Sea-Level Variability in the Gulf of Naples and the “Acqua Alta” Episodes in Ischia from Tide-Gauge Observations in the Period 2002–2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tide-Gauge Data
2.2. Atmospheric Pressure Data and Large Scale Atmospheric Variability Indices
2.3. Trend Estimation Methods
3. Results and Discussion
3.1. Tide-Gauge Data Preliminary Analysis and Tidal Constituents
3.2. Trend Analysis
3.3. Relationship with Large-Scale Atmospheric Patterns
- the 2002–2008 period, in which the air pressure is generally greater than its mean value;
- the late-2008 to mid-2015 period, which is characterized by relevant oscillations of the atmospheric pressure signal; this interval includes two sub-periods in which negative air pressure anomalies prevailed: 2009–2011 and the segment encompassing late 2012 and early 2014;
- the late 2015–2017 period, in which the air pressure is generally above its mean value;
- 2018–2019, which is characterized by negative pressure anomalies.
3.4. “Acqua Alta” Episodes in Ischia
4. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Woodworth, P.L.; White, N.J.; Jevrejeva, S.; Holgate, S.J.; Church, J.A.; Gehrels, W.R. Evidence for the accelerations of sea level on multi-decade and century timescales. Int. J. Climatol. 2009, 29, 777–789. [Google Scholar] [CrossRef]
- Frederikse, T.; Riva, R.; Slobbe, C.; Broerse, T.; Verlaan, M. Estimating decadal variability in sea level from tide gauge records: An application to the North Sea. J. Geophys. Res. Oceans 2016, 121, 1529–1545. [Google Scholar] [CrossRef] [Green Version]
- Zerbini, S.; Raicich, F.; Prati, C.M.; Bruni, S.; Del Conte, S.; Errico, M.; Santi, E. Sea-level change in the Northern Mediterranean Sea from long-period tide-gauge time series. Earth Sci. Rev. 2017, 167, 72–87. [Google Scholar] [CrossRef]
- Ekman, M. The world’s longest continuous series of sea level observations. Pure Appl. Geophys. 1988, 127, 73–77. [Google Scholar] [CrossRef]
- Van Veen, J. Bestaat er een geologische bodemdaling te Amsterdam sedert 1700? Tijdschrift Koninklijk Nederlandsch Aardrijkskundig Genootschap. 1945. Available online: http://www.kwaad.net/VanVeen_1945_PeilAmsterdam_1700AD.pdf (accessed on 2 September 2020).
- Gornitz, V.; Lebedeff, S.; Hansen, J. Global sea level trend in the past century. Science 1982, 215, 1611–1614. [Google Scholar] [CrossRef] [PubMed]
- Douglas, B.C. Global sea level rise. J. Geophys. Res. 1991, 96, 6981–6992. [Google Scholar] [CrossRef] [Green Version]
- Higginson, S.; Thompson, K.R.; Woodworth, P.L.; Hughes, C.W. The tilt of mean sea level along the east coast of North America. Geophys. Res. Lett. 2015, 42, 1471–1479. [Google Scholar] [CrossRef] [Green Version]
- Passaro, M.; Rose, S.K.; Andersen, O.B.; Boergens, E.; Calafat, F.M.; Dettmering, D.; Benveniste, J. ALES+: Adapting a homogenous ocean retracker for satellite altimetry to sea ice leads, coastal and inland waters. Remote Sens. Environ. 2018, 211, 456–471. [Google Scholar] [CrossRef] [Green Version]
- Volkov, D.L.; Pujol, M.I. Quality assessment of a satellite altimetry data product in the Nordic, Barents, and Kara seas. J. Geophys. Res. Oceans 2012, 117, C03025. [Google Scholar] [CrossRef] [Green Version]
- Chambers, D.P.; Ries, J.C.; Shum, C.K.; Tapley, B.D. On the use of tide gauges to determine altimeter drift. J. Geophys. Res. Oceans 1998, 103, 12885–12890. [Google Scholar] [CrossRef]
- Wunsch, C. Calibrating an altimeter: How many tide gauges is enough? J. Atmos. Ocean. Technol. 1986, 3, 746–754. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Zheng, D.; Chen, Y.; Chao, J.; Li, Z. Sea level change in Hong Kong from tide gauge measurements of 1954–1999. J. Geod. 2001, 74, 683–689. [Google Scholar] [CrossRef]
- Houghton, L.G.; Meira Filho, L.G.; Callander, B.A. (Eds.) Climate Change 1995: The Science of Climate Change; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Warrick, R.A.; Oerlemans, J.; Woodworth, P.L.; Meier, M.F.; le Provost, C. Changes in sea level. In Climate Change 1995: The Science of Climate Change; Houghton, J.T., Meira Filho, L.G., Callander, B.A., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 359–405. [Google Scholar]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Sea Level Change. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1137–1216. [Google Scholar]
