas’ Features and Flood Mechanisms; The Hellenic Government: Athens, Greece, 2017.
- The European Parliament and the Council of the European Union. Directive 2007/60/EC on the assessment and management of flood risks. Off. J. Eur. Union 2007, 288, 27–34. [Google Scholar]
- Lagouvardos, K.; Kotroni, V.; Bezes, A.; Koletsis, I.; Kopania, T.; Lykoudis, S.; Mazarakis, N.; Papagiannaki, K.; Vougioukas, S. The automatic weather stations NOANN network of the National Observatory of Athens: Operation and database. Geosci. Data J. 2017, 4, 4–16. [Google Scholar] [CrossRef]
- Papathanasiou, C.; Makropoulos, C.; Baltas, E.; Mimikou, M. The Hydrological observatory of Athens: A state-of-the-art network for the assessment of the hydrometeorological regime of Attica. In Proceedings of the 13th International Conference on Environmental Science and Technology, Athens, Greece, 5–7 September 2013. [Google Scholar]
- Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Data Store (CDS). ERA5 Hourly Data on Single Levels from 1979 to Present. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 8 August 2020). [CrossRef]
- Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Data Store (CDS). ERA5 Hourly Data on Pressure Levels from 1979 to Present. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.bd0915c6?tab=overview (accessed on 8 August 2020). [CrossRef]
- Kotroni, V.; Lagouvardos, K. Lightning occurrence in relation with elevation, terrain slope, and vegetation cover in the Mediterranean. J. Geophys. Res. Atmos. 2008, 113, D21. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Kotroni, V.; Betz, H.-D.; Schmidt, K. A comparison of lightning data provided by ZEUS and LINET networks over Western Europe. Nat. Hazards Earth Syst. Sci. 2009, 9, 1713–1717. [Google Scholar] [CrossRef]
- Papagiannaki, K.; Lagouvardos, K.; Kotroni, V.; Bezes, A. Flash flood occurrence and relation to the rainfall hazard in a highly urbanized area. Nat. Hazards Earth Syst. Sci. 2015, 15, 1859–1871. [Google Scholar] [CrossRef] [Green Version]
- Flood Forecasting Centre. Flood Guidance Statement User Guide; Flood Forecasting Centre: London, UK, 2020. [Google Scholar]
- Speight, L.; Cole, S.J.; Moore, R.J.; Pierce, C.; Wright, B.; Golding, B.; Cranston, M.; Tavendale, A.; Dhondia, J.; Ghimire, S. Developing surface water flood forecasting capabilities in Scotland: An operational pilot for the 2014 Commonwealth Games in Glasgow. J. Flood Risk Manag. 2018, 11, S884–S901. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Data Store (CDS). ERA5-Land Hourly Data from 1981 to Present. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview (accessed on 8 August 2020). [CrossRef]
- Diakakis, M. Flood seasonality in Greece and its comparison to seasonal distribution of flooding in selected areas across southern Europe. J. Flood Risk Manag. 2017, 10, 30–41. [Google Scholar] [CrossRef]
- Giannaros, C.; Kotroni, V.; Lagouvardos, K.; Giannaros, M.T.; Pikridas, C. Assessing the Impact of GNSS ZTD Data Assimilation into the WRF Modeling System during High-Impact Rainfall Events over Greece. Remote Sens. 2020, 12, 383. [Google Scholar] [CrossRef] [Green Version]
- Kotroni, V.; Lagouvardos, K.; Defer, E.; Dietrich, S.; Porcù, F.; Medaglia, C.M.; Demirtas, M. The Antalya 5 December 2002 Storm: Observations and Model Analysis. J. Appl. Meteorol. Climatol. 2006, 45, 576–590. [Google Scholar] [CrossRef]
- Galanaki, E.; Kotroni, V.; Lagouvardos, K.; Argiriou, A. A ten-year analysis of cloud-to-ground lightning activity over the Eastern Mediterranean region. Atmos. Res. 2015, 166, 213–222. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Kotroni, V.; Dobricic, S.; Nickovic, S.; Kallos, G. The storm of October 21–22, 1994, over Greece: Observations and model results. J. Geophys. Res. Atmos. 1996, 101, 26217–26226. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Kotroni, V.; Defer, E. The 21–22 January 2004 explosive cyclogenesis over the Aegean Sea: Observations and model analysis. Q. J. R. Meteorol. Soc. 2007, 133, 1519–1531. [Google Scholar] [CrossRef]
- Dafis, S.; Lagouvardos, K.; Kotroni, V.; Giannaros, T.M.; Bartzokas, A. Observational and modeling study of a mesoscale convective system during the HyMeX—SOP1. Atmos. Res. 2017, 187, 1–15. [Google Scholar] [CrossRef]
Monitoring Network | Station Name | Station ID 1 | Latitude (° N) | Longitude (° E) | Altitude (m a.s.l. 2) |
---|---|---|---|---|---|
HOA/NTUA | Lykorema | H_1 | 38.01 | 23.98 | 30 |
Drafi_H 1 | H_2 | 37.99 | 23.92 | 105 | |
Rafina | H_3 | 38.02 | 23.93 | 143 | |
Pikermi_H 1 | H_4 | 38.04 | 23.91 | 286 | |
Spata_H 1 | H_5 | 37.98 | 23.89 | 137 | |
Diavasi Balas | M1 | 38.04 | 23.91 | 393 | |