- Nerem, R.S.; Beckley, B.D.; Fasullo, J.T.; Hamlington, B.D.; Masters, D.; Mitchum, G.T. Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proc. Natl. Acad. Sci. USA 2018, 115, 2022–2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahdi, H.; Hebib, T. Mediterranean Sea level trends from long-period tide gauge time series. Acta Oceanol. Sin. 2020, 39, 157–165. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis; 2013. Available online: http://www.climatechange2013.org (accessed on 17 July 2018).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Bruni, S.; Zerbini, S.; Raicich, F.; Errico, M. Rescue of the 1873–1922 high and low waters of the Porto Corsini/Marina di Ravenna (northern Adriatic, Italy) tide gauge. J. Geod. 2019, 93, 1227–1244. [Google Scholar] [CrossRef]
- Tsimplis, M.N.; Baker, T.F. Sea level drop in the Mediterranean Sea: An indicator of deep water salinity and temperature changes? Geophys. Res. Lett. 2000, 27, 1731–1734. [Google Scholar] [CrossRef]
- Cazenave, A.; Cabanes, C.; Dominh, K.; Mangiarotti, S. Recent sea level changes in the Mediterranean Sea revealed by TOPEX/POSEIDON satellite altimetry. Geophys. Res. Lett. 2001, 28, 1607–1610. [Google Scholar] [CrossRef]
- Fenoglio-Marc, L. Analysis and representation of regional sealevel variability from altimetry and atmospheric-oceanic data. Geophys. J. Int. 2001, 145, 1–18. [Google Scholar] [CrossRef]
- Antonioli, F.; Silenzi, S. Variazioni Relative del Livello del Mare e Vulnerabilita Delle Pianure Costiere Italiane. Quaderno della Soc. Geol. Ital. 2007, 2, 1–29. [Google Scholar]
- Lambeck, K.; Antonioli, F.; Anzidei, M.; Ferranti, L.; Leoni, G.; Scicchitano, G.; Silenzi, S. Sea level change along the Italian coast during the Holocene and projections for the future. Quatern. Int. 2011, 232, 250–257. [Google Scholar] [CrossRef]
- Aucelli, P.C.; Di Paola, G.; Incontri, P.; Rizzo, A.; Vilardo, G.; Benassai, G.; Buonocore, B.; Pappone, G. Coastal inundation risk assessment due to subsidence and sea level rise in a Mediterranean alluvial plain (Volturno coastal plain–southern Italy). Estuar. Coast. Shelf Sci. 2016. [Google Scholar] [CrossRef]
- Thompson, P.R.; Hamlington, B.D.; Landerer, F.W.; Adhikari, S. Are long tide gauge records in the wrong place to measure global mean sea level rise? Geophys. Res. Lett. 2016, 43, 10403–10411. [Google Scholar] [CrossRef] [Green Version]
- Dangendorf, S.; Hay, C.C.; Calafat, F.M.; Marcos, M.; Berk, K.; Jensen, J. Persistent acceleration in global sea-level rise since the 1970s. Nat. Clim. Chang. 2019, 9, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Aulicino, G.; Cotroneo, Y.; Lacava, T.; Sileo, G.; Fusco, G.; Carlon, R.; Satriano, V.; Pergola, N.; Tramutoli, V.; Budillon, G. Results of the first wave glider experiment in the southern Tyrrhenian Sea. Adv. Oceanogr. Limnol. 2016, 7, 16–35. [Google Scholar] [CrossRef] [Green Version]
- Durante, S.; Schroeder, K.; Mazzei, L.; Pierini, S.; Borghini, M.; Sparnocchia, S. Permanent thermohaline staircases in the Tyrrhenian Sea. Geophys. Res. Lett. 2019, 46, 1562–1570. [Google Scholar] [CrossRef] [Green Version]
- Castagno, P.; de Ruggiero, P.; Pierini, S.; Zambianchi, E.; De Alteris, A.; De Stefanoet, M.; Budillon, G. Hydrographic and dynamical characterization of the Bagnoli-Coroglio Bay (Gulf of Naples, Tyrrhenian Sea). Chem. Ecol. 2020. [Google Scholar] [CrossRef]
- ISPRA-CARG. Geological Map of Italy 1:50,000 Scale, Sheet 464 “Ischia”. 2009. Available online: https://www.isprambiente.gov.it/Media/carg/464_ISOLA_DISCHIA/Foglio.html (accessed on 5 August 2020).
- ISPRA-CARG. Geological Map of Italy 1:50,000 Scale, Sheet 466 “Castellammare”. 2009. Available online: https://www.isprambiente.gov.it/Media/carg/466_485_SORRENTO_TERMINI/Foglio.html (accessed on 5 August 2020).
- IOC. Manual on Sea Level Measurement and Interpretation: Volume I—Basic Procedures; IOC Manuals and Guides 14; UNESCO: Paris, France, 1985; p. 75. [Google Scholar]
- IOC. Manual on Sea Level Measurement and Interpretation: Volume II—Emerging Technologies; IOC Manuals and Guides 14; UNESCO: Paris, France, 1994; p. 52. [Google Scholar]
- IOC. Manual on Sea Level Measurement and Interpretation: Volume IV—An Update to 2006; IOC Manuals and Guides 14; UNESCO: Paris, France, 2006; p. 80. [Google Scholar]
- ISPRA. Manuale di Mareografia e Linee Guida per i Processi di Validazione dei Dati Mareografici; Manuali e Linee Guida; ISPRA: Rome, Italy, 2012; ISBN 978-88-448-0532-6. [Google Scholar]
- ISPRA. Linee Guida pe L’analisi e L’elaborazione Statistica di Base Delle Serie Storiche di Dati Idrologici; ISPRA: Rome, Italy, 2013. [Google Scholar]
- Pugh, D.T. Tides, Surges and Mean Sea-Level; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Doodson, A.T. The analysis of tidal observations. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1928, 227, 223–279. [Google Scholar]
- Woodworth, P.; Melet, A.; Marcos, M.; Ray, R.D.; Wöppelmann, G.; Sasaki, Y.N.; Cirano, M.; Hibbert, A.; Huthnance, J.M.; Monserrat, S.; et al. Forcing Factors Affecting Sea Level Changes at the Coast. Surv. Geophys. 2019, 40, 1351–1397. [Google Scholar] [CrossRef] [Green Version]
- Roden, G.I.; Rossby, H.T. Early Swedish contribution to oceanography: Nils Gissler (1715–1771) and the inverted barometer effect. Bull. Am. Meteorol. Soc. 1999, 80, 675–682. [Google Scholar] [CrossRef] [Green Version]
- Rogers, J.C. The association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere. Mon. Weather Rev. 1984, 112, 1999–2015. [Google Scholar] [CrossRef]
- Rogers, J.C. Atmospheric circulation changes associated with the warming over the northern North Atlantic in the 1920s. J. Clim. Appl. Meteorol. 1985, 24, 1303–1310. [Google Scholar] [CrossRef]
- Hurrel, J.W. Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodwell, M.J.; Rowell, D.P.; Folland, C.K. Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature 1999, 398, 320–323. [Google Scholar] [CrossRef]
- Eshel, G.; Cane, M.A.; Farrell, B.F. Forecasting eastern Mediterranean droughts. Mon. Weather Rev. 2000, 128, 3618–3630. [Google Scholar] [CrossRef] [Green Version]
- Capozzi, V.; Budillon, G. Detection of heat and cold waves in Montevergine time series (1884–2015). Adv. Geosci. 2017, 44, 35–51. [Google Scholar] [CrossRef] [Green Version]
- Rezaeian, M.; Mohebalhojeh, A.R.; Ahmadi-Givi, F.; Nasr-Esfahany, M. A wave-activity view of the relation between the Mediterranean storm track and the North Atlantic Oscillation in winter. Q. J. R. Meteorol. Soc. 2016, 142, 1662–1671. [Google Scholar] [CrossRef]
- Hastenrath, S.; Greischar, L. The North Atlantic Oscillation in the NCEP-NCAR reanalysis. J. Clim. 2001, 14, 2404–2413. [Google Scholar] [CrossRef]
- Barnston, A.G.; Livezey, R.E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Han, W.; Stammer, D.; Thompson, P.; Ezer, T.; Palanisamy, H.; Zhang, X.; Domingues, C.; Zhang, L.; Yuan, D. Impacts of basin-scale climate modes on coastal sea level: A review. Surv. Geophys. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsimplis, M.N.; Shaw, A.G.P. The forcing of mean sea level variability around Europe. Glob. Planet. Chang. 2008, 63, 196–202. [Google Scholar] [CrossRef]