Ayios Nikolaos | M2 | 38.02 | 23.92 | 203 | |
Drafi_M 1 | M3 | 38.00 | 23.93 | 133 | |
Pikermi_M 1 | M4 | 38.07 | 23.92 | 630 | |
NOA | Spata_M 1 | M5 | 37.98 | 23.93 | 144 |
Kantza | M6 | 37.98 | 23.87 | 221 |
I0: Minimal | I1: Minor | I2: Significant | I3: Severe | |
---|---|---|---|---|
Human life | Not expected | Risk for vulnerable groups of people and/or people involved in endangered situations | Danger to life due to physical hazards associated with flooding water | Danger to life due to physical, chemical and utility hazards associated with flooding water |
Damage to properties and public structures | Not expected | Light damage to individual properties | Important damage to many properties and/or public structures | Extensive damage to multiple properties and/or public structures |
Transportation | Little or no disruption to river crossings and/or roads close to the river/stream | Small-scale disruption (local and short term) | Large-scale disruption (broad or long term) and/or important damages to the transport network | Extensive disruption (broad and long term) and/or extensive damages to the transport network |
Utilities | Not expected | Small-scale disruption (local and short term) | Large-scale disruption (broad or long term) | Extensive disruption (broad and long term) and/or loss of utilities |
Event Nb | Dates | Driving Meteorological Mechanism | Lightning Activity | Rainfall Duration (h) | Max Total Rainfall (mm) | Max 1-h Rainfall (mm/h) | Max Discharge (m3/s) | Impact Intensity Class |
---|---|---|---|---|---|---|---|---|
#1 | 17 November 2008 | Surface low-pressure system accompanied by an upper-level trough | Low | 7 | 49.3 | 23.7 | 22.3 | I1 (light damage to buildings and localized disruption to transportation) |
#2 | 25 October 2009 | Surface low-pressure system accompanied by an upper-level cut-off low | High | 15 | 31.4 | 16.8 | 29.7 | |
#3 | 3 November 2009 | Low | 10 | 36 | 16 | 22 | ||
#4 | 11 December 2009 | 11 | 84.6 | 18.6 | 25 | |||
#5 | 02 January 2011 | Surface low-pressure system accompanied by an upper-level trough | 8 | 32 | 16.8 | 17.3 | Ι0 (little or no effects on roads close to the stream) | |
#6 | 3–4 February 2011 | Exceptional atmospheric circulation | 39 | 148.6 | 12.2 | 79.7 | Ι2 (damage to many properties and public structures, and large-scale disruption to transport networks) | |
#7 | 24–25 February 2011 | Surface low-pressure system accompanied by an upper-level cut-off low | 19 | 92.2 | 26 | 37.9 | I1 (light damage to buildings and localized disruption to transportation) | |
#8 | 6–7 February 2012 | 11 | 48.6 | 21.2 | 38.0 | |||
#9 | 29–30 November 2012 | Surface low-pressure system associated with extended upper-level troughs | Moderate | 8 | 54.4 | 37 | 24.4 | |
#10 | 29–30 December 2012 | Surface low-pressure system accompanied by an upper-level cut-off low | 18 | 209 | 27 | 37.3 | ||
#11 | 16 January 2013 | Surface low-pressure system associated with extended upper-level troughs | Low | 4 | 20.8 | 15 | 16.6 | Ι0 (little or no effects on roads close to the stream) |
#12 | 22 February 2013 | Surface low-pressure system accompanied by a negatively tilted upper-level trough | High | 10 | 138.8 | 39.4 | 152.8 | Ι2 (damage to many properties and public structures, and large-scale disruption to transport networks) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannaros, C.; Kotroni, V.; Lagouvardos, K.; Oikonomou, C.; Haralambous, H.; Papagiannaki, K. Hydrometeorological and Socio-Economic Impact Assessment of Stream Flooding in Southeast Mediterranean: The Case of Rafina Catchment (Attica, Greece). Water 2020, 12, 2426. https://doi.org/10.3390/w12092426
Giannaros C, Kotroni V, Lagouvardos K, Oikonomou C, Haralambous H, Papagiannaki K. Hydrometeorological and Socio-Economic Impact Assessment of Stream Flooding in Southeast Mediterranean: The Case of Rafina Catchment (Attica, Greece). Water. 2020; 12(9):2426. https://doi.org/10.3390/w12092426
Chicago/Turabian StyleGiannaros, Christos, Vassiliki Kotroni, Konstantinos Lagouvardos, Christina Oikonomou, Haris Haralambous, and Katerina Papagiannaki. 2020. "Hydrometeorological and Socio-Economic Impact Assessment of Stream Flooding in Southeast Mediterranean: The Case of Rafina Catchment (Attica, Greece)" Water 12, no. 9: 2426. https://doi.org/10.3390/w12092426
APA StyleGiannaros, C., Kotroni, V., Lagouvardos, K., Oikonomou, C., Haralambous, H., & Papagiannaki, K. (2020). Hydrometeorological and Socio-Economic Impact Assessment of Stream Flooding in Southeast Mediterranean: The Case of Rafina Catchment (Attica, Greece). Water, 12(9), 2426. https://doi.org/10.3390/w12092426