- Wakelin, S.L.; Woodworth, P.L.; Flather, R.A.; Williams, J.A. Sea-level dependence on the NAO over the NW European Continental Shelf. Geophys. Res. Lett. 2003, 30, 1403. [Google Scholar] [CrossRef]
- Woolf, D.K.; Shaw, A.G.P.; Tsimplis, M.N. The influence of the North Atlantic Oscillation on sea-level variability in the North Atlantic region. J. Atmos. Ocean. Sci. 2003, 9, 145–167. [Google Scholar] [CrossRef]
- Yan, Z.W.; Tsimplis, M.N.; Woolf, D. Analysis of the relationship between the North Atlantic oscillation and sea-level changes in northwest Europe. Int. J. Climatol. 2004, 24, 743–758. [Google Scholar] [CrossRef]
- Hughes, C.W.; Meredith, C.P. Coherent sea-level fluctuations along the global continental slope. Philos. Trans. R. Soc. A 2006, 364, 885–901. [Google Scholar] [CrossRef] [Green Version]
- Tsimplis, M.N.; Shaw, A.G.P.; Flather, R.A.; Woolf, D.K. The influence of the North Atlantic Oscillation on the sea-level around the northern European coasts reconsidered: The thermosteric effects. Philos. Trans. R. Soc. A 2006, 364, 845–856. [Google Scholar] [CrossRef]
- Miller, L.; Douglas, B.C. Gyre-scale atmospheric pressure variations and their relation to 19th and 20th century sea level rise. Geophys. Res. Lett. 2007, 34, L16602. [Google Scholar] [CrossRef]
- Gomis, D.; Ruiz, S.; Sotillo, M.G.; Alvarez-Fanjul, E.; Terradas, J. Low frequency Mediterranean Sea level variability: The contribution of atmospheric pressure and wind. Glob. Planet. Chang. 2008, 63, 215–229. [Google Scholar] [CrossRef]
- Calafat, F.M.; Chambers, D.P.; Tsimplis, M.N. Mechanisms of decadal sea level variability in the eastern North Atlantic and the Mediterranean Sea. J. Geophys. Res. Oceans 2012, 117, C09022. [Google Scholar] [CrossRef]
- Tsimplis, M.N.; Calafat, F.M.; Marcos, M.; Jorda, G.; Gomis, D.; Fenoglio-Marc, L.; Struglia, M.V.; Josey, S.A.; Chambers, D.P. The effect of the NAO on sea level and on mass changes in the Mediterranean Sea. J. Geophys. Res. Oceans 2013, 118, 944–952. [Google Scholar] [CrossRef] [Green Version]
- Dangendorf, S.; Calafat, F.M.; Arns, A.; Wahl, T.; Haigh, I.D.; Jensen, J. Mean sea level variability in the North Sea: Processes and implications. J. Geophys. Res. Oceans 2014, 119, 6820–6841. [Google Scholar] [CrossRef] [Green Version]
- Ezer, T.; Haigh, I.D.; Woodworth, P.L. Nonlinear sea-level trends and long-term variability on Western European coasts. J. Coast. Res. 2016, 32, 744–755. [Google Scholar] [CrossRef]
- Brunetti, M.; Maugeri, M.; Nanni, T. Atmospheric circulation and precipitation in Italy for the last 50 years. Int. J. Climatol. 2002, 22, 1455–1471. [Google Scholar] [CrossRef]
- Conte, M.; Giuffrida, A.; Tedesco, S. The Mediterranean Oscillation. Impact on Precipitation and Hydrology in Italy Climate Water; Publications of the Academy of Finland: Helsinki, Finland, 1989. [Google Scholar]
- Colacino, M.; Conte, M. Greenhouse effect and pressure patterns in the Mediterranean Basin. Il Nuovo Cimento C 1993, 16, 67–76. [Google Scholar] [CrossRef]
- Palutikof, J.P.; Conte, M.; Casimiro Mendes, J.; Goodess, C.M.; Espirito Santo, F. Climate and climate change. In Mediterranean Desertification and Land Use; Brandt, C.J., Thornes, J.B., Eds.; John Wiley and Sons: London, UK, 1996. [Google Scholar]
- Piervitali, E.; Colacino, M.; Conte, M. Rainfall over the central–western Mediterranean basin in the period 1951–1995. Part II: Precipitation scenarios. Il Nuovo Cimento C 1999, 22, 649–661. [Google Scholar]
- Palutikof, J.P. Analysis of Mediterranean climate data: Measured and modelled. In Mediterranean Climate: Variability and Trends; Bolle, H.J., Ed.; Springer: Berlin, Germany, 2003. [Google Scholar]
- Dietz, E.J.; Killeen, T.J. A Nonparametric Multivariate Test for Monotone Trend with Pharmaceutical Applications. J. Am. Stat. Assoc. 1981, 76, 169–174. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann–Kendall and Sen’s slop e estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Fusco, G.; Artale, V.; Cotroneo, Y.; Sannino, G. Thermohaline variability of Mediterranean Water in the Gulf of Cádiz, 1948–1999. Deep-Sea Res. I 2008, 55, 1624–1638. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Piccioni, G.; Dettmering, D.; Bosch, W.; Seitz, F. TICON: TIdal CONstants based on GESLA sea-level records from globally located tide gauges. Geosci. Data J. 2019, 6, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Pawlowicz, R.; Beardsley, R.; Lentz, S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci. 2002, 28, 929–937. [Google Scholar] [CrossRef]
- Lama, R.; Corsini, S. Analisi dei dati Storici della Rete Mareografica Italiana; Ed. Poligrafico dello Stato: Rome, Italy, 2003. [Google Scholar]
- Mosetti, F.; Purga, N. Le maree del mar Tirreno. Boll. Oceanol. Teor. Appl. 1985, 3, 83–102. [Google Scholar]
- Rapolla, A.; Paoletti, V.; Secomandi, M. Seismically-induced landslide susceptibility evaluation: Application of a new procedure to the island of Ischia, Campania Region, Southern Italy. Eng. Geol. 2010, 114, 10–25. [Google Scholar] [CrossRef]
- Manzo, M.; Ricciardi, G.P.; Casu, F.; Ventura, G.; Zeni, G.; Borgstrom, S.; Berardino, P.; Del Gaudio, C.; Lanari, R. Surface deformation analysis in the Ischia Island (Italy) based on spaceborne radar interferometry. J. Volcanol. Geotherm. Res. 2006, 151, 399–416. [Google Scholar] [CrossRef]
- Sepe, V.; Atzori, S.; Ventura, G. Subsidence due to crack closure and depressurization of hydrothermal systems: A case study from Mt Epomeo (Ischia Island, Italy). Terra Nova 2007, 19, 127–132. [Google Scholar] [CrossRef]
- Ricco, C.; Petrosino, S.; Aquino, I.; Del Gaudio, C.; Falanga, M. Some Investigations on a Possible Relationship between Ground Deformation and Seismic Activity at Campi Flegrei and Ischia Volcanic Areas (Southern Italy). Geosciences 2019, 9, 222. [Google Scholar] [CrossRef] [Green Version]
- Cubellis, E.; Luongo, G.; Obrizzo, F.; Sepe, V.; Tammaro, U. Contribution to knowledge regarding the sources of earthquakes on the island of Ischia (Southern Italy). Nat. Hazards 2020, 100, 955–994. [Google Scholar] [CrossRef]
- De Martino, P.; Tammaro, U.; Obrizzo, F.; Sepe, V.; Brandi, G.; D’Alessandro, A.; Dolce, M.; Pingue, F. La rete GPS dell’isola d’Ischia: Deformazioni del suolo in un’area vulcanica attiva (1998–2010). In Quaderni di Geofisica INGV Roma; INGV Istituto Nazionale di Geofisica e Vulcanologia: Rome, Italy, 2011; ISSN 1590-2595-95:4-23; Available online: http://istituto.ingv.it/images/collane-editoriali/quaderni-di-geofisica/quaderni-di-geofisica-2011/quaderno95.pdf (accessed on 25 June 2020).
- Grablovitz, G. Il mareografo d’Ischia in relazione ai bradisismi. Boll. Della Soc. Sismol. Ital. 1911, 15, 144–153. [Google Scholar]
- Bonaduce, A.; Pinardi, N.; Oddo, P.; Spada, G.; Larnicol, G. Sea-level variability in the Mediterranean Sea from altimetry and tide gauges. Clim. Dyn. 2016, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Milošević, D.D.; Savić, S.M.; Pantelić, M.; Stankov, U.; Žiberna, I.; Dolinaj, D.; Leščešen, I. Variability of seasonal and annual precipitation in Slovenia and its correlation with large-scale atmospheric circulation. Open Geosci. 2016, 8, 593–605. [Google Scholar] [CrossRef]
- Folland, C.K.; Knight, J.; Linderholm, H.W.; Fereday, D.; Ineson, S.; Hurrell, J.W. The summer North Atlantic Oscillation: Past, present, and future. J. Clim. 2009, 22, 1082–1103. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlin. Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Landerer, F.W.; Volkov, D.L. The anatomy of recent large sea level fluctuations in the Mediterranean Sea. Geophys. Res. Lett. 2013, 40. [Google Scholar] [CrossRef]
- Fukumori, I.; Menemenlis, D.; Lee, T. A near-uniform basinwide sea level fluctuation of the Mediterranean Sea. J. Phys. Oceanogr. 2007, 37, 338–358. [Google Scholar] [CrossRef] [Green Version]
Tidal Component | Frequency | Amplitude | Amplitude Error | Phase | Phase Error |
---|---|---|---|---|---|
[Hz] | [m] | [m] | [°] | [°] | |
SA | 0.00011 | 0.04223 | 0.00753 | 275.83488 | 10.56418 |
SSA | 0.00023 | 0.01385 | 0.00815 | 96.39392 | 33.77839 |
2Q1 | 0.03571 | 0.00055 | 0.00039 | 329.54163 | 36.07178 |
SIG1 | 0.03591 | 0.00071 | 0.00037 | 320.96412 | 33.24574 |
Q1 | 0.03722 | 0.00199 | 0.00039 | 26.05282 | 9.87697 |
O1 | 0.03873 | 0.00937 | 0.00038 | 114.90251 | 2.13150 |
TAU1 | 0.03896 | 0.00050 | 0.00034 | 264.91656 | 38.48748 |
NO1 | 0.04027 | 0.00083 | 0.00025 | 196.13602 | 17.54705 |
PI1 | 0.04144 | 0.00128 | 0.00035 | 129.89058 | 17.91288 |
P1 | 0.04155 | 0.00817 | 0.00033 | 200.46610 | 2.58984 |
S1 | 0.04167 | 0.00334 | 0.00056 | 265.17196 | 9.52056 |
K1 | 0.04178 | 0.02813 | 0.00035 | 219.95858 | 0.64616 |
PSI1 | 0.04189 | 0.00130 | 0.00036 | 279.94776 | 16.88132 |
PHI1 | 0.04201 | 0.00073 | 0.00042 | 199.78408 | 29.65075 |
THE1 | 0.04309 | 0.00035 | 0.00032 | 256.30201 | 61.34690 |
J1 | 0.04329 | 0.00148 | 0.00036 | 248.91639 | 13.98859 |
OO1 | 0.04483 | 0.00043 | 0.00027 | 293.61793 | 35.72354 |
OQ2 | 0.07597 | 0.00033 | 0.00023 | 202.53649 | 43.24022 |
EPS2 | 0.07618 | 0.00087 | 0.00027 | 206.44114 | 16.35544 |
2N2 | 0.07749 | 0.00320 | 0.00022 | 228.53227 | 4.52386 |
MU2 | 0.07769 | 0.00391 | 0.00023 | 224.93708 | 3.57347 |
N2 | 0.07900 | 0.02378 | 0.00024 | 249.21649 | 0.55513 |
NU2 | 0.07920 | 0.00450 | 0.00028 | 253.24170 | 2.96859 |
H1 | 0.08040 | 0.00036 | 0.00026 | 354.22491 | 40.51804 |
M2 | 0.08051 | 0.11605 | 0.00024 | 263.34442 | 0.12050 |
MKS2 | 0.08074 | 0.00029 | 0.00025 | 308.89712 | 46.55347 |
LDA2 | 0.08182 | 0.00062 | 0.00022 | 252.08874 | 22.79655 |
L2 | 0.08202 | 0.00352 | 0.00031 | 267.77840 | 5.86598 |
T2 | 0.08322 | 0.00275 | 0.00026 | 273.87879 | 5.04700 |
S2 | 0.08333 | 0.04322 | 0.00026 | 282.47517 | 0.32211 |
R2 | 0.08345 | 0.00041 | 0.00020 | 298.33811 | 28.63368 |
K2 | 0.08356 | 0.01147 | 0.00021 | 296.83166 | 1.26689 |
MSN2 | 0.08485 | 0.00028 | 0.00022 | 358.10997 | 58.63309 |
ETA2 | 0.08507 | 0.00056 | 0.00023 | 321.46052 | 24.15966 |
MO3 | 0.11924 | 0.00192 | 0.00023 | 77.29497 | 6.57455 |
M3 | 0.12077 | 0.00407 | 0.00022 | 40.07398 | 3.54530 |
SO3 | 0.12206 | 0.00068 | 0.00025 | 128.92401 | 21.17344 |
SK3 | 0.12511 | 0.00204 | 0.00026 | 354.97139 | 6.63384 |
MN4 | 0.15951 | 0.00141 | 0.00007 | 162.39051 | 2.64839 |
M4 | 0.16102 | 0.00342 | 0.00007 | 203.79874 | 1.04128 |
SN4 | 0.16233 | 0.00034 | 0.00007 | 223.72687 | 11.49480 |
MS4 | 0.16384 | 0.00208 | 0.00006 | 264.19105 | 1.80286 |
MK4 | 0.16407 | 0.00047 | 0.00007 | 283.39939 | 8.08110 |
S4 | 0.16667 | 0.00036 | 0.00006 | 166.82859 | 11.87666 |
SK4 | 0.16689 | 0.00007 | 0.00006 | 129.61752 | 56.47201 |
2MK5 | 0.20280 | 0.00007 | 0.00004 | 270.67088 | 24.37170 |
2SK5 | 0.20845 | 0.00005 | 0.00003 | 207.91530 | 37.88104 |
2MN6 | 0.24002 | 0.00005 | 0.00004 | 291.48814 | 39.60927 |
M6 | 0.24153 | 0.00011 | 0.00003 | 321.15579 | 16.53225 |
2MS6 | 0.24436 | 0.00014 | 0.00003 | 2.15540 | 14.94986 |
2MK6 | 0.24458 | 0.00004 | 0.00003 | 26.47919 | 47.66250 |
2SM6 | 0.24718 | 0.00004 | 0.00004 | 344.13630 | 56.25650 |
MSK6 | 0.24741 | 0.00003 | 0.00003 | 21.26731 | 58.82638 |
Tidal Component | Frequency | Amplitude | Amplitude Error | Phase | Phase Error |
---|---|---|---|---|---|
[Hz] | [m] | [m] | [°] | [°] | |
SA | 0.00011 | 0.03998 | 0.01052 | 268.45971 | 16.91032 |
SSA | 0.00023 | 0.01753 | 0.01082 | 77.24666 | 39.59678 |
2Q1 | 0.03571 | 0.00075 | 0.00056 | 338.31146 | 58.67968 |
SIG1 | 0.03591 | 0.00072 | 0.00061 | 329.26622 | 43.17487 |
Q1 | 0.03722 | 0.00209 | 0.00070 | 41.78789 | 19.04889 |
O1 | 0.03873 | 0.00996 | 0.00059 | 126.92249 | 3.31510 |
NO1 | 0.04027 | 0.00108 | 0.00045 | 168.58926 | 25.51024 |
PI1 | 0.04144 | 0.00130 | 0.00053 | 141.36931 | 22.67050 |
P1 | 0.04155 | 0.00736 | 0.00054 | 198.66490 | 4.32768 |
S1 | 0.04167 | 0.00512 | 0.00070 | 282.29873 | 7.91398 |
K1 | 0.04178 | 0.03181 | 0.00054 | 211.00035 | 1.13173 |
PSI1 | 0.04189 | 0.00178 | 0.00055 | 308.38762 | 17.99524 |
J1 | 0.04329 | 0.00188 | 0.00055 | 229.76715 | 22.95559 |
EPS2 | 0.07618 | 0.00088 | 0.00032 | 215.45979 | 23.58849 |
2N2 | 0.07749 | 0.00334 | 0.00029 | 237.35181 | 5.56670 |
MU2 | 0.07769 | 0.00398 | 0.00029 | 225.58832 | 4.31571 |
N2 | 0.07900 | 0.02430 | 0.00029 | 247.28484 | 0.76937 |
NU2 | 0.07920 | 0.00456 | 0.00031 | 249.83144 | 3.56994 |
H1 | 0.08040 | 0.00101 | 0.00028 | 279.77635 | 19.41432 |
M2 | 0.08051 | 0.11791 | 0.00034 | 261.62021 | 0.14881 |
H2 | 0.08063 | 0.00102 | 0.00029 | 225.91666 | 17.48227 |
MKS2 | 0.08074 | 0.00086 | 0.00039 | 263.24797 | 30.76287 |
LDA2 | 0.08182 | 0.00073 | 0.00028 | 260.72057 | 22.89653 |
L2 | 0.08202 | 0.00307 | 0.00038 | 273.90925 | 7.24979 |
T2 | 0.08322 | 0.00291 | 0.00033 | 270.56248 | 5.84740 |
S2 | 0.08333 | 0.04388 | 0.00033 | 283.20792 | 0.39815 |
K2 | 0.08356 | 0.01271 | 0.00039 | 281.64550 | 1.70247 |
ETA2 | 0.08507 | 0.00079 | 0.00058 | 270.84843 | 36.62518 |
MO3 | 0.11924 | 0.00212 | 0.00047 | 89.51545 | 10.54339 |
M3 | 0.12077 | 0.00397 | 0.00032 | 36.33811 | 5.04156 |
SO3 | 0.12206 | 0.00089 | 0.00041 | 135.13022 | 28.36057 |
SK3 | 0.12511 | 0.00232 | 0.00041 | 342.76597 | 9.93294 |
MN4 | 0.15951 | 0.00152 | 0.00008 | 158.16051 | 3.75535 |
M4 | 0.16102 | 0.00362 | 0.00009 | 197.55199 | 1.47829 |
SN4 | 0.16233 | 0.00041 | 0.00009 | 219.92647 | 13.01316 |
MS4 | 0.16384 | 0.00214 | 0.00010 | 257.02772 | 2.34888 |
MK4 | 0.16407 | 0.00051 | 0.00014 | 256.71967 | 12.79714 |
S4 | 0.16667 | 0.00034 | 0.00009 | 184.94696 | 17.02859 |
SK4 | 0.16689 | 0.00017 | 0.00014 | 132.65692 | 46.82863 |
2SM6 | 0.24718 | 0.00010 | 0.00006 | 340.98222 | 42.08318 |
Year | Samples | Mean Pres | Std Dev | Samples > 1013 mbar | Samples > 1026 mbar | Samples < 1013 mbar | Samples < 1000 mbar |
---|---|---|---|---|---|---|---|
# | [mbar] | [mbar] | [%] | [%] | [%] | [%] | |
2002 | 6697 | 1013.7 | 5.46 | 57.17 | 0.24 | 42.83 | 1.91 |
2003 | 8761 | 1015.6 | 5.99 | 71.16 | 3.23 | 28.84 | 0.99 |
2004 | 8785 | 1015.4 | 7 | 66.01 | 6.56 | 33.99 | 2.25 |
2005 | 8761 | 1015.7 | 7.34 | 66.21 | 7.73 | 33.79 | 2.41 |
2006 | 8762 | 1016.3 | 6.66 | 71.68 | 6.46 | 28.32 | 1.62 |
2007 | 8761 | 1015.5 | 6.25 | 68.02 | 5.33 | 31.98 | 1.61 |
2008 | 8785 | 1015.6 | 6.92 | 64.56 | 8.8 | 35.44 | 1.81 |
2009 | 8761 | 1013.3 | 6.7 | 58.77 | 0.98 | 41.23 | 4.38 |
2010 | 8761 | 1012.6 | 6.38 | 52.6 | 1.55 | 44.3 | 4.37 |
2011 | 8761 | 1016.5 | 5.47 | 75.84 | 5.22 | 23.84 | 0.46 |
2012 | 8785 | 1015.2 | 6.26 | 69.58 | 4.04 | 29.6 | 2.12 |
2013 | 8761 | 1014.3 | 7.31 | 65.53 | 4.14 | 33.58 | 4.51 |
2014 | 8761 | 1014.6 | 5.79 | 63.47 | 2.13 | 36.23 | 1.68 |
2015 | 8761 | 1017.1 | 7.81 | 74.01 | 13.65 | 25.97 | 2.97 |
2016 | 8785 | 1016 | 6.82 | 72.03 | 8.78 | 27.97 | 1.45 |
2017 | 8761 | 1016.3 | 5.71 | 75.03 | 4.23 | 24.97 | 0.99 |
2018 | 8761 | 1013.9 | 6.21 | 61.53 | 2.83 | 38.47 | 3.14 |
2019 | 8737 | 1014.2 | 6.39 | 62.21 | 2.31 | 37.79 | 2.44 |
YEAR | H max [cm] | AA % | AA% > 5 cm | AA% > 10 cm | AA% > 20 cm | AA% > 30 cm |
---|---|---|---|---|---|---|
2003 | 12.0 | 0.82 | 0.74 | 0.02 | 0.00 | 0.00 |
2004 | 11.0 | 0.52 | 0.44 | 0.02 | 0.00 | 0.00 |
2005 | 5.5 | 0.38 | 0.27 | 0.00 | 0.00 | 0.00 |
2006 | 5.8 | 0.58 | 0.48 | 0.00 | 0.00 | 0.00 |
2007 | 6.5 | 0.35 | 0.32 | 0.00 | 0.00 | 0.00 |
2008 | 13.0 | 0.91 | 0.75 | 0.06 | 0.00 | 0.00 |
2009 | 26.0 | 4.50 | 4.20 | 0.91 | 0.08 | 0.00 |
2010 | 32.0 | 8.70 | 8.20 | 1.70 | 0.13 | 0.02 |
2011 | 13.0 | 0.41 | 0.35 | 0.01 | 0.00 | 0.00 |
2012 | 20.0 | 2.00 | 1.80 | 0.30 | 0.00 | 0.00 |
2013 | 18.0 | 3.00 | 2.70 | 0.17 | 0.00 | 0.00 |
2014 | 13.0 | 3.50 | 3.10 | 0.14 | 0.00 | 0.00 |
2015 | 12.0 | 2.10 | 2.00 | 0.06 | 0.00 | 0.00 |
2016 | 9.1 | 1.20 | 0.99 | 0.00 | 0.00 | 0.00 |
2017 | 7.2 | 0.47 | 0.39 | 0.00 | 0.00 | 0.00 |
2018 | 24.0 | 4.40 | 4.00 | 0.83 | 0.07 | 0.00 |
2019 | 24.0 | 4.30 | 4.10 | 1.20 | 0.14 | 0.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buonocore, B.; Cotroneo, Y.; Capozzi, V.; Aulicino, G.; Zambardino, G.; Budillon, G. Sea-Level Variability in the Gulf of Naples and the “Acqua Alta” Episodes in Ischia from Tide-Gauge Observations in the Period 2002–2019. Water 2020, 12, 2466. https://doi.org/10.3390/w12092466
Buonocore B, Cotroneo Y, Capozzi V, Aulicino G, Zambardino G, Budillon G. Sea-Level Variability in the Gulf of Naples and the “Acqua Alta” Episodes in Ischia from Tide-Gauge Observations in the Period 2002–2019. Water. 2020; 12(9):2466. https://doi.org/10.3390/w12092466
Chicago/Turabian StyleBuonocore, Berardino, Yuri Cotroneo, Vincenzo Capozzi, Giuseppe Aulicino, Giovanni Zambardino, and Giorgio Budillon. 2020. "Sea-Level Variability in the Gulf of Naples and the “Acqua Alta” Episodes in Ischia from Tide-Gauge Observations in the Period 2002–2019" Water 12, no. 9: 2466. https://doi.org/10.3390/w12092466
APA StyleBuonocore, B., Cotroneo, Y., Capozzi, V., Aulicino, G., Zambardino, G., & Budillon, G. (2020). Sea-Level Variability in the Gulf of Naples and the “Acqua Alta” Episodes in Ischia from Tide-Gauge Observations in the Period 2002–2019. Water, 12(9), 2466. https://doi.org/10.3390/w12092